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Abstract Little seems to be known about the soli-
tary waves and their properties of the completely inte-
grable equations with singularity. This paper addresses
the solitary waves of an integrable equation based on
the bifurcationmethod of dynamical systems.We high-
light two interesting results on the solitary waves. First,
for arbitrary wave speed, there do exist infinitely many
solitary waves in the integrable equation, which are
classified by their expressions and forms of motion.
Second, we find a family of solitary waves whose pro-
files seem like tree stumps.
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1 Introduction

In 1985, Chowdhury and Roy [1] proposed a modified
Harry Dym equation
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, μ �= 0, (1.1)

which is the first member in the positive Camassa–
Holm hierarchy [2]. Its generalized form is reciprocally
linked with the KdV equation [3].

In 1991, Cao and Geng [4] found a non-confocal
generator, from which three soliton hierarchies are
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given as the isospectral equations of the eigenvalue
problems. One of the equations is the form
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)
x
. (1.2)

In 1996, through the tri-Hamiltonian method, Olver
and Rosenau [5] derived the integrable equation
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x
. (1.3)

Latter in 2010, Li and Qiao [6] considered the bifur-
cations of traveling wave solutions for the following
nonlinear equation
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x
, (1.4)

where k ∈ R, k �= −1, 0. They used the bifurcation
method of dynamical systems to study all possible trav-
eling wave solutions and their implicit representations
for Eq. (1.4) in the cases of |k| = 1/2, 2, respectively.
Particularly, when k = 1/2, 2, the existence of the infi-
nitely many solitary wave of Eq. (1.4) is proved. Then
Pan and Liu [7] continued to consider the problems
on the traveling wave solutions and their bifurcations
of Eq. (1.4) for the case of |k| = p/q(p �= q and
p, q ∈ Z

+). When k = 2, Qiao [8,9] proposed a
completely integrable hierarchy from which they drew
Eq. (1.4) and gave its bi-Hamiltonian operators. In
recent years, Eq. (1.4) has attracted much attention in
soliton theory [10–15]. However, the above-mentioned
results limit to some properties of Eq. (1.4) with the
same degree between
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In 2014, Pan et al. [16] proposed a completely inte-
grable equation

mt = 1
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xxx

− a

(
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)
x
, a > 0, (1.5)

which is associatedwith theKdV equation by the recip-
rocal transformation.Bymeans of the singular transfor-
mation u(x, t) = −1/m(x, t), Eq. (1.5) can be reduced
to the following equation

ut = au2ux + u2(3uxuxx + uuxxx ). (1.6)

By applying the bifurcation method of dynamical sys-
tems, the implicit representations of the cuspons and
the periodic cuspons of Eq. (1.6) are presented [16].

Little seems to be known about the infinitely many
solitary waves and their properties of the completely
integrable equations with singularity. Due to the influ-
ence of the singular term 1/m(x, t), it is therefore of
great interest to study dynamic properties of Eq. (1.5)
directly. It is worth noting that a family of unbounded
solutions of Eq. (1.6) may turn into the solitary wave
solutions of Eq. (1.5). Also, the change of the para-
meters, especially the wave speed, influences the exis-
tence of the solitary waves. For this reason, the scope
of this paper is to explore the relationship between
the existence of the infinitely many solitary waves and
the wave speed for Eq. (1.5) by adopting the bifur-
cation method of dynamical systems [6,7,16–23]. We
list the other approaches for solving the solitary waves
for comparison [5,8–10,24,25]. In this article, for arbi-
trary wave speed c, we prove that the infinitely many
solitary waves exist in Eq. (1.5) via qualitative theory
and combining the bifurcation phase portraits. Among
these solitary waves, we find a kind of novel solitary
wave whose form of motion seems like a tree stump.

The paper is organized as follows. In Sect. 2, the
main results are established by choosing the wave
speed and Hamiltonian as the bifurcation parameters.
In Sect. 3, Hamiltonian and the bifurcation phase por-
traits of Eq. (1.5) are derived for the proofs of the main
results. The conclusions are drawn in Sect. 4.

2 The infinitely many solitary waves

Generally speaking, the existence of the solitary waves
depends on the wave speed. Therefore, the wave speed
and the other systemparameters are chosen as the bifur-
cation parameters. The infinitely many solitary waves

of Eq. (1.5) exist, but it is independent of the parame-
ters completely. We state the main theorem as follows.

Theorem 1 The infinitely many solitary waves do exist
in Eq. (1.5) for arbitrary wave speed c.

The proof of Theorem 1 is stated in Sect. 3.

