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Abstract A predator–prey system with stage struc-
ture and time delay for the prey is investigated. By ana-
lyzing the corresponding characteristic equations, the
local stability of a positive equilibrium and two bound-
ary equilibria of the system is discussed, respectively.
By using persistence theory on infinite dimensional
systems and comparison argument, respectively, suffi-
cient conditions are obtained for the global stability of
the positive equilibrium and one of the boundary equi-
libria of the proposed system. Further, the existence of
a Hopf bifurcation at the positive equilibrium is stud-
ied. Numerical simulations are carried out to illustrate
the main results.

Keywords Predator–prey model · Stage structure ·
Time delay · Local and global stability · Hopf
bifurcation

1 Introduction

The predator–prey system is an important population
model, which has received extensive attention [1–3].
But all of these works ignore the stage structure of
species. However, in natural world, there are many
species whose individuals have a history that can be
divided into two stages, immature and mature. As is
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common, the dynamics—eating habits, susceptibility
to predators, etc.—are often quite different in these two
subpopulations. Hence, it is of ecological importance
to investigate the effects of such a subdivision on the
interaction of species.

Aiello and Freedman [4] proposed and studied the
stage-structured single-species population model with
time delay

ẋi (t) = αxm(t) − γ xi (t) − αe−γ τ xm(t − τ),

ẋm(t) = αe−γ τ xm(t − τ) − βx2m(t),

where xi (t) and xm(t) represent the densities of the
immature and the mature populations at time t , respec-
tively; α is the birth rate of the immature population
at time t ; γ and β are the death rates of the immature
and the mature at time t , respectively; τ is the matu-
rity; αe−γ τ xm(t − τ) represents the quantity which the
immature born at time t − τ can survive at time t .
Based on the ideas above, many authors studied differ-
ent kinds of ecology models with stage structure [5–
13].

In this paper, we study the following predator- prey
system with stage structure and time delay for the prey

ẋ1(t) = r x2(t) − re−d1τ x2(t − τ) − d1x1(t),
ẋ2(t) = re−d1τ x2(t − τ) − d2x22 (t) − k1x2(t)y(t)

1+αx2(t)
,

ẏ(t) = k2x2(t)y(t)
1+αx2(t)

− d3y(t).
(1)

In (1), x1(t) and x2(t) represent the densities of the
immature and the mature prey at time t , respectively;
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y(t) represents the density of the predator at time t . The
model is derived under the following assumptions.

(A) The prey population: The birth rate is proportional
to the existing mature population with a propor-
tionality r > 0; the death rate of the immature
population is proportional to the existing imma-
ture population with a proportionality d1 > 0;
the death rate of the mature population is propor-
tional to the square of the existing mature popu-
lation with a proportionality d2 > 0; τ > 0 is the
maturity.

(B) The predator population: The predators feed only
on the mature prey (this seems reasonable for a
number of mammals, where the immature prey
concealed in the mountain cave and is raised
by their parents; they do not necessarily go out
for seeking food; the rate they are attacked by
the predators can be ignored). The growth of
the species obeys a Holling type II functional
response. k1 > 0 is the capturing rate of the preda-
tor; k2

k1
> 0 is the conversion rate of nutrients into

the reproduction of the predator; α > 0 is the half
saturation rate of the predator; d3 > 0 is the death
rate of the predator.

The initial conditions for system (1) take the form

x1(θ) = φ1(θ) ≥ 0, x2(θ) = φ2(θ) ≥ 0,

y(θ) = φ3(θ) ≥ 0, θ ∈ [−τ, 0),

φi (0) > 0, i = 1, 2, 3, (2)

where

(φ1(θ), φ2(θ), φ3(θ)) ∈ C([−τ, 0], R3+0),

R3+0 = {(x1, x2, x3)|xi ≥ 0, i = 1, 2, 3}.
In order to ensure the initial continuous, we suppose
further that

x1(0) =
∫ 0

−τ

rφ2(s)e
d1sds.

