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Abstract This paper considers asymptotic synchro-
nization in an array of complex-variable chaotic sys-
tems, where node systems exhibit nonidentical nonlin-
ear dynamics and subject to different stochastic pertur-
bations. The effects of the differences among the node
systems are overcome by designing a special adaptive
discontinuous controller. By using Lyapunov stability
theorem and stochastic properties, sufficient conditions
are obtained to guarantee the synchronization. Finally,
numerical simulations are given to show the effective-
ness of the theoretical results.
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1 Introduction

In the literature, synchronization of coupled chaotic
systems (CCSs) with real variables has attracted con-
siderable attention in different areas including biolog-
ical, information processing and secure communica-
tions [1–5]. At the same time, many effective control
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methods have been proposed to investigate synchro-
nization of CCSs with real variables, such as impul-
sive control [6], state feedback control [7–9] and adap-
tive control [10–12], among which adaptive control
receiveswidespread attention since its control gains can
be automatically adjusted according to some designed
update law.

Recently, increasing attention has been attracted
to synchronization and control of CVCSs due to the
fact that the CVCSs can evolve in different direc-
tions with a constant intersection angle and have wide
applications in many fields such as optoelectronics,
filtering, imaging, speech synthesis, computer vision
and remote sensing [13–15]. For example, Wu et al.
[16] investigated complex projective synchronization
in coupled dynamical systems with complex vari-
ables based on a proper feedback controller. Liu et al.
[17] investigated robust adaptive full-state hybrid syn-
chronization of chaotic complex-valued systems with
unknown parameters and nonidentical external distur-
bances. Combination synchronization of three chaotic
systems with complex variables was investigated in
[18]. Drive-response synchronization for a class of
complex-variable chaotic systems with uncertain para-
meters was studied in [19] via adaptive and impulsive
controls.

It should be noted that the node systems in the
above-mentioned papers concerning CVCSs are iden-
tical. From practical point of view, it is not always rea-
sonable to assume that all the nodes in a network are
identical since some real-world complex networksmay
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consist of different type nodes and the nodes usually
have different physical parameters [20]. Although there
are some results on synchronization of coupled real-
valued chaotic systems with nonidentical node systems
in the literature [9,21], to the best of our knowledge,
few papers consider the issue of synchronization in
an array of CVCSs with nonidentical nodes. On the
other hand, stochastic perturbations to node systems
are always unavoidable and may also be nonidentical
since the effects of environments on each node sys-
tem are different. Theoretically, it is difficult to syn-
chronize a network with both nonidentical node sys-
tems and nonidentical stochastic perturbations, which
can further improve the security of the transmitted sig-
nals in a network. However, seldom author considers
synchronization of networks coupledwith nonidentical
complex-valued chaotic systems suffered to nonidenti-
cal stochastic perturbations.

Motivated by the above discussions, this paper aims
to investigate synchronization in an array of coupled
nonidentical CSCVs and nonidentical stochastic per-
turbations. A simple adaptive discontinuous controller
is designed to overcome the effects of the differences
among the coupled nodes and synchronize the net-
work onto a nonidentical chaotic system with com-
plex variables. Based on Lyapunov stability theorem
and stochastic theory, sufficient conditions are obtained
to ensure the synchronization. Numerical simulations
are given to show the effectiveness of the theoretical
results.

The rest of this paper is organized as follows. In
Sect. 2, a network coupled with nonidentical CSCVs
with different stochastic perturbations is proposed.
Some necessary assumptions and lemmas are also
given in this section. In Sect. 3, synchronization of
the network is studied. Then, numerical simulations
are given in Sect. 4 to demonstrate the effectiveness of
theoretical results. Finally, Sect. 5 gives conclusions.