Proposition 1 If let�(·, ·, ·) be the Legendre’s incom-
plete elliptic integral of the third kind and�(ϕ, 1, k) =
1
k′2 [k′2F(ϕ, k)− E(ϕ, k)+ tanϕ

√
1 − k2sin2ϕ], k′2 =

1 − k2, snu = sn−1(u, k) be the sine amplitude u
(Jacobian elliptic function), sn−1u = sn−1(u, k) be the
inverse function of snu, Eq. (1.5) possesses the solitary
waves m = ϕ(ξ) = ϕ(x − ct) which are of the follow-
ing eleven different cases and are classified based on
Hamiltonian.

Case 1 When the equation

hϕ3 − 2cϕ2 − gϕ + 2a

3
= 0 (2.1)

has three roots as α, β, γ (γ < β < α), the expression
of the solitary wave of Eq. (1.5) can be written as

2

β
√

α(β − γ )

[(
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)
�(arcsinu1, 1, k1)

]

+β

α
sn−1u1 = √

hsign(ξ)ξ, (2.2)

where γ < 0 < ϕ ≤ β, u1 =
√

α(β−ϕ)
β(α−ϕ)

and k21 =
β(α−γ )
α(β−γ )

.
Case 2 When h = 0 and Eq. (2.1) has two roots as

α, β, the expression of the solitary wave of Eq. (1.5)
can be written as

−β

2α
√

α − β

[ −β

α − β
sn−1u2 − E(arcsinu2, k2)

+dn(sn−1u2)tn(sn
−1u2)

]
= √

2csign(ξ)ξ, (2.3)

where β < 0 < ϕ ≤ α, u2 =
√

α−ϕ
α

and k22 = α
α−β

.
Case 3 When Eq. (2.1) has three roots as α, β, γ

(γ < β < α), the expression of the solitary wave of
Eq. (1.5) can be written as

2γ

α(α − γ )
√

(α − β)(−γ )

×
[(

1 − α

γ

)
�(arcsinu3, 1, k3) + α

γ
sn−1u3

]

= √−hsign(ξ)ξ, (2.4)
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where β < 0 < ϕ ≤ α, u3 =
√−γ (α−ϕ)

α(ϕ−γ )
and k23 =

α(β−γ )
(α−β)(−γ )

.
Case 4When Eq. (2.1) has three roots as α, β (β <

α) and β is a double root, the expression of the solitary
wave of Eq. (1.5) can be written as

−2
√

αϕ − ϕ2

αβϕ
+ 1

β
√

β2 − αβ

[π

2
− arctanu4

]

= √−hsign(ξ)ξ, (2.5)

where β < 0 < ϕ ≤ α and u4 = (α−2β)ϕ+αβ

2
√

β2−αβ
√

αϕ−ϕ2
.

Case 5 When h = 0 and Eq. (2.1) has two roots as
α, β (β < α), the expression of the solitary wave of
Eq. (1.5) can be written as
√

α

2β

[
sn−1u5 − E(arcsinu5, k4)

+dn(sn−1u5)tn(sn
−1u5)

]
= √−2csign(ξ)ξ, (2.6)

where 0 < ϕ ≤ β, u5 =
√

α(β−ϕ)
β(α−ϕ)

and k24 = β
α
.

Case 6 When Eq. (2.1) has three roots as α, β, γ

(γ < β < α), the expression of the solitary wave of
Eq. (1.5) can be written as

2

γ
√

(α − γ )β

[(
1 − γ

β

)
�(arcsinu6, 1, k5)

+γ

β
sn−1u6

]
= √−hsign(ξ)ξ, (2.7)

where 0 < ϕ ≤ γ , u6 =
√

β(γ−ϕ)
γ (β−ϕ)

and k25 = (α−β)γ
(α−γ )β

.
Case 7When Eq. (2.1) has three roots as α, β (β <

α) and α is a double root, the expression of the solitary
wave of Eq. (1.5) can be written as

−2
√

βϕ − ϕ2

αβϕ
+ 1

α
√

α2 − αβ

[π

2
+ arctanu7

]

= √−hsign(ξ)ξ, (2.8)

where 0 < ϕ ≤ β and u7 = (β−2α)ϕ+αβ

2
√

α2−αβ
√

βϕ−ϕ2
.

Case 8When Eq. (2.1) has three roots as α, β (β <

α) and β is a double root, the expression of the solitary
wave of Eq. (1.5) can be written as

− 2
√

αϕ−ϕ2

αβϕ
− 1

β
√

αβ−β2
lnu8 = √−hsign(ξ)ξ,

(2.9)

where 0 < β < ϕ ≤ α and u8
= α(ϕ−β)

(α−2β)ϕ+αβ+2
√

(αβ−β2)(αϕ−ϕ2)
.