By the fundamental theory of functional differential
equations [14], it is well known that system (1) has
a unique solution (x1(t), x2(t), y(t)) satisfying initial
conditions (2). Further, it is easy to show that all solu-
tions of system (1)with initial conditions (2) are defined
on [0,+∞) and remain positive for all t ≥ 0.

Lemma 1 [5] Consider the following equation

ẋ(t) = ax(t − τ) − bx(t) − cx2(t),

where a, c > 0, b ≥ 0; x(t) > 0 for −τ ≤ t ≤ 0, we
have

(i) If a > b, then limt→+∞ x(t) = a−b
c ;

(ii) If a < b, then limt→+∞ x(t) = 0.

Theorem 1 All positive solutions of system (1) satis-
fying initial conditions (2) are ultimately bounded.

Proof Weknow that all solutions of system (1) are pos-
itive. Hence, we study only in the domain

R3+ = {(x1, x2, x3)|xi > 0, i = 1, 2, 3}.
We derive from the second equation of system (1)

that

ẋ2(t) ≤ re−d1τ x2(t − τ) − d2x
2
2 (t).

By comparison and Lemma 1, for ε > 0 small enough,
there exists a T1 > 0 such that

x2(t) ≤ re−d1τ

d2
+ ε = : M1

for all t > T1.
Let V (t) = k2x1(t) + k2x2(t) + k1y(t), then the

derivative of V (t) along solution of system (1) is

V̇ (t) ≤ rk2x2(t) − d1k2x1(t) − d3k1y(t)

≤ −μV (t) + (r + d1)k2x2(t),

where μ = min{d1, d3}. Therefore, we derive that for
t > T1

V (t) ≤ e−μ(t−T1)

×
[
V (T1)+

∫ t

T1
(r + d1) k2x2 (s) eμ(s−T1)ds

]

≤ e−μ(t−T1)V (T1) + (r + d1) k2M1

μ

×
(
1 − e−μ(t−T1)

)

→ (r + d1) k2M1

μ
(t → +∞) .

So there exists a constant M>0 and a T2>T1 such that
x1(t) ≤ M, x2(t) ≤ M, y(t) ≤ M for t > T2.

The proof of Theorem 1 is completed. ��
The organization of this paper is as follows. In the

next section, by analyzing the corresponding charac-
teristic equations, the local stability of a positive equi-
librium and two boundary equilibria of system (1) is
discussed, respectively; by using persistence theory
on infinite dimensional systems and comparison argu-
ment, respectively, the global stability of the positive
equilibrium and one of the boundary equilibria of sys-
tem (1) is discussed. In Sect. 3, the existence of a Hopf
bifurcation is studied. Numerical simulations are car-
ried out to illustrate the main results. A brief discussion
is given in Sect. 4 to conclude this work.
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2 Existence and stability of equilibria

In this section, we discuss the existence and stability of
each of equilibria of system (1).

It is easy to show that system (1) always has a trivial
equilibrium E0(0, 0, 0) and a predator-extinction equi-
librium E1(x̂1, x̂2, 0), where

x̂1 = r2e−d1τ (1 − e−d1τ )

d1d2
, x̂2 = re−d1τ

d2
.

Further, if re−d1τ (k2 − αd3) − d2d3 > 0 holds,
then system (1) has a unique positive equilibrium
E2(x∗

1 , x
∗
2 , y

∗), where

x∗
1 = rd3(1 − e−d1τ )

d1(k2 − αd3)
, x∗

2 = d3
k2 − αd3

,

y∗ = k2[re−d1τ (k2 − αd3) − d2d3]
k1(k2 − αd3)2

.

Theorem 2 The trivial equilibrium E0 is always unsta-
ble.

Proof The characteristic equation of (1) at E0(0, 0, 0)
has the form

(λ + d1)
(
λ − re−(λ+d1)τ

)
(λ + d3) = 0. (3)

Clearly, λ1 = −d1 and λ3 = −d3 are two negative real
roots of Eq. (3). Another root of (3) is given by the root
of equation

λ − re−(λ+d1)τ = 0.