2 Notations

The notations in this paper are quite standard. Cn

denotes a set of n-dimensional complex vectors. For
x ∈ C

n , x R and x I denote the real and imaginary parts
of x , respectively, x̄ denotes the complex conjugate of
x , ‖.‖ is the Euclidean norm, i.e., ‖x‖ = √

xT x̄ , and
R
n denotes the n-dimensional Euclidean space. The

superscript T denotes transposition of a matrix or vec-

tor. In is the n × n identity matrix. A = (ai j )N×N

denotesmatrix of N -dimension, ‖A‖ =
√

λmax(AT Ā),
λmax(A) means the largest eigenvalue of A, As =
1
2 ( Ā + AT ). Moreover, let (�,F , {Ft }t≥0, P) be a
complete probability space with filtration {Ft }t≥0 that
satisfy the usual conditions (i.e., the filtration con-
tains all P-null sets and is right continuous). Denote
by LP

F0
([−κ, 0];Cn) the family of all F0-measurable

C([−κ, 0];Cn)-valued random variables ζ = {ζ(s) :
−κ ≤ s ≤ 0} such that sup−κ≤s≤0E‖ζ(s)‖p < ∞,
where E{.} stands for the mathematical expectation
with respect to the given probability measure P .

3 Preliminaries

Consider a network coupled with CVCSs which is
described as follows:

dxi (t) =
[
fi (xi (t)) + �

N∑

j=1

ai j�x j (t) +Ui (t)

]
dt

+ δi (t)dωi (t), i = 1, 2, . . . , N , (1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ C
n

is an n-dimensional complex vector with xil(t) =
x Ril (t) + j x Iil(t), l = 1, 2, . . . , n, x Ril (t) and x Iil(t) are
real and imaginary parts of xil , respectively, j = √−1;
fi : C

n → C
n is nonlinear complex-valued vec-

tor function, where fi can be different from f j if
i 	= j . δi (t) is the noise intensity matrix function;
ωi (t) = (ωi1, ωi2, . . . , ωin) ∈ Rn is a vector-form
Wiener process defined on a complete probability space
(�,F ,Ft≥0, P);Ui (t) is the controller to be designed;
the constant matrix � = (�i j )n×n describes the inner-
coupling matrix of the network; � represents the cou-
pling strength; matrix A = (ai j )N×N stands for the
coupling of the whole network. If there is a connection
from node i to node j (i 	= j), then ai j > 0; otherwise,
ai j = 0 (i 	= j) and the diagonal elements of matrix A
are defined as aii = −∑N

j=1, j 	=i ai j .
Our goal is to synchronize the states of the network

(1) onto the complex-variable manifold:

dy(t) = g(y(t))dt, (2)

where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ C
n ,

g(y(t)) = (g1(y(t)), g2(y(t)), . . . , gn(y(t))) ∈ C
n .

Definition 1 [22]. The coupled network (1) is said to
be globally asymptotically synchronized onto (2) if

lim
t→+∞E{‖xi (t) − y(t)‖} = 0, i = 1, 2, . . . , N ,
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hold for any given initial condition.
Let ei (t) = xi (t) − y(t), i = 1, 2, . . . , N . It can

obtain the following error system by subtracting (2)
from (1).

dei (t) = dxi (t) − dy(t)

=
[
f i (ei (t)) + �

N∑

j=1

ai j�e j (t)

+Ui (t) + 
i (t)

]
dt

+ δi (t)dωi (t), i = 1, 2, . . . , N , (3)

where f i (ei (t)) = fi (xi (t)) − fi (y(t)), 
i (t) =
fi (y(t)) − f (y(t)).
For convenience of study, the error system (3) is

separated into real and imaginary parts. Let ei (t) =
eRi (t) + jeIi (t), f i (ei (t)) = f

R
i (ei (t)) + j f

I
i (ei (t)),

and Ui (t) = UR
i (t) + jU I

i (t), 
i (t) = 
R
i (t) +

j
 I
i (t), δi (t) = δRi (t) + jδ Ii (t). Then the following

two real-valued systems can be obtained from (3):

deRi (t) =
[
f
R
i (ei (t)) + �

N∑

j=1

ai j�eRj (t) +UR
i (t)

+ 
R
i (t)

]
dt+δRi (t)dωi (t), i = 1, 2, . . . , N ,

(4)

deIi (t) =
[
f
I
i (ei (t)) + �

N∑

j=1

ai j�eRj (t) +U I
i (t)

+
 I
i (t)

]
dt+δ Ii (t)dωi (t), i = 1, 2, . . . , N .

