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Abstract This paper proposes a novel approach to
study the problem of master–slave synchronization for
chaotic delayed Lur’e systemswith sampled-data feed-
back control. Specifically, first, it is assumed that the
sampling intervals are randomly variable but bounded.
By getting the utmost out of the usable information on
the actual sampling pattern and the nonlinear part con-
dition, a newly augmented Lyapunov–Krasovskii func-
tional is constructed via a more general delay-partition
approach. Second, in order to obtain less conservative
synchronization criteria, a novel integral inequality is
developed by the mean of the new adjustable parame-
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ters. Third, a longer sampling period is achieved by
using a double integral form of Wirtinger-based inte-
gral inequality. Finally, three numerical examples with
simulations of Chua’s circuit are given to demonstrate
the effectiveness and merits of the proposed methods.
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1 Introduction

In the past fewdecades, chaos synchronization problem
has attracted increasing attention in numerous research
areas of science. This stems from the fact that syn-
chronization problem has a wide range of applica-
tions and great potential in various dynamical systems,
such as neural networks [1–3], complex networks [4–
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7], complex nonlinear systems [8,9], fractional-order
chaotic systems [10,11], secure communication [12],
PD control [13], adaptive control [14], impulsive con-
trol [15,16] and other scientific areas [17,18].

It has been noted that a large amount of nonlinear
systems could be modeled accurately in the form of
Lur’e control systems, such as Chua’s circuit, network
systems, hyper chaotic attractors and n-scroll attrac-
tor, which contain a feedback connection of a linear
system and a nonlinear element satisfying the sector
condition [19–23]. Therefore, the master–slave syn-
chronization of chaotic Lur’e systems has been a very
hot research topic, and a number of master–slave syn-
chronization criteria and important methods have been
proposed. For example, in [20], the global exponen-
tial synchronization problem of nonlinear time-delay
Lur’e systems has been investigated via delayed impul-
sive control. In [21], the synchronization problem for
reaction–diffusion neural networks has been discussed
by using stochastic sampled-data controller. With the
introduction of a delay decomposition approach, the
synchronization problem of Lur’e systems with only
constant time delay has been considered in [22]. In
order to obtain better stability results, the problem
of designing time-varying delay feedback controllers
for master–slave synchronization of Lur’e systems has
been addressed by employing Lyapunov–Krasovskii
functional (LKF) approach in [23]. It should be noted
that two cases of time-varying delays are fully consid-
ered in [23], and the gained synchronization criteria are
more widespread and resultful than the ones in [17,22].

It is well known that time delay is inescapable in
a large amount of physical processes [24,25]. Mean-
while, it often results in one of the main factors of poor
performance or even instability [5,6,13–17,26,27].
Thus, a great deal of attention and interests has been
focused on the synchronization of chaotic Lur’e sys-
tems with time delays [22,23,28–30]. Hence, many
important and interesting control methods have been
established for the master–slave synchronization of
Lur’e systems, such as feedback control [22,23], fuzzy
control [31,32], fuzzy impulsive control [33]. How-
ever, with the high-speed development of the modern
high-speed computer technology, microelectronics and
communication networks, the best way is to use dig-
ital controllers instead of analog circuits [28–30,33–
39]. The advantage of this method lies in only needing
the samples of the state variables of the master–slave

chaotic systems at discrete time instants via sampled-
data controllers.

Meanwhile, how to choose the effective sampling
period is very crucial to achieve chaos synchroniza-
tion. Lately, based on the input delay approach [40], the
sampled-data master–slave synchronization schemes
have been investigated broadly in [28–30,38,39,41].
The sampled-data control problem for themaster–slave
synchronization is studied extensively by introducing
a discontinuous LKF in [29,30,46]. Wu et al. [43] have
considered the problem of sampled-data synchroniza-
tion for Markovian jump neural networks with time-
varying delay and variable samplings. Liu and Lee [44]
have studied the synchronization problem of chaotic
Lur’e systems with stochastic sampled-data control.
Ge et al. [45] have investigated the robust synchro-
nization problem of chaotic Lur’e systems with exter-
nal disturbance using sampled-data H∞ controller. In
[29,30,42], in order to build improved stability condi-
tions, a piecewise differentiable LKF is constructed. In
[28], the main attention is focused on the problem of
sampled-data control for master–slave synchronization
of identical chaotic delayed Lur’e systems (CDLSs) by
choosing a new LKF. Different from those in [29,30],
the proposed LKF in [28] is positive definite at sam-
pling times but not necessarily positive definite inside
the sampling interval. However, some important and
useful information of estimating the upper bound of
the derivative of the LKF and nonlinear functions has
not been well utilized in [28–30,44–46], which may
result in the conservatism of proposed results to a cer-
tain extent. Therefore, it is an interesting and valuable
issue tofind amore effective approach to obtain a longer
sampling period under which synchronization can be
ensured theoretically.

