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Abstract Bymeans of theHirota bilinearmethod, we
obtain the hollow ring-like soliton and dipole soliton
solutions of the coupled nonlinear Schrödinger equa-
tion in the (2 + 1)-dimensional inhomogeneous PT -
symmetric nonlinear couplers. Based on these analyti-
cal solutions, we investigate the compression behaviors
of hollow ring-like soliton and dipole soliton in a dif-
fraction decreasing system with exponential profile.

Keywords PT -symmetric nonlinear couplers ·
(2 + 1)-Dimensional coupled nonlinear Schrödinger
equation · Hollow ring-like soliton · Dipole soliton

1 Introduction

Solitons were intensively studied in various fields
including nonlinear optics, plasma physics, condensed
matter physics and quantum physics as the self-
localized robust and long-lived nonlinear solitary wave
objects [1–6]. Recently, many works have focused on
more complex localized structures [7–9]. One of them
is the dipole soliton (DS) with two symmetrical humps.
The theoretical prediction of DSs was firstly made in
Ref. [10], and it was soon observed experimentally in
Ref. [11].
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In 1998, Bender et al. [12] introduced the PT
symmetry, which requires that the potential satisfies
V (x) = V ∗(−x)with∗ denoting the complex conjuga-
tion. Since Christodoulides and co-workers [13] did the
pioneering theoretical research about the PT symme-
try in optics, soliton dynamics inPT -symmetric poten-
tials were intensively studied [7,8,14–16]. Moreover,
dynamical properties of solitons in PT -symmetric
nonlinear couplers were also extensively discussed
[17–19]. However, the completely localized structures
in x and y directions were hardly reported in (2 + 1)-
dimensional PT -symmetric coupled systems.

In this paper, we study the coupled nonlinear
Schrödinger equation (CNLSE) in the (2 + 1)-dimen-
sional inhomogeneous PT -symmetric nonlinear cou-
plers and obtain the hollow ring-like soliton and DS
solutions by means of the Hirota bilinear method.
Based on these analytical solutions, we analyze the
dynamical behaviors of hollow ring-like soliton andDS
in adiffractiondecreasing system (DDS)with exponen-
tial profile.

2 Model and soliton solution

In order to improve the conventional twin core cou-
pler [20], the nonlinear coupler with gain and loss was
presented and realized in experiment [21,22]. In this
structure, two optical waveguides are close proximity
each other. One guide has a certain amount of gain, and
the other one has an equal amount of loss. In a real
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waveguide, the inhomogeneous core medium exists
[23], and thus the propagation of soliton in this inho-
mogeneous PT -symmetric coupled systems can be
governed by the following variable-coefficient CNLSE
[24]

iuz + 1

2
β(z)∇2⊥u +

[
χ1(z)|u|2 + χ(z)|v|2

]
u

= λ(z)(−v + iγ u),

ivz + 1

2
β(z)∇2⊥v +

[
χ(z)|u|2 + χ1(z)|v|2

]
v

= λ(z)(−u − iγ v), (1)

where u(z, x, y) and v(z, x, y) denote two normalized
complexmode fields in two parallel planarwaveguides,
z and x, y represent dimensionless propagation and
transverse coordinates, the transverse Laplacian oper-
ator ∇2⊥ = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂φ2 with the radius r =√
x2 + y2 and the azimuthal angle φ = arctan(y/x).

In Eq. (1), from the left to right, these terms account
for diffraction, nonlinearly coupled terms of the self-
phase-modulation (SPM) and cross-phase-modulation
(XPM) and the coupling between the modes propagat-
ing in the two waveguides. The opposite signs of the γ

term in the second term of right side describe the PT -
balanced gain in the first equation of Eq. (1) and loss
in the second equation of Eq. (1). If the gain/loss term
is small enough, e.g. γ ≤ 1, the energy through linear
coupling is transferred from the core with gain to the
lossy one, and modes can be excited in the system by
input beams but do not arise spontaneously. Here we
discuss this case.

We search for the PT -symmetric (+) and PT -
antisymmetric (−) axisymmetric cylindrical-beam
solutions of Eq. (1) in the form

u(z, r, φ) = U (z, r)�(φ) exp

[
i
√
1 − γ 2

∫ z

0
λ(s)ds

]

v(z, r, φ) = ±u(z, r, φ) exp [±i arcsin(γ )]. (2)

Inserting Eq. (2) into Eq. (1), the separation of vari-
ables leads to the following two equations:

− 1

�

d2�

dφ2 = m2, (3)

2r2

βU

[
i
∂U

∂z
+ 1

2
β

(
∂2U

∂r2
+ 1

r

∂U

∂r

)

+ (χ + χ1)|�|2|U |2U
]

= m2. (4)

Obviously, solution to Eq. (3) can be expressed as

� = cos(mφ) + iq sin(mφ), (5)

where parameter q ∈ [0, 1] determines the modulation
depth of the beam, and the topological chargem ≥ 0 is
an integer [25]. Note that solution (5) is an approximate
solutionofEq. (3), and it is valid forweaknonlinearities
or for large values of q (∼1) because the last term in the
left of Eq. (4) is φ-dependence and spoils the assumed
separation of variables.