(5)

Denote z(t) = (z1(t), . . . , zN (t), zN+1(t), . . . , z2N
(t))T = ((eR(t))T , (eI (t))T )T . It follows from (4) and
(5) that

dzk(t) =
[
f̂k(zk(t)) + �

2N∑

j=1

āk j�z j (t)

+ Ūk(t) + 
k(t)

]
dt

+ δk(t)dωk(t), k = 1, 2, . . . , 2N , (6)

where ( f̂1(z1(t)), . . . , f̂1(zN (t)), f̂N+1(zN+1(t)), . . . ,

f̂2N (z2N (t)))T = ( f
R
1 (eR1 (t)), . . . , f

R
N (eRN (t)), f

I
1

(eI1(t)), . . . , f
I
N (eIN (t)), A = (akj )2N×2N = diag

(A, A), (Ū1(t), . . . , ŪN (t), ŪN+1(t), . . . , Ū2N (t)),=

(UR
1 (t), . . . ,UR

N (t),U I
1 (t), . . . ,U I

N (t), (
1(t), . . . ,

N (t),
N+1(t), . . . , 
2N (t))= (
R

1 (t), . . . , 
R
N (t),


 I
1 (t), . . . , 


I
N (t)).

As far as the authors’ knowledge, most of the exist-
ing results on synchronization of coupled CVCSs only
focus on identical node systems. Obviously, synchro-
nization control of coupled nonidentical CVCSs is
more difficult than that of coupled CVCSs with identi-
cal nodes. In order to obtain synchronization criterion
for the network (1), the complex-variable error system
(3) has been transformed into real-variable error system
(6). To proceed our study, the following assumptions
are needed.

(H1) There exist nonnegative constants hk such that
‖ f̂k(u)‖ ≤ hk‖u‖, where u ∈ R

n , k = 1, 2, . . . , 2N .
(H2) There exist nonnegative constants μk j such

that, for k = 1, 2, . . . , 2N ,

trace(σ T
k (t)σ k(t)) ≤

2N∑

j=1

μk j z
T
j (t)z j (t).

(H3) Systems (1) and (2) are chaotic, and there exist
positive constants Mkj , M j such that | fk j (y(t))| ≤
Mkj , | f j (y(t))| ≤ M j , k = 1, 2, . . . , 2N , j =
1, 2, . . . , n.

As for Wiener process, the following properties are
useful [2,23].
(1) E{σ̄k(t)dω̄k} = 0, (σ̄k(t)dω̄k)

T (σ̄k(t)dω̄k) =
trace(σ̄k(t)T σ̄ (t))dt ;
(2) Suppose that V = V (x(t)) is a scalar function,
which x = (x1, x2, . . . , xn)T . The differential form of
V is obtained as

dV = ∂V

∂t
dt +

n∑

i=1

∂V

∂xi
dxi + 1

2

n∑

i, j=1

∂2V

∂xi∂x j
dxi dx j .

In expansion of the above equation, the following
algebraic operation is used: dtdt = 0, dtdω̄k j = 0,
dω̄k jdω̄k j = dt , dω̄k jdω̄kl = 0 ( j 	= l).

4 Main results

In this section, based on the Lyapunov stability theo-
rem, general criterion for synchronization of coupled
nonidentical CVCSs will be obtained. Rigorous math-
ematical proofs are also given.