Motivated by the issues discussed above, we con-
sider the problem of master–slave synchronization for
chaotic Lur’e systems with or without time delays by
applying sampled-data feedback control in this paper.
Firstly, by introducing two new adjustable parame-
ters (α,β), we develop a creative integral inequality in
Lemma 2, which includesWirtinger’s integral inequal-
ity and Jensen’s inequality and is more tighter to esti-
mate the bounds of the integral terms than the exiting
ones. Besides, for getting perfect synchronization cri-
teria, we choose an appropriate and continuous LKF
with two triple integral terms, which also takes full
advantage of the available information about the actual
sampling pattern. Furthermore, based on a new dou-
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ble integral form ofWirtinger-based integral inequality
(WBII), the desired sampling controller is achieved via
solving a set of linear matrix inequalities. Finally, three
numerical simulations are performed onChua’s circuit.
It is shown clearly that the proposed results are effec-
tive and can significantly improve the existing ones.

Notation Notations used in this paper are fairly stan-
dard: Rn denotes the n-dimensional Euclidean space,
R
n×m the set of all n × m dimensional matrices, I

the identity matrix of appropriate dimensions, AT the
matrix transposition of thematrix A. By X > 0 (respec-
tively X ≥ 0), for X ∈ R

n×n , we mean that the matrix
X is real symmetric positive definite (respectively ,pos-
itive semi-definite); diag{r1, r2, . . . , rn} block diago-
nal matrix with diagonal elements ri , i = 1, 2, . . . , n,
the symbol ∗ represents the elements below the main
diagonal of a symmetric matrix, A ⊗ B the Kronecker
product of the matrices A and B, As is defined as
As = 1

2 (A + AT ).

2 Preliminaries

Consider the following master–slave synchronization
of CDLSs with sampled-data feedback control:

M:
{
ẋ(t) = A x(t) + Bx(t − h) + W f (Dx(t)),
γ (t) = C x(t),

(1)

S:
⎧⎨
⎩
ż(t) = A z(t) + Bz(t − h)

+W f (Dz(t)) + u(t),
λ(t) = C z(t),

(2)

C: u(t) = K (γ (tk) − λ(tk)), t ∈ [tk, tk+1), (3)

which consists of master system M, slave system S

and controller C. M and S with u(t) = 0 are identi-
cal CDLSs with state vectors x(t), z(t) ∈ R

n , outputs
of subsystems are γ (t) and λ(t) ∈ R

l , respectively.
u(t) ∈ R

n is the slave system control input,A ∈ R
n×n ,

B ∈ R
n×n ,W ∈ R

n×m ,D ∈ R
m×n and C ∈ R

l×n are
known real matrices, K ∈ R

n×l is the sampled-data
feedback control gain matrix to be designed. h > 0 is
the constant time delay. The block diagram for master–
slave systems with a sampled-data controller is shown
in Fig. 1. It is assumed that f (·): Rm → R

m is a non-
linear function vector with fs(·) belonging to sector
[k−

s , k+
s ] for s = 1, 2, . . . ,m. Besides, the nonlinear

function fs(α) is clearly shown as shaded area in Fig. 2.
For sampled-data synchronization, only discrete

measurements of γ (t) and λ(t) can be used for syn-

Master System

Slave System X Sampler

Sampling
Controler

x(t)

z(t)
_

r(t) r(t
k
)

u(t
k
)

u(t)
Zero−Order−Holder

Fig. 1 Master–slave system with a sampled-data controller

α

fs(α)ks
−

ks
+

fs(α)∈[ks
−,ks

+],(s=1,⋅⋅⋅,m)

α≠00

Fig. 2 Nonlinearity characteristic with sector constraint

chronization purposes, that is, we only have the mea-
surements γ (tk) and λ(tk) at the sampling instant tk . In
this paper, the control signal is assumed to be gener-
ated by using a zero-order-hold (ZOH) function with
a sequence of hold times 0 = t0 < t1 < · · · < tk <

· · · < lim
k→∞ tk = +∞. For the sampling interval, we

impose the following assumption.