Let f1(λ) = λ − re−(λ+d1)τ . Since

f1(0) = −re−d1τ < 0, lim
λ→+∞ f1(λ) = +∞,

f ′
1(λ) = 1 + rτe−(λ+d1)τ > 0.

Then, f1(λ) = 0 has a positive real root. Therefore, the
equilibrium E0 is unstable. This proves Theorem 2. ��
Theorem 3 If re−d1τ (k2 − αd3) − d2d3 > 0, then the
equilibrium E1(x̂1, x̂2, 0) is unstable, while the posi-
tive equilibrium E2(x∗

1 , x
∗
2 , y

∗) exists; if re−d1τ (k2 −
αd3) − d2d3 < 0, then E1 is globally asymptotically
stable.

Proof Thecharacteristic equationof (1) at E1(x̂1, x̂2, 0)
has the form

(λ + d1)
(
λ + 2d2 x̂2 − re−(λ+d1)τ

) (
λ + d3 − k2 x̂2

1 + α x̂2

)
= 0

(4)

Clearly, λ1 = −d1 < 0 and

λ3 = k2 x̂2
1 + α x̂2

− d3 = re−d1τ (k2 − αd3) − d2d3
d2 + αre−d1τ

are two real roots of Eq. (4). Another root of (4) is given
by the root of equation

λ + 2d2 x̂2 − re−(λ+d1)τ = 0.

Let

f2(λ) = λ + 2d2 x̂2 − re−(λ+d1)τ

= λ + re−d1τ
(
2 − e−λτ

)
.

Since

f2(0) = re−d1τ > 0, f ′
2(λ) = 1 + rτe−(λ+d1)τ > 0,

and the real part of root of equationλ=re−d1τ (e−λτ−2)
is of the form

Reλ = re−d1τ [e−τReλ cos(τ Imλ) − 2] < 0,

then the equilibrium E1 is unstable if

re−d1τ (k2 − αd3) − d2d3 > 0

and is locally asymptotically stable if

re−d1τ (k2 − αd3) − d2d3 < 0.

Next,we prove that E1 is globally asymptotically stable
with the above condition.

Let (x1(t), x2(t), y(t)) be any positive solution of
system (1)with initial conditions (2). Since re−d1τ (k2−
αd3) − d2d3 < 0, we can choose ε > 0 small enough
such that

(re−d1τ + εd2)(k2 − αd3) − d2d3 < 0,

re−d1τ > k1ε.

We derive from the first and the second equations of
system (1) that

ẋ1(t) = r x2(t) − re−d1τ x2(t − τ) − d1x1(t),
ẋ2(t) ≤ re−d1τ x2(t − τ) − d2x22 (t).

Consider the following auxiliary equations

u̇1(t) = ru2(t) − re−d1τu2(t − τ) − d1u1(t),
u̇2(t) = re−d1τu2(t − τ) − d2u22(t).

(5)

It is easy to see that system (5) has two equilibria
F0(0, 0) and F1(û1, û2), where

û1 = r2e−d1τ (1 − e−d1τ )

d1d2
, û2 = re−d1τ

d2
,
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and easily show that F0 is unstable and F1 is locally
asymptotically stable.

By the second equation of system (5) and Lemma 1,
we derive that

lim
t→+∞ u2(t) = re−d1τ

d2
= û2 = x̂2.

Therefore, the limit equation of the first equation of
system (5) takes the form

u̇1(t) = r2e−d1τ (1 − e−d1τ )

d2
− d1u1(t),

which implies that

lim
t→+∞ u1(t) = r2e−d1τ (1 − e−d1τ )

d1d2
= û1 = x̂1,

that is, the equilibrium F1 is globally asymptotically
stable. By comparison, there exists a T1 > 0 such that

x1(t) ≤ x̂1 + ε, x2(t) ≤ x̂2 + ε for all t > T1.
It follows from the third equation of system (1) that

for t > T1 + τ

ẏ(t) ≤
[

k2(x̂2 + ε)

1 + α(x̂2 + ε)
− d3

]
y(t).