Theorem 1 Suppose that conditions (H1) − (H3) are
satisfied. Then, with the controller
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Uk(t) = −lk(t)zk(t) − αβk(t)sign(zk(t)),

k = 1, 2, . . . , 2N , (7)

and adaptive law
{
l̇k(t) = εk zTk (t)zk(t), k = 1, 2, . . . , 2N ,

β̇k(t) = ηk
∑n

j=1 |zk j (t)|, k = 1, 2, . . . , 2N ,
(8)

the network (1) can be globally asymptotically synchro-
nized onto (2), where α > 1, εk > 0, ηk > 0 are small
constants, and sign(·) is the sign function.
Proof Consider the following Lyapunov function:

V (t) = 1

2

2N∑

k=1

zTk (t)zk(t) +
2N∑

k=1

1

2εk
(lk(t) − pk)

2

+
2N∑

k=1

1

2ηk
(qk − βk(t))

2.

DifferentiatingV (t) along the solution of (6) and taking
the expectations on both sides, one obtains that

E

{
dV (t)

dt

}
= E

{ 2N∑

k=1

zTk (t)dzk(t)

+
2N∑

k=1

(lk(t) − pk)z
T
k (t)zk(t)

−
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j (t)|
}

= E

{ 2N∑

k=1

zTk (t)

[
f̂k(zk(t))

+ �

2N∑

j=1

āk j�z j (t) − lk(t)zk(t)

−αβk(t)sign(zk(t)) + 
k

+ 1

2
traceδ

T
k (t)δk(t)

]

+
2N∑

k=1

(lk(t) − pk)z
T
k (t)zk(t)

−
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j (t)|
}
. (9)

It can be obtained from (H1) and (H2) that

E

{
dV (t)

dt

}
≤ E

{ 2N∑

k=1

zTk (t)hkzk(t)

+ �

2N∑

k=1

2N∑

j=1

akj z
T
k (t)�zk(t)

+
2N∑

k=1

zTk (t)
k +
2N∑

k=1

zTk (t)lk(t)zk(t)

+α

2N∑

k=1

zTk (t)βk(t)sign(zk(t))

+ 1

2

2N∑

k=1

2N∑

j=1

μk j z
T
j (t)z j (t)

+
2N∑

k=1

(lk(t) − pk)z
T
k (t)zk(t)

+
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j |
}

≤ E

{ 2N∑

k=1

hk‖zk(t)‖2

+ �

2N∑

k, j=1,k 	= j

ak j‖�‖‖zk(t)‖‖z j (t)‖

+ �

2N∑

k

ρminakk z
T
k (t)zk(t)

+
2N∑

k=1

zTk (t)
k+ 1

2

2N∑

k=1

2N∑

j=1

μk j‖z j (t)‖2

−
2N∑

k=1

pk‖zk(t)‖2

+α

2N∑

k=1

zTk (t)βk(t)sign(zk(t))

+
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j |
}
, (10)

where ρmin is the minimum eigenvalue of �s .
By (10) and (H3), one has

2N∑

k=1

zTk (t)
k + α

2N∑

k=1

zTk (t)βk(t)sign(zk(t))

−
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j (t)|
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≤
2N∑

k=1

n∑

j=1

|zTk j (t)|(Mkj + M j (t))

−α

2N∑

k=1

βk(t)|zk(t)|

−
2N∑

k=1

n∑

j=1

(qk − βk(t))|zk j (t)|

≤
2N∑

k=1

n∑

j=1

|zTk j (t)|(Mkj + M j (t) − qk) − (α − 1)

×
2N∑

k=1

βk(t)|zk(t)| ≤ 0, (11)

where qk ≥ max(Mkj + M j ), k = 1, 2, . . . , 2N , j =
1, 2, . . . , n.

The inequalities (10) and (11) imply that

E

{
dV (t)

dt

}
≤ E

{ 2N∑

k=1

hk‖zk(t)‖2

+ �

2N∑

k, j=1,k 	= j

ak j‖�‖‖zk(t)‖‖z j (t)‖

+ �

2N∑

k

ρminakkz
T
k (t)zk(t)

+ 1

2

2N∑

k=1

2N∑

j=1

μi j z
T
j (t)z j (t)

−
2N∑

k=1

pk‖zk(t)‖2
}

≤ E

{
zT (t)

(
H + ‖�‖ Ã + � − P̄

)
z(t)

}
,

(12)

where z(t) = (‖z1(t)‖, ‖z2(t)‖, . . . , ‖z2N (t)‖)T , Ã =
(ãk j )2N×2N , ãk j = āk j , k 	= j , ãkk = ρmin‖�‖ ākk , H =
diag(h1, h2, . . . , h2N ), P̄ = diag(p1, p2, . . . , p2N ),
� = (μk j )2N×2N .