Assumption 1 It is assumed that the interval between
any two sampling instants is bounded by d (d > 0)

tk+1 − tk = dk ≤ d, ∀k ≥ 0. (4)

Given the synchronization scheme (1)–(3), the syn-
chronization error is defined as r(t) = x(t) − z(t),
and we can have the following synchronization error
system:

ṙ(t) = A r(t) + Br(t − h) + W g(Dr(t), z(t))

− K C r(tk), ∀k, t ∈ [tk, tk+1), (5)

where g(Dr(t), z(t)) = f (Dr(t)+Dz(t))− f (Dz(t)).
Let D = [d1, d2, . . . , dm]T with ds ∈ R

n , s =
1, 2, . . . ,m. As f (·) belongs to sector [k−

s , k+
s ], it is

easy to discover that for any s = 1, 2, . . . ,m and ∀r ,
z, dTs r 
= 0
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k−
s ≤ gs

(
dTs r, z

)
dTs r

= fs
(
dTs (r + z)

)− fs(dTs z)

dTs r
≤ k+

s .

(6)

Moreover, it is easily found from (6) that for any s =
1, 2, . . . ,m and ∀r , z
[
gs
(
dTs r(t), z(t)

)
− k−

s d
T
s r(t)

]

× [gs
(
dTs r(t), z(t)

)
− k+

s d
T
s r(t)] ≤ 0. (7)

Remark 1 In the condition (6), k−
s and k+

s can be
allowed to be positive, negative or zero. As men-
tioned in [28–30], it describes the class of globally Lip-
schitz continuous andmonotone nondecreasing nonlin-
ear functionwhen k−

s = 0 and k+
s > 0. And the class of

globally Lipschitz continuous and monotone increas-
ing nonlinear function can be described when k−

s > 0
and k+

s > 0. Therefore, this type of nonlinear function
is clearlymore general than both the usual sigmoid non-
linear function and the piecewise liner function, which
is more advantageous to reduce the conservatism of the
results.

In the paper, the following lemmas are used in deriv-
ing the criteria.

Lemma 1 [51] For a given matrix M > 0, given
scalars a and b satisfying a < b, the following inequal-
ity holds for all continuously differentiable function r
in [a, b] → R

n:

− (b − a)2

2

∫ b

a

∫ b

θ

rT (s)Mr(s)dsdθ

≤−
∫ b

a

∫ b

θ

rT (s)dsM
∫ b

a

∫ b

θ

r(s)ds−2ΘT
d MΘd ,

whereΘd = − ∫ ba ∫ bθ r(s)dsdθ + 3
b−a

∫ b
a

∫ b
λ

∫ b
θ
r(s)ds

dθdλ.

Lemma 2 For a given symmetric positive definite
matrix R, arbitrary scalars 0 ≤ α ≤ 1 and 0 ≤ β ≤
1 (α + β = 1), and for differentiable signal r(t) in
[0, h] → R

n, the following inequality holds:

−
∫ t

t−h
ṙ T (s)Rṙ(s)ds

≤ −
⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦
T
⎡
⎢⎢⎣

4β
h

2β
h

−6β
h2

2β
h

4−2α
h

−6+4α
h2

−6β
h2

−6+4α
h2

12−10α
h3

⎤
⎥⎥⎦

⊗ R

⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦ .

Proof From the celebrated Jensen’s integral inequality
[49] and Wirtinger integral inequality [50], for random
scalars 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 (α + β = 1), we
can obtain the following integral inequality:

−
∫ t

t−h
ṙ T (s)Rṙ(s)ds

= −α

∫ t

t−h
ṙ T (s)Rṙ(s)ds − β

∫ t

t−h
ṙ T (s)Rṙ(s)ds

≤ −
[

r(t − h)∫ t
t−h r(s)ds

]T [ 2α
h

−2α
h2

−2α
h2

2α
h3

]

⊗ R

[
r(t − h)∫ t
t−h r(s)ds

]
−
⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦
T

⎡
⎢⎢⎣

4β
h

2β
h

−6β
h2

2β
h

4β
h

−6β
h2

−6β
h2

−6β
h2

12β
h3

⎤
⎥⎥⎦⊗ R

⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦

= −
⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦
T
⎡
⎢⎢⎣

4β
h

2β
h

−6β
h2

2β
h

4−2α
h

−6+4α
h2

−6β
h2

−6+4α
h2

12−10α
h3

⎤
⎥⎥⎦

⊗ R

⎡
⎣ r(t)

r(t − h)∫ t
t−h r(s)ds

⎤
⎦ .