Therefore, integrating over φ from 0 to 2π and con-
sidering m being an integer, Eq. (4) changes into an
averaged equation

2r2

βU

[
i
∂U

∂z
+ 1

2
β

(
∂2U

∂r2
+ 1

r

∂U

∂r

)

+ (χ + χ1)(1 + q2)|U |2U
]

= m2. (6)

According to theHirota bilinearmethod [25], insert-
ing U = r g(r,z)

f (r,z) with the complex and real functions
g(r, z) and f (r, z) into Eq. (6), we have
(
ir Dz + 1

2
βr D2

r + 3

2
βDr

)
(g · f ) = 0, (7)

D2
r ( f · f ) = (1 + q2)

χ + χ1

β
r2gg∗, (8)

withm = 1 and theHirota’s bilinear derivative operator
Dn
r (g · f ) = ( ∂

∂r − ∂
∂r ′ )ng(z, r) f (z′, r ′)|z′=z,r ′=r .

In order to obtain fundamental soliton solutions, we
expand functions g(r, z) and f (r, z) as power series of
a formal expansion parameter ε, and truncate g(r, z)
as g(r, z) = εg1(r, z) and f (r, z) as f (r, z) = 1 +
ε2 f2(r, z) [25]. Inserting these expressions into Eqs.
(7) and (8), we obtain

ε :
(
ir Dz + 1

2
βr D2

r + 3

2
βDr

)
(g1 · 1) = 0,

ε2 : D2
r (1 · f2) =

(
1 + q2

) χ + χ1

β
r2g1g

∗
1 ,

ε3 :
(
ir Dz + 1

2
βr D2

r + 3

2
βDr

)
(g1 · f2) = 0,

ε4 : D2
r ( f2 · f2) = 0. (9)

Solving Eq. (9) yields

g1 = g10α
2(z) exp

[
α(z)r2 + M0

]
,

f2 = (1 + q2)
χ(z) + χ1(z)

β(z)
H(z)

×
[
eM(z)r2

2M2(z)
+ i

√
πrerf

[
ir

√
H(z)

]

4H3/2(z)

]
(10)
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Fig. 1 (Color online) The compression of hollow ring-like soli-
ton at a z = 0 and b z = 20, c PT -antisymmetric structure
corresponding to (b) when y = 0. Parameters are chosen as

q = 1, g10 = 1, c = 1.5, M0 = 3, β0 = 0.5, χ0 = 0.3, χ10 =
0.2, σ = 0.2, δ = 0.25

where M(z) = g210 exp(2M0)/[c2 + 4D2(z)], H(z) =
2c/[c2 + 4D2(z)], α(z) = 1/[c − 2iD(z)], D(z) =∫ z
0 β(s)ds with the error function erf(x), and three con-
stants c, M0, g10.

From results (2), (5) and (10), PT -symmetric (+)
and PT -antisymmetric (−) axisymmetric cylindrical-
beam solutions of equations (1) can be expressed as

u(z, r, φ) = rg1
1 + f2

[
cos(φ) + iq sin(φ)

]

× exp

[
i
√
1 − γ 2

∫ z

0
λ(s)ds

]

v(z, r, φ) = ± rg1
1 + f2

[cos(φ) + iq sin(φ)]

× exp

{
i

[√
1 − γ 2

∫ z

0
λ(s)ds ± arcsin(γ )

]}
.

(11)

When we solve Eqs. (7) and (8), g(r, z) and f (r, z)
are truncated to g1(r, z) and f2(r, z) respectively, and
this truncation cannot be exact. Moreover, solution �

expressed as (5) is also not be exact. Therefore, solution
(11) is an analytical but approximate solution.

3 Dynamical behaviors of hollow ring-like soliton
and dipole soliton

In the following, we discuss the dynamical behaviors
of hollow ring-like soliton and dipole soliton in a DDS
with exponential profile [26]

β(z) = β0 exp(−σ z), χ(z) = χ0 exp(−δz), χ1(z)

= χ10 exp(−δz), (12)

where β0 and χ0, χ10 are three positive parameters
related to diffraction and nonlinearity, respectively,
σ > 0 corresponds to DDS and δ is exponential para-
meter of nonlinearity.

We fix constants c and M0 as c = 1.5 and M0 = 3.
For q = 1 in solution (11), we obtain a hollow ring-
like soliton. One example of this typical structure is
shown in Fig. 1, where the axisymmetric radial inten-
sity (I = |u|2) is zero at the center, and the distributions
of the optical field are independent of the azimuthal
angle. From Fig 1a, b, in the course of evolution in
the DDS, this nonstationary ring is compressed in a
self-similar manner, the amplitude adds and the width
attenuates in the radial direction. PT -antisymmetric
structure corresponding to Fig. 1b is shown in Fig. 1c.

If we set q as other values, different localized struc-
tures can be constructed. For example, when q = 0,
the DS with two symmetrical humps also appears zero
domain at the center. In Fig. 2a, b, with the evolution
in the DDS, the structure shrinks in the radial direction
and its peak gradually strengthens. When q = 0.75,
we can obtain another structure, that is, the ring soli-
ton with two lobes. From Fig. 2c, d, with the evolution
in the DDS, the smaller the radius of the stripes, the
stronger the optical intensity of the ring soliton with
two lobes.

4 Conclusions

In conclusion, by means of the Hirota bilinear method,
we derive the hollow ring-like soliton and DS solu-
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Fig. 2 (Color online) The
compression of dipole
soliton at a, c z = 0 and b, d
z = 20. Parameters are
chosen as a, b q = 0 and c,
d q = 0.75. Other
parameters are chosen as the
same as those in Fig. 1
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tions of the CNLSE in the (2 + 1)-dimensional inho-
mogeneous PT -symmetric nonlinear couplers. Based
on these analytical solutions, we also study the com-
pression behaviors of hollow ring-like soliton and DS
in a DDS with exponential profile. Our analysis and
results may have potential values for certain applica-
tions of syntheticPT -symmetric systems in condensed
matter physics and nonlinear optics.
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