Let pk = hk + λmax(‖�‖ Ã + �) + 1, k =
1, 2, . . . , 2N . One has

E

{
dV (t)

dt

}
≤ −E{zT (t)z(t)} ≤ 0. (13)

Hence,

lim
t→∞E{‖zk(t)‖} = 0, k = 1, 2, . . . , 2N . (14)

This completes the proof. 
�

When the node systems in the network (1) and the
isolated system (2) are identical, the following corol-
lary 1 can be directly obtained from Theorem 1.

Corollary 1 Assume that the conditions (H1) − (H3)

are satisfied and f̂1(z1(t)) = f̂2(z2(t)) = · · · =
f̂2N (z2N (t)). Then the coupled system (1) can be glob-
ally asymptotically synchronized onto (2) with the con-
troller (7) and adaptive law (8)

Remark 1 From the proof of Theorem 1, one can see
that the discontinuous term αβk(zk(t)) in controller (7)
plays an important role in realizing the synchroniza-
tion. The inequality (11) shows that the discontinuous
term can overcome the effect of nonidentical dynamics.
Since node systems in real-world networks are always
nonidentical, Theorem 1 is more general than those in
[16–19].

5 Numerical examples

In this section, we provide one example to show that
our theoretical results obtained above are effective.

Consider Chen system complex variables which are
described as [24]:

ẏ(t) = g(t, y(t)) = Cy(t) + g(y(t)), (15)

where y(t) = (y1(t), y2(t), y3(t))T , y1(t) and y2(t)
are complex variables, y3(t) is real, g(y(t)) = [0,
−y1(t)y3(t),

y1(t)y2(t)+y1(t)y2(t)
2 ]T ,

C =
⎛

⎝
−27 27 0
−3 23 0
0 0 −1

⎞

⎠ .

Figure 1 shows the chaotic trajectory of (15) with
initial value y(0) = (12 + j, 10 + 4 ∗ j, 15)T .

Complex-valued Lorenz system is presented as [25]:

ẋ(t) = f (t, x(t)) = C̃x(t) + f̃ (x(t)), (16)

where x(t) = (x1(t), x2(t), x3(t))T , x1(t) and x2(t)
are complex variables, x3(t) is real, f̃ (x(t)) =
[0,−x1(t)x3(t),

x1(t)x2(t)+x1(t)x2(t)
2 ]T ,

C̃ =
⎛

⎝
−10 10 0
28 −1 0
0 0 −8/3

⎞

⎠ .

Figure 2 presents the chaotic trajectory of (16) with
initial value x(0) = (4 + j, 3 + 5 ∗ j, 8)T .

Complex-valued Lü system is described by [26]
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Fig. 1 Trajectory of (15) with initial conditions: y1(0) = 12 + j, y2(0) = 10 + 4 ∗ j, y3(0) = 15
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Fig. 2 Trajectory of (16) with initial conditions: x1(0) = 4 + j, x2(0) = 3 + 5 ∗ j, x3(0) = 8

ẋ(t) = f (t, x(t)) = Čx(t) + f̌ (x(t)), (17)

where x(t) = (x1(t), x2(t), x3(t))T , x1(t) and x2(t)
are complex variables, x3(t) is real, f̌ (x(t)) =
[0,−x1(t)x3(t),

x1(t)x2(t)+x1(t)x2(t)
2 ]T ,

Č =
⎛

⎝
−35 35 0
0 20 0
0 0 −3

⎞

⎠ ,

Figure 3 describes the chaotic trajectory of (17) with
initial value x(0) = (8 + j, 5 + 4 j, 7)T .