By comparison, it is easy to know that limt→+∞ y(t) =
0. Therefore, there exists a T2 > T1 such that y(t) < ε

for t > T2.
We derive from the first and the second equations of

system (1) that

ẋ1(t) = r x2(t) − re−d1τ x2(t − τ) − d1x1(t),
ẋ2(t) ≥ re−d1τ x2(t − τ) − d2x22 (t) − k1εx2(t).

Consider the following auxiliary equations (for t >

T2 + τ )

u̇1(t) = ru2(t) − re−d1τu2(t − τ) − d1u1(t),
u̇2(t) = re−d1τu2(t − τ) − d2u22(t) − k1εu2(t).

(6)

Similar with system (5), we know that system (6) has a
globally asymptotically stable equilibrium F2(ū1, ū2),
where

ū1=r(1 − e−d1τ )(re−d1τ − k1ε)

d1d2
, ū2=re−d1τ − k1ε

d2
.

Bycomparison, there exists aT3 > T2 such that x1(t) ≥
ū1 − ε, x2(t) ≥ ū2 − ε for t > T3. Since this is true
for arbitrary and sufficiently small ε > 0, we conclude
that limt→+∞ x1(t) = x̂1, limt→+∞ x2(t) = x̂2, that
is, the equilibrium E1 is globally asymptotically stable.
The proof is completed. ��

Definition 1 System (1) is said to be permanent (uni-
formly persistent) if there are positive constants m and
M such that each positive solution of system (1) satis-
fies

m ≤ lim
t→+∞ inf xi (t) ≤ lim

t→+∞ sup xi (t) ≤ M, i = 1, 2,

m ≤ lim
t→+∞ inf y(t) ≤ lim

t→+∞ sup y(t) ≤ M.

In order to prove the stability of the equilibrium E2,
we present the persistence theory on infinite dimen-
sional systems from [15].

Let X be a complete metric space with metric d. The
distance d(x,Y ) of a point x ∈ X from a subset Y of
X is defined by

d(x,Y ) = inf
y∈Y d(x, y).

Assume that X0 ⊂ X, X0 ⊂ X , and X0 ∩ X0 =
φ. Also, assume that T (t) is a C0 semigroup on X
satisfying

T (t) : X0 → X0, T (t) : X0 → X0. (7)

Denote Tb(t) = T (t)|X0 and Ab be the global attractor
for Tb(t).

Lemma 2 Suppose that T (t) satisfies (7) and the fol-
lowing conditions:

(i) There is a t0 ≥ 0 such that T (t) is compact for
t > t0;

(ii) T (t) is point dissipative in X;
(iii) Ãb = ∪

x∈Ab

ω(x) is isolated and has an acyclic

covering M̄, where

M̄ = {M1, M2, . . . , Mn};
(iv) Ws(Mi ) ∩ X0 = φ for i = 1, 2, . . . , n.

Then, X0 is a uniform repeller with respect to X0,
that is, there is an ε > 0 such that for any x ∈ X0,
limt→+∞ inf d(T (t)x, X0) ≥ ε.

Theorem 4 If

0 < re−d1τ (k2 − αd3) − d2d3 <
d2k2
α

holds, then system (1) has a unique positive equilib-
rium E2(x∗

1 , x
∗
2 , y

∗) and is permanent; furthermore,
the equilibrium E2 is globally asymptotically stable.
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Proof Thecharacteristic equationof (1) at E2(x∗
1 , x

∗
2 , y

∗)
has the form

(λ + d1)

[
λ2 +

(
2d2x

∗
2 + k1y∗

(1 + αx∗
2 )

2

)

× λ − rλe−(λ+d1)τ+ k1k2x∗
2 y

∗

(1 + αx∗
2 )

3

]
= 0 (8)

Clearly, λ1 = −d1 is a negative real root of Eq. (8).
Another two roots of (8) are given by the roots of equa-
tion

λ2 +
[
2d2x

∗
2 + k1y∗

(1 + αx∗
2 )

2

]
λ − rλe−(λ+d1)τ

+ k1k2x∗
2 y

∗

(1 + αx∗
2 )

3 = 0.