–40 –20 20 40

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1 The profile of the solitary wave (2.2) for a = g = c = 1,
h = 1

α3 (2cα2 + gα − 2a
3 ), α = 0.618034
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Fig. 2 The profile of the solitary wave (2.9) for a = 1, g = 4,
c = −3 − 10−5, h = 1

β3 (2cβ2 + gβ − 2a
3 ), α = 2

h (c − βh),

β = 1
2c (−g + √

g2 + 4ac)

Case 9When Eq. (2.1) has three roots as α, β (β <

α) and β is a double root, the expression of the solitary
wave of Eq. (1.5) can be written as

− 2
√

ϕ2 − αϕ

αβϕ
+ 1

β
√

β2 − αβ
lnu8 = √

hsign(ξ)ξ,

(2.10)

where β < ϕ ≤ α < 0 and u8
= −α(ϕ−β)

(2β−α)ϕ−αβ+2
√

(β2−αβ)(ϕ2−αϕ)
.

Case 10 When h = c = 0 and α = 2a
3g , the expres-

sion of the static solitary wave of Eq. (1.5) can be writ-
ten as

ϕ = 4α

4 + gα2x2
. (2.11)

Case 11When Eq. (2.1) has three roots, where there
exist a pair of conjugate complex roots and a real root
α, the solitary wave of Eq. (1.5) exists.

Proposition 2 There exist three different forms (width,
height and low) of motion for the infinitely many soli-
tary waves in Eq. (1.5; see Figs. 1, 2, 3).
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Fig. 3 The profile of the solitary wave in Case 11 for a = 1,
g = 2, c = 1, h = 1

α3 (2cα2 + gα − 2a
3 ), α = 10−4

3 The bifurcation phase portraits

Let

m(x, t) = ϕ(ξ), ξ = x − ct, (3.1)

where c represents the wave speed. Substituting (3.1)
into Eq. (1.5) and integrating once, we have

− cϕ = 1

2

(
1

ϕ2

)′′
− a

ϕ
+ g, (3.2)

where g is the integral constant. For convenience, we
rewritten Eq. (3.2) as

ϕϕ′′ − 3ϕ′2 = cϕ5 + gϕ4 − aϕ3. (3.3)

Letting y = ϕ′, we obtain the planar dynamic system{
dϕ
dξ = y,
dy
dξ = 1

ϕ

(
3y2 + cϕ5 + gϕ4 − aϕ3

)
.

(3.4)

Note that Sy. (3.4) has a singular line ϕ = 0. To
avoid the line temporarily, we assume that dξ = ϕdη,
so that Sy. (3.4) is equivalent to the system as follows{

dϕ
dη = ϕy,
dy
dη = 3y2 + cϕ5 + gϕ4 − aϕ3,

(3.5)

which has the first integral

H(ϕ, y) = h, (3.6)

where

y2 = hϕ6 − 2cϕ5 − gϕ4 + 2a

3
ϕ3. (3.7)

Sy. (3.4) has the same topological phase portraits as Sy.
(3.5) except for the straight lineϕ = 0. The phase space
orbits of the vector fields defined by Sy. (3.5) deter-

mine all traveling wave solutions of Eq. (1.5). Thus, to
investigate the bifurcations of traveling wave solutions
of Eq. (1.5), we need to analyze the dynamic behavior
of Sy. (3.5).

For simplicity, we let

f (ϕ) = cϕ5 + gϕ4 − aϕ3, (3.8)

and (ϕ, 0) be one of singular point of Sy. (3.5). Then
characteristic values of linearized system of Sy. (3.5)
at the singular point (ϕ, 0) are

λ±(ϕ, 0) = ±
√

ϕ f ′
(ϕ).

We therefore know the property of the singular point
(ϕ, 0) as follows

1. When ϕ f
′
(ϕ) > 0, (ϕ, 0) is a saddle point of Sy.

(3.5).
2. When ϕ f

′
(ϕ) < 0, (ϕ, 0) is a center point of Sy.

(3.5).
3. When ϕ f

′
(ϕ) = 0, (ϕ, 0) is a degenerate singular

point of Sy. (3.5).

By using the properties of equilibrium points and
bifurcation theory, we verify that the original point is
the elliptic–hyperbolic point. Further we obtain three
bifurcation curves as follows

c1(g) = 0,

c2(g) = − g2

4a
,

c3(g) = −3g2

16a
.

Then according to the qualitative theory, we obtain
the bifurcation phase portraits of Sy. (3.5) as Fig. 4.
From the phase portraits, we know that the infi-
nitely many closed orbits connecting with the original
point are corresponding to the infinitely many solitary
waves.