This completes the proof. ��

Remark 2 When α = 0 and β = 1, this integral
inequality can be reduced to the celebrated Wirtinger
integral inequality [50]. When α = 1 and β = 0, this
integral inequality can become the well-known Jensen
inequality [49]. It is worth mentioning that the existing
inequalities become the special cases of our inequality,
which is proved to be more sharper and should have a
great potential in practice.
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3 Main results

In this section, we will propose some new master–
slave synchronization conditions of CDLSs by using
sampled-data feedback control and a novel integral
inequality.

For the sake of simplicity of matrix representa-
tion, eTi = [0, . . . , I, . . . , 0] (i = 1, . . . , 12) and
ẽTj = [0, . . . , I, . . . , 0] ( j = 1, . . . , 4) are defined as
block entry matrices. The notations for some vectors
and matrices are defined as follows

0 < α < 1, β = 1 − α, 0 ≤ x1, x2 ≤ 1,

x1 + x2 = 1, x3 > 0,

ϑ > 0, σ = 1 − δ,Σ2 = [−I,A ,B,W ,−K C ],

�1(t) =
∫ t

t−αh
r(s)ds, �2(t) =

∫ t−αh

t−h
r(s)ds,

Σ1 = [ζ, y, η]T ,

�3(t) =
∫ t

t−αh

∫ t

θ

r(s)dsdθ,

�4(t) =
∫ t

t−h

∫ t

θ

r(s)dsdθ,

ξ T (t) =
[
rT (t), ṙ T (t), rT (tk), r

T (t − αh),

rT (t − h), gT (Dr(t),

z(t)), gT (Dr(t − αh), z(t − αh)),

gT (Dr(t − h), z(t − h)),

� T
1 (t),� T

2 (t),� T
3 (t),� T

4 (t)
]
,

εT (t) =
[
rT (t), rT (tk)

]
,

ϕ(t) =
[
rT (t), ṙ T (t), rT (tk)

]T
,

Π(x1, x2, x3) =

⎡
⎢⎢⎢⎣

4x2
x3

2x2
x3

−6x2
x23

2x2
x3

4−2x1
x3

−6+4x1
x23−6x2

x23

−6+4x1
x23

12−10x1
x33

⎤
⎥⎥⎥⎦ ,

Ξ(ϑ) =
⎡
⎢⎣

3
2 0 −3

ϑ2

0 3
ϑ2

−6
ϑ3

−3
ϑ2

−6
ϑ3

18
ϑ4

⎤
⎥⎦ ,

H =
[
2δ(H1)s −H1 + H2

∗ 2(−H2 + σH1)s

]
.

Theorem 1 For given scalars h > 0, d > 0, δ, x,
y, z, 0 < α < 1, 0 ≤ μ1, μ2 ≤ 1, μ1 + μ2 =

1, 0 ≤ ν1, ν2 ≤ 1 and ν1 + ν2 = 1, the mas-
ter system (1) and the slave system (2) are globally
asymptotically synchronous for all dk ≤ d if there
exist matrices P > 0, X > 0, Ri > 0 (i =
1, 2, . . . , 6), Ω = diag{ω1, ω2, . . . , ωm} > 0, L =
diag{l1, l2, . . . , lm} > 0, Qιi = diag{qιi1, qιi2, . . . ,

qιim} > 0, (ι = 1, 2, 3; i = 1, 2), and any appro-
priately dimensioned matrices H , N , U, M =
[M1, M2, M3] and M̂(d̄) = [d̄ 1

2 M1, d̄
1
2 M2, d̄

1
2 M3, 0,

0, 0, 0, 0, 0, 0, 0, 0], such that

Φ(d) =
[
P + 2δd(H1)s −dH1 + dH2

∗ 2d(−H2 + σH1)s

]
, (8)