Denote

m = 2d2x
∗
2 + k1y∗

(1 + αx∗
2 )

2 , p = k1k2x∗
2 y

∗

(1 + αx∗
2 )

3 ,

n = −re−d1τ ;
then, the above equation is written in the form

λ2 + mλ + nλe−λτ + p = 0. (9)

If λ = ωi (ω > 0) is a purely imaginary root of Eq.
(9), separating real and imaginary parts, we have

p − ω2 + nω sin(ωτ) = 0,

mω + nω cos(ωτ) = 0.

Eliminating sin(ωτ) and cos(ωτ), we obtain the equa-
tion with respect to ω

ω4 + (m2 − n2 − 2p)ω2 + p2 = 0. (10)

Its discriminant is of the form

� = (m2 − n2 − 2p)2 − 4p2

= (n − m)(n + m)(n2 + 4p − m2).

By calculation, we derive that

n + m = 2d2x
∗
2 + k1y∗

(1 + αx∗
2 )

2 − re−d1τ

= d2d3k2 − αd3[re−d1τ (k2 − αd3) − d2d3]
k2(k2 − αd3)

> 0,

and n2 − m2 < 0. Hence, if n2 + 4p − m2 > 0, then
� < 0, that is, Eq. (10) has no positive real roots; if

n2 +4p−m2 ≤ 0, then� ≥ 0 and n2 +2p−m2 < 0,
and then

ω2
1,2 = (n2 + 2p − m2) ± √

�

2
< 0,

that is, Eq. (10) has no positive real roots. When τ = 0,
Eq. (9) becomes

λ2 + (m + n)λ + p = 0.

Noting that p > 0 and m + n > 0, the positive
equilibrium E2 is locally asymptotically stable when
τ = 0. By Theorem 3.4.1 in [16], we see that if
0 < re−d1τ (k2 − αd3) − d2d3 < d2k2

α
holds, then the

positive equilibrium of system (1) E2 is locally asymp-
totically stable for all τ ≥ 0.

Now we state and prove the permanence of system
(1) with the condition

0 < re−d1τ (k2 − αd3) − d2d3 <
d2k2
α

.

Choose ε > 0 small enough such that

re−d1τ (k2 − αd3) − d2d3 − εd2(k2 − αd3) > 0.

Firstly, we prove that the x1ox2 plane and the x1oy
plane repel positive solutions of system (1) uniformly.

Set

X1 = {(x1, x2, y) ∈ R3|x1 ≥ 0, x2 ≥ 0, y = 0},
X2 = {(x1, x2, y) ∈ R3|x1 ≥ 0, x2 = 0, y ≥ 0},
X0 = X1 ∪ X2,

X0 = {(x1, x2, y) ∈ R3|x1 > 0, x2 > 0, y > 0}.
In the following, we verify that the conditions in
Lemma 2 are satisfied. By the definition of X0 and
X0, and by Theorem 1, it is easy to see that the condi-
tions (i) and (ii) in Lemma 2 are clearly satisfied (see,
for instance, [16], Theorem 2.2.8). Thus, we need only
to show that the conditions (iii) and (iv) hold.

There are two constant solutions in X0 correspond-
ing to E0(0, 0, 0) and E1(x̂1, x̂2, 0), respectively. In
x1ox2 plane, system (1) can be written in the form

ẋ1(t) = r x2(t) − re−d1τ x2(t − τ) − d1x1(t),
ẋ2(t) = re−d1τ x2(t − τ) − d2x22 (t).