By using the above bifurcation phase portraits, we
show the representations of the solitary wave solutions
of Eq. (1.5), where the dynamics of the level curves
�i (i = 1, 2, . . . , 10) determined by (3.7).

The curves �i (i = 1, 2, . . . , 10) have the following
expressions:
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Fig. 4 The phase portrait of
Sy. (3.4) for a > 0

�1 : y2 = hϕ3(α − ϕ)(β − ϕ)(ϕ − γ ),

where 0 < ϕ ≤ β, (3.9)

�2 : y2 = 2cϕ3(α − ϕ)(ϕ − β),

where 0 < ϕ ≤ α, (3.10)

�3 : y2 = −hϕ3(α − ϕ)(ϕ − β)(ϕ − γ ),

where 0 < ϕ ≤ α, (3.11)

�4 : y2 = −hϕ3(α − ϕ)(ϕ − β)2,

where 0 < ϕ ≤ α, (3.12)

�5 : y2 = −2cϕ3(α − ϕ)(β − ϕ),

where 0 < ϕ ≤ β, (3.13)

�6 : y2 = −hϕ3(α − ϕ)(β − ϕ)(γ − ϕ),

where 0 < ϕ ≤ γ, (3.14)

�7 : y2 = −hϕ3(α − ϕ)2(β − ϕ),

where 0 < ϕ ≤ β, (3.15)

�8 : y2 = −hϕ3(ϕ − β)2(α − ϕ),

where β < ϕ ≤ β, (3.16)

�9 : y2 = h(−ϕ)3(α − ϕ)(ϕ − β)2,

where β < ϕ ≤ α, (3.17)

�10 : y2 = gϕ3(α − ϕ),

where 0 < ϕ ≤ α. (3.18)

Substituting (3.9–3.18) into y = dϕ
dξ and integrating

them along the curves �i (i = 1, 2, . . . , 10), it follows
that∫ β

ϕ

ds

s
√

(α − s)(β − s)s(s − γ )
= √

hsign(ξ)ξ,

(along �1), (3.19)∫ α

ϕ

ds

s
√

(α − s)s(s − β)
= √

2csign(ξ)ξ,

(along �2), (3.20)
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∫ α

ϕ

ds

s
√

(α − s)s(s − β)(s − γ )
= √−hsign(ξ)ξ,

(along �3), (3.21)∫ α

ϕ

ds

s(s − β)
√
s(α − s)

= √−hsign(ξ)ξ,

(along �4), (3.22)∫ β

ϕ

ds

s
√

(α − s)(β − s)s
= √−2csign(ξ)ξ,

(along �5), (3.23)∫ γ

ϕ

ds

s
√

(α − s)(β − s)(γ − s)s
= √−hsign(ξ)ξ,

(along �6), (3.24)∫ β

ϕ

ds

s(α − s)
√
s(β − s)

= √−hsign(ξ)ξ,

(along �7), (3.25)∫ α

ϕ

ds

s(s − β)
√
s(α − s)

= √−hsign(ξ)ξ,

(along �8), (3.26)∫ α

ϕ

ds

−s(s − β)
√−s(α − s)

= √
hsign(ξ)ξ,

(along �9), (3.27)∫ α

ϕ

ds

s
√

(α − s)s
= √

gsign(x)x,

(along �10). (3.28)

In (3.19–3.28), completing the integrals yields
Proposition 1. The solitary waves of Eq. (1.5) in Propo-
sition 1 are infinitely many numbers for arbitrary wave
speed c because of the infinitely many initial values
α, β or γ . This indicates that the infinitely many soli-
tary waves of Eq. (1.5) exist for arbitrary wave speed
c. Hereto Theorem 1 has been finished.

4 Conclusions

In this paper, we obtained the expressions of the infi-
nitely many solitary waves of Eq. (1.5) and classi-
fied these solitary waves based on two different ways,
namely, Hamiltonian and forms of motion. Interest-
ingly, there exists a kind of the tree stump solitary wave
among the infinitely many solitary waves of Eq. (1.5).
From the above discussion, we observed that the non-
linear equation with singularity may exist infinitely
many bounded solutions. At the same time, the pro-
posed method in this paper can be used to study the
infinitely many bounded solutions of the other singular

nonlinear equations. So we do believe that this arti-
cle may improve the quality of well-studied solitary
wave theory from one side, and it may open a possi-
ble way to explore the novel solutions of the singular
nonlinear equations from the other one. Last but not
least, the results on the solitary wave can be help us
to understand the mechanism of motion of nonlinear
waves.
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