Ψ1(d̄) = Ξ0 + Ξ01 + Ξ1(d̄) < 0, (9)

Ψ2(d̄) =
[

Ξ0 + Ξ02 M̂T (d̄)

∗ −X

]
< 0, d̄ = 0, d,

(10)

where

Ξ0 = e1R1e
T
1 + e2

(
αhR3 + βhR4 + α4h2

4
R5 + h2

4
R6

)
eT2

− e4(R1 − R2)e
T
4 − e5R2e

T
5 − [e1, e3]H [e1, e3]T

− [e1, e4, e9]Π(μ1, μ2, αh) ⊗ R3[e1, e4, e9]T
− [e4, e5, e10]Π(ν1, ν2, βh) ⊗ R4[e4, e5, e10]T
− [e1, e9, e11]Ξ(αh) ⊗ R5[e1, e9, e11]T
− [e1, e9 + e10, e12]Ξ(h) ⊗ R6[e1, e9 + e10, e12]T

+ 2
(
e1Pe

T
2 + e2D

T (Ω − L)e6 + e1D
T [K+L

− K−Ω]De2 + [e2, e1, e3]Σ1NΣ2[e2, e1, e5, e6, e3]T

+[e1, e2, e3]MT [e1 − e3]T
)
s
,

Ξ01 = −2
[
e1D

T K−Q11K
+DeT1 + e4D

T K−Q21K
+DeT4

+ e5D
T K−Q31K

+DeT5 + e6Q11e
T
6 + e7Q21e

T
7

+e8Q31e
T
8

]
+ 2

(
e1D

T (K− + K+)Q11e
T
6 + e4D

T

×(K− + K+)Q21e
T
7 + e5D

T (K− + K+)Q31e
T
8

)
s
,

Ξ02 = −2[e1DT K−Q12K
+DeT1 + e4D

T K−Q22K
+DeT4

+ e5D
T K−Q32K

+DeT5 + e6Q12e
T
6 + e7Q22e

T
7

+ e8Q32e
T
8 ] + 2

(
e1D

T (K− + K+)Q12e
T
6 + e4D

T

×(K− + K+)Q22e
T
7 + e5D

T (K− + K+)Q32e
T
8

)
s
,

Ξ1(d̄) = 2
(
d̄[e1, e3]H [e2, 0]T

)
s
+ d̄e2X eT2 .

Moreover, the gain matrix of state estimator is given by
K = N−1U.
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Proof Consider the following LKF for the synchro-
nization error system (5) (t ∈ [tk, tk+1)):

V (t) = V1(t) + V2(t) + V3(t) + V4(t)

+ V5(t) + V6(t), (11)

where

V1(t) = rT (t)Pr(t) + (tk+1 − t)εT (t)H ε(t),

V2(t) = (tk+1 − t)
∫ t

tk
ṙ T (s)X ṙ(s)ds,

V3(t) =
∫ t

t−αh
rT (s)R1r(s)ds

+
∫ t−αh

t−h
rT (s)R2r(s)ds,

V4(t) =
∫ 0

−αh

∫ t

t+θ

ṙ T (s)R3ṙ(s)dsdθ

+
∫ −αh

−h

∫ t

t+θ

ṙ T (s)R4ṙ(s)dsdθ,

V5(t) = α2

2

∫ t

t−αh

∫ t

λ

∫ t

θ

ṙ T (s)R5ṙ(s)dsdθdλ

+ 1

2

∫ t

t−h

∫ t

λ

∫ t

θ

ṙ T (s)R6ṙ(s)dsdθdλ,

V6(t) = 2
m∑
s=1

ωs

∫ dTs r(t)

0

[
gs(θ) − k−

s θ
]
dθ

+ 2
m∑
s=1

ls

∫ dTs r(t)

0

[
k+
s θ − gs(θ)

]
dθ.

From the assumption, we know that V2(t), V3(t), V4(t),
V5(t) and V6(t) are positive. If V1(t) is positive definite,
V (t) is also positive definite. It is easy to verify that

V (t) >V1(t)

= rT (t)Pr(t) + (tk+1 − t)εT (t)H ε(t)

=
[
r(t)
r(tk)

]T ([
P 0
∗ 0

]
+ (tk+1 − t)H

)

×
[
r(t)
r(tk)

]

=
[
r(t)
r(tk)

]T ( t − tk
dk

Φ(0) + tk+1 − t

dk
Φ(dk)

)

×
[
r(t)
r(tk)

]
,

according to the equation

Φ(dk) = dk
d

Φ(d) + d − dk
d

Φ(0).