By Theorem 2 in [4], we know that the equilibrium
Ē1(x̂1, x̂2) is globally asymptotically stable, that is, if
(x1(t), x2(t), y(t)) is a solution of system (1) initiating
from X1, then
(x1(t), x2(t), y(t)) → E1(x̂1, x̂2, 0) as t → +∞.
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In x1oy plane, system (1) can be written in the form

ẋ1(t) = −d1x1(t),
ẏ(t) = −d3y(t).

Clearly, x1(t) → 0 and y(t) → 0 as t → +∞, that is,
if (x1(t), x2(t), y(t)) is a solution of system (1) initiat-
ing from X2, then

(x1(t), x2(t), y(t)) → E0(0, 0, 0) as t → +∞.
Noting that the equilibrium E0 is isolated in X2 and

the equilibrium E1 is isolated in X1, it follows that if E0

and E1 are the isolated invariant sets of system (1) then
{E0, E1} is isolated and is an acyclic covering. It is easy
to see that E0 is isolated invariant. By verifying the con-
dition (iv), we can derive that E1 is isolated invariant.

For the condition (iv), we only prove thatWs(E1)∩
X0 = φ holds since the proof of Ws(E0) ∩ X0 = φ is
similar. Assume thatWs(E1)∩ X0 �= φ. Then, there is
a positive solution of system (1) (x01 (t), x

0
2 (t), y

0(t))
initiating from X0 with

lim
t→+∞(x01 (t), x

0
2 (t), y

0(t)) = E1(x̂1, x̂2, 0).

Therefore, we have limt→+∞ x02 (t) = x̂2 = re−d1τ

d2
,

that is, for ε > 0 small enough, there exists a t0 > 0
such that

re−d1τ

d2
− ε < x02 (t) <

re−d1τ

d2
+ ε

for all t > t0 + τ .
It follows from the third equation of system (1) that

for t > t0 + τ

ẏ0(t) ≥
⎡
⎣ k2

(
re−d1τ

d2
− ε

)

1 + α
(
re−d1τ

d2
− ε

) − d3

⎤
⎦ y0(t),

and then,

y0(t) ≥ y0(t0)

× exp

⎧⎨
⎩

⎡
⎣ k2

(
re−d1τ

d2
− ε

)

1 + α
(
re−d1τ

d2
− ε

) − d3

⎤
⎦ (t − t0)

⎫⎬
⎭

→ +∞ (t → +∞),

which contradicts Theorem 1. Hence, we haveWs(E1)

∩ X0 = φ. By Lemma 2, we are now able to conclude
that x1◦x2 plane and x1◦y plane uniformly repel posi-
tive solutions of system (1) initiating from X0, that is,
there exists an ε0 > 0, such that

lim
t→+∞ inf y(t) ≥ ε0 and lim

t→+∞ inf x2(t) ≥ ε0.

Next, we prove that there is an ε1 > 0 such that
limt→+∞ inf x1(t) ≥ ε1. With the condition

ε0 ≤ lim
t→+∞ inf x2(t) ≤ lim

t→+∞ sup x2(t) ≤ M

and the first equation of system (1), we derive that

ẋ1(t) = −d1x1(t) + r x2(t) − re−d1τ x2(t − τ).

There exists a T > 0 such that for t > T + τ

x1 (t) = e−d1(t−T )

[
x1 (T )

+
∫ t

T

(
r x2 (s) − re−d1τ x2 (s − τ)

)
ed1(s−T )ds

]

> e−d1(t−T )

∫ t

T
r x2 (s) ed1(s−T )ds

−e−d1(t−T )

∫ t

T
re−d1τ x2 (s − τ) ed1(s−T )ds

= re−d1t
∫ t

T
x2 (s) ed1sds − re−d1t

∫ t−τ

T−τ

x2 (s) ed1sds

= re−d1t
∫ t

t−τ

x2 (s) ed1sds − re−d1t
∫ T

T−τ

x2 (s) ed1sds

≥ rε0
d1

(
1 − e−d1τ

)
− rMe−d1t

d1

(
ed1T − ed1(T−τ)

)

→ rε0
(
1 − e−d1τ

)
d1

(t → +∞) .