Consider a controlled network consisting of the
above two types of nonidentical chaotic nodes (16) and
(17) as follows:

dxi (t) =
[
fi (xi (t)) + �

10∑

j=1

ai j�x j (t) +Ui (t)

]
dt

+ δi (t)dωi (t), i = 1, 2, . . . , 10, (18)

where xi (t) = (xi1(t), xi2(t), xi3(t))T , � =
diag(1, 1, 1), � = 1, the noise intensity function
matrix is δi (t) = diag(xi1(t) − xi+1,1(t), xi2(t) −
xi+1,2(t), xi3(t) − xi+1,3(t)), and the outer coupling
matrix A is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 0 1 0 0 1 0 0 0 0
1 −6 1 0 1 0 1 0 0 2
0 0 −4 0 0 3 0 0 1 0
0 0 0 −2 1 0 0 1 0 0
2 1 0 0 −4 1 0 0 0 0
0 0 2 0 0 −4 1 0 1 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −2 1 0
0 2 0 0 0 0 0 1 −3 0
0 0 0 1 1 1 0 0 0 −3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Fig. 3 Trajectory of (17) with initial conditions: x1(0) = 8 + j, x2(0) = 5 + 4 ∗ j, x3(0) = 7
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Fig. 4 The time responses of the synchronization errors zk1(t) (left) and zk2(t) (right), k = 1, 2, . . . , 20 in (19)

and

fi (xi (t)) = C̃x(t) + f̃ (x(t)), i = 1, 2, . . . , 5,

fi (xi (t)) = Čx(t) + f̌ (x(t)), i = 6, 7, . . . , 10.

It follows that

dzk(t) =
[
f̂k zk(t) + �

20∑

j=1

āk j�a j (t) + Ūk(t) + 
̄

]
dt

+ δ̄k(t)dω̄k(t), k = 1, 2, . . . , 20. (19)

It is easy to see that f̂i (zi (t)) satisfies the condi-
tion (H1). Figures 1, 2 and 3 show that the states of
the considered systems are finite, which implies that
the assumption (H3) is satisfied. Now we verify the
assumption (H2). From the noise intensity function
matrix in (18), one has that
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Fig. 5 The time responses of the synchronization errors zk3(t),
k = 1, 2, . . . , 20 in (19)
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Fig. 6 The trajectories of control gains lk(t) (left) and βk(t) (right), k = 1, 2, . . . , 20. of (7)

trace(δTi (t)δi (t)) = (xi1(t) − xi+1,1(t))
2 + (xi2(t)

−xi+1,2(t))
2 + (xi3(t) − xi+1,3(t))

2

≤ 2(x2i (t) + x2i+1(t)).

Hence (H2) is satisfied.
According to Theorem 1, (18) can be synchronized

onto (15) under the controller (7) with update law (8).
Taken parameters in the numerical simulations are:

Step length is 0.0001, � = diag(1, 1, 1), lk = 2,
βk = 1, k = 1, 2, . . . , 20, εk = 0.005, ηk = 2.5,
k = 1, 2, . . . , 10, εk = 0.001, ηk = 2.2, k =
11, 12, . . . , 20 α = 6. Choosing the initial values of
chaotic system randomly in the interval [−3, 3], we
obtain the simulation results shown in Figs. 4 and 5,
which demonstrate that the synchronization is real-
ized. Figure 6 presents the time evolution of the con-
trol gains lk(t), βk(t), k = 1, 2, . . . , 20, from which
one can see that all the control gains approach to
some constants when the synchronization has been
realized.

6 Conclusions

Synchronization of coupled nonidentical complex-
valued chaotic systems suffered to different stochastic
perturbations has been investigated in this paper. The
designed adaptive controller can restrict the effects of
the nonidentical dynamics and nonidentical stochas-
tic perturbations. Based on Lyapunov stability theorem
and the properties of stochastic differential equations,
several synchronization criteria have been derived.

Some existing results on synchronization of coupled
identical chaotic systems with complex variables are
extended. Numerical simulations verify the effective-
ness of the theoretical results.
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