It follows from P > 0 and (8) that the LKF V (t) > 0.
It is noted that two (tk, tk+1)-dependent terms V1(t)
and V2(t), are introduced in the constructed LKF (11),
which make the best of the available information about
the actual sampling pattern. In addition, V (t) is con-
tinuous on the whole interval [0,∞] because tk , tk+1-
dependent terms V1(t) and V2(t) vanish before and
after the jump tk .

Now let us calculate the time derivative of V (t)
along the trajectory of the synchronization error sys-
tem (5) which yields:

V̇1(t) = 2rT (t)Pṙ(t) − εT (t)H ε(t)

+ 2(tk+1 − t)εT (t)H ε̇(t)

= ξ T (t)

[
tk+1 − t

dk

[
2
(
e1Pe

T
2 +dk [e1, e3]H [e2, 0]T

)
s

−[e1, e3]H [e1, e3]T
]

+ t − tk
dk

[
2
(
e1Pe

T
2

)
s

−[e1, e3]H [e1, e3]T
]]

ξ(t), (12)

V̇2(t) = (tk+1 − t)ṙ T (t)X ṙ(t) −
∫ t

tk
ṙ T (s)X ṙ(s)ds. (13)

Moreover, for an appropriately dimensioned matrix
M = [M1, M2, M3], we can get the following inequal-
ity:

∫ t

tk

[
ϕ(t)
ṙ(s)

]T [
MTX −1M MT

∗ X

] [
ϕ(t)
ṙ(s)

]
ds ≥ 0.

This implies,

V̇2(t) ≤ (tk+1 − t)ṙ T (t)X ṙ(t) + (t − tk)ϕ
T (t)MTX −1

× Mϕ(t) + 2ϕT (t)MT (r(t) − r(tk))

= ξ T (t)

[
tk+1 − t

dk

[
dke2X eT2 + 2

(
[e1, e2, e3]MT

×[e1 − e3]T
)
s

]
+ t − tk

dk

[
dk [e1, e2, e3]MTX −1M

×[e1, e2, e3]T+2
(
[e1, e2, e3]MT [e1 − e3]T

)
s

]]
ξ(t),

(14)

V̇3(t) = rT (t)R1r(t) − rT (t − αh)(R1 − R2)r(t − αh)

− rT (t − h)R2r(t − h)
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= ξ T (t)

[
tk+1 − t

dk

[
e1R1e

T
1

−e4(R1 − R2)e
T
4 − e5R2e

T
5

]
+ tt−tk

dk

×
[
e1R1e

T
1 − e4(R1 − R2)e

T
4 − e5R2e

T
5

]]
ξ(t),

(15)

V̇4(t) = ṙ T (t)(αhR3 + (1 − α)hR4)ṙ(t)

−
∫ t

t−αh
ṙ T (s)R3ṙ(s)ds

−
∫ t−αh

t−h
ṙ T (s)R4ṙ(s)ds. (16)

From Lemma 2, for any positive variable parameters
μi and νi (i = 1, 2) satisfying μ1 + μ2 = 1 and
ν1 + ν2 = 1, we can have easily

−
∫ t

t−αh
ṙ T (s)R3ṙ(s)ds

= −μ1

∫ t

t−αh
ṙ T (s)R3ṙ(s)ds

−μ2

∫ t

t−αh
ṙ T (s)R3ṙ(s)ds

≤ −
⎡
⎣ r(t)

r(t − αh)∫ t
t−αh r(s)ds

⎤
⎦
T
⎡
⎢⎢⎢⎣

4μ2
αh

2μ2
αh

−6μ2
(αh)2

2μ2
αh

4−2μ1
αh

−6+4μ1
(αh)2

−6μ2
(αh)2

−6+4μ1
(αh)2

12−10μ1
(αh)3

⎤
⎥⎥⎥⎦

⊗ R3

⎡
⎣ r(t)

r(t − αh)∫ t
t−αh r(s)ds

⎤
⎦ , (17)