Set ε1 = rε0(1−e−d1τ )
d1

, then limt→+∞ inf x1(t) ≥ ε1.
Hence, system (1) is permanent.

By the locally asymptotical stability of E2 and The-
orem 8.2.3 in [16], we derive that the positive equilib-
rium E2 of system (1) is globally asymptotically stable
with the condition

0 < re−d1τ (k2 − αd3) − d2d3 <
d2k2
α

.

The proof is completed. ��

3 Hopf bifurcation and numerical simulations

In this section,we study the existence of aHopf bifurca-
tion at the positive equilibrium. Numerical simulations
are carried out to illustrate the main results.

If re−d1τ (k2 − αd3) − d2d3 > d2k2
α

holds, from the
proof of Theorem4,we see thatm+n < 0,n2−m2 > 0
and � > 0; therefore, Eq. (10) has two positive real
roots, denoted by

ω+ =
√
1

2
(n2 + 2p − m2) + 1

2

√
�,

ω− =
√
1

2
(n2 + 2p − m2) − 1

2

√
�,
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respectively.
Denote

τ
(k)
+ = 2kπ + arccos

(−m
n

)
ω+

,

τ
(k)
− = 2kπ + arccos

(−m
n

)
ω−

, k = 0, 1, 2 . . . ;

then, ±iω± is a pair of purely imaginary roots of (9)
with τ = τ

(k)
± , k = 0, 1, 2 . . ..

Define τ0 = τ
(0)
− . In the following, we verify

transversality condition of Eq. (9). Differentiating (9)
with respect to τ , it follows that

(2λ + m + ne−λτ − nτλe−λτ )
dλ

dτ
− nλ2e−λτ = 0.

By direct calculation, we derive that

(
dλ

dτ

)−1

= 2λ + m + ne−λτ − nτλe−λτ

nλ2e−λτ

= − 2λ + m

λ(λ2 + mλ + p)
+ 1

λ2
− τ

λ
,

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=ωi

= Re

[
− 2ωi + m

ωi(−ω2 + p + ωmi)
− 1

ω2

]

= ω2m2 + 2ω2(ω2 − p)

ω4m2 + ω2(ω2 − p)2
− 1

ω2

= (ω2 − p)(ω2 + p)

ω2[ω2m2 + (ω2 − p)2] ,

sign

{
dReλ

dτ

}∣∣∣∣
λ=ωi

= sign

{
Re

(
dλ

dτ

)−1
}∣∣∣∣∣

λ=ωi

= sign{ω2 − p}.
Therefore,

sign

{
dReλ

dτ

}∣∣∣∣
λ=ω+i

= sign{ω2+ − p}

= sign

{
1

2
(n2 − m2) + 1

2

√
�

}

> 0,

sign

{
dReλ

dτ

}∣∣∣∣
λ=ω−i

= sign{ω2− − p}

= sign

{
1

2
(n2 − m2) − 1

2

√
�

}

< 0.

In such cases, we see that at τ = τ
(0)
+ a stability switch

from stable to unstable may occur. Since at τ = 0 the
equilibrium E2 is unstable, then it remains unstable for
all τ ∈ [0, τ (0)

+ ). We also see that at τ = τ
(0)
− > τ

(0)
+ a

stability switch from unstable to stable may occur. By
Theorem 4.1 in [17] and above results, we obtain the
following conclusion.

Theorem 5 Suppose that

re−d1τ (k2 − αd3) − d2d3 ≥ d2k2
α

holds, then system (1) exists Hopf bifurcation at E2

when τ = τ0.
Now we give some numerical simulations to illus-

trate the main results.

Example 1 In (1), we let r = 0.2, d1 = 0.2, d2 =
0.1, k1 = 0.2, k2 = 0.1, α = 0.7, d3 = 0.4,
and τ = 1. It is easy to know that

re−d1τ (k2 − αd3) − d2d3 < 0

holds. By Theorem 3, we see that the equilibrium
E1 ≈ (0.2968, 1.6375, 0) of system (1) is glob-
ally asymptotically stable. Numerical simulation illus-
trates our result (see Fig. 1). The above fact implies that
the prey species will persist and predator will become
extinct.

Example 2 In (1), we let r = 0.8, d1 = 0.1, d2 =
0.8, k1 = 0.2, k2 = 0.3, α = 0.2, d3 =
0.1, and τ = 2.6. System (1) with above coef-
ficients has a unique positive equilibrium E2 ≈
(0.6543, 0.357, 1.7736). It is easy to know that

0 < re−d1τ (k2 − αd3) − d2d3 <
d2k2
α

holds. By Theorem 4, we see that the positive equilib-
rium E2 is globally asymptotically stable. Numerical
simulation illustrates our result (see Fig. 2). The above
fact implies that both the prey and predator species will
coexist.

Example 3 In (1), we let r = 0.9, d1 = 0.1, d2 =
0.01, k1 = 0.2, k2 = 0.3, α = 0.1, d3 = 0.1,
and then, there exists a τ0 ≈ 1.218 such that the positive
equilibrium E2 of system (1) is unstable if τ < τ0 (see
Fig. 3a) and is locally stable if τ > τ0 (see Fig. 3b),
where τ satisfies the condition

re−d1τ (k2 − αd3) − d2d3 ≥ d2k2
α

.
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Fig. 1 Graph of stability of the equilibrium E1 with parameters
and condition in Example 1

Moreover, when τ passes through the critical value
τ0, a Hopf bifurcation occurs (see Fig. 3c). Numeri-
cal simulations illustrate these results. The above facts
imply that the positive equilibrium changes its stability
and a periodic solution throughHopf bifurcation occurs
when τ passes through τ0, that is, a periodic evolution
of the prey and predator populations occurs.

4 Discussion

Population dynamics are an important subject in
mathematical biology. Understanding the dynamics of
predator–prey models will be very helpful for investi-
gating multiple species interactions. It is well known
that the introduction of time delay into the predator–
prey systemmay cause the periodic oscillations of pop-
ulations and can make the behavior of the model more
complex.
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Fig. 2 Graph of stability of the equilibrium E2 with parameters
and condition in Example 2

In this paper, we have investigated a predator–prey
model with stage structure and time delay for the prey.
By using comparison argument and persistence theory
on infinite dimensional system, respectively, we have
obtained the sufficient conditions for the global stabil-
ity of the positive equilibrium and the boundary equi-
librium. Further, we have discussed the existence of
Hopf bifurcation of system (1). From Theorem 3, we
obtain the conclusion: The boundary equilibrium E1 of
system (1) is globally asymptotically stable under the
condition re−d1τ (k2 − αd3) − d2d3 < 0, which leads
that the prey species persists and predator becomes
extinct. According to Theorem 4, we obtain the con-
clusion: The positive equilibrium E2 of system (1)
is globally asymptotically stable under the condition
0 < re−d1τ (k2 − αd3) − d2d3 < d2k2

α
, which leads

both the prey and predator species to coexist. More-
over, these results suggest that the capturing rate of
the predator k1 does not affect the permanence and
the extinction of predator species. By the discussion
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Fig. 3 A series of solutions of system (1) with parameters and condition in Example 3. a τ = 0.5. b τ = 3. c τ = 1.218
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of Theorem 5, we can see that under some conditions
the positive equilibrium changes its stability and a peri-
odic solution throughHopf bifurcation occurswhen the
delay τ passes through a critical value τ0. This implies
that the time delay is able to cause a periodic evolu-
tion of the prey and predator populations and alter the
dynamics of system (1) significantly.
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