−
∫ t−αh

t−h
ṙ T (s)R4ṙ(s)ds

= −ν1

∫ t−αh

t−h
ṙ T (s)R4ṙ(s)ds − ν2

∫ t−αh

t−h
ṙ T (s)R4ṙ(s)ds

≤ −
⎡
⎣ r(t − α1h)

r(t − h)∫ t−αh
t−h r(s)ds

⎤
⎦
T
⎡
⎢⎢⎢⎣

4ν2
βh

2ν2
βh

−6ν2
(βh)2

2ν2
βh

4−2ν1
βh

−6+4ν1
(βh)2

−6ν2
(βh)2

−6+4ν1
(βh)2

12−10ν1
(βh)3

⎤
⎥⎥⎥⎦

⊗R4

⎡
⎣ r(t − αh)

r(t − h)∫ t−αh
t−h r(s)ds

⎤
⎦ . (18)

Applying (17) and (18) to (16), we may gain

V̇4(t) ≤ ξT (t)

[
tk+1 − t

dk

[
e2(αhR3 + βhR4)e

T
2

−[e1, e4, e9]Π(μ1, μ2, αh) ⊗ R3[e1, e4, e9]T

−[e4, e5, e10]Π(ν1, ν2, βh) ⊗ R4[e4, e5, e10]T
]

+ t − tk
dk

[
e2(αhR3 + βhR4)e

T
2 − [e1, e4, e9]

×Π(μ1, μ2, αh) ⊗ R3[e1, e4, e9]T − [e4, e5, e10]
×Π(ν1, ν2, βh) ⊗ R4[e4, e5, e10]T

]]
ξ(t), (19)

V̇5(t) = ṙ T (t)

(
α4h2

4
R5 + h2

4
R6

)
ṙ(t)

− α2

2

∫ t

t−αh

∫ t

θ
ṙ T (s)R5ṙ(s)dsdθ

− 1

2

∫ t

t−h

∫ t

θ
ṙ T (s)R6ṙ(s)dsdθ. (20)

By using Lemma 1, we can get

− α2

2

∫ t

t−αh

∫ t

θ

ṙ T (s)R5ṙ(s)dsdθ

≤ −
⎡
⎣ r(t)∫ t

t−αh r(s)ds∫ t
t−αh

∫
θ
r(s)dsdθ

⎤
⎦
T
⎡
⎢⎢⎣

3
2 0 −3

(αh)2

0 3
(αh)2

−6
(αh)3

−3
(αh)2

−6
(αh)3

18
(αh)4

⎤
⎥⎥⎦

⊗ R5

⎡
⎣ r(t)∫ t

t−αh r(s)ds∫ t
t−αh

∫
θ
r(s)dsdθ

⎤
⎦ , (21)

− 1

2

∫ t

t−h

∫ t

θ

ṙ T (s)R6ṙ(s)dsdθ

≤ −
⎡
⎣ r(t)∫ t

t−αh r(s)ds + ∫ t−αh
t−h r(s)ds∫ t

t−h

∫ t
θ
r(s)dsdθ

⎤
⎦
T ⎡
⎢⎣

3
2 0 −3

h2

0 3
h2

−6
h3

−3
h2

−6
h3

18
h4

⎤
⎥⎦

⊗ R6

⎡
⎣ r(t)∫ t

t−αh r(s)ds + ∫ t−αh
t−h r(s)ds∫ t

t−h

∫ t
θ
r(s)dsdθ

⎤
⎦ . (22)

Applying (21) and (22) to (20), we can gain

V̇5(t) ≤ ξ T (t)

[
tk+1 − t

dk

[
e2

(
α4h2

4
R5 + h2

4
R6

)
eT2

−[e1, e9, e11]Ξ(αh) ⊗ R5[e1, e9, e11]T
− [e1, e9 + e10, e12]Ξ(h)

⊗R6[e1, e9 + e10, e12]T
]

+ t − tk
dk

[
e2

(
α4h2

4
R5 + h2

4
R6

)
eT2

− [e1, e9, e11] × Ξ(αh) ⊗ R5[e1, e9, e11]T
− [e1, e9 + e10, e12]
×Ξ(h) ⊗ R6[e1, e9 + e10, e12]T

]]
ξ(t),

(23)
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V̇6(t) = 2
m∑
s=1

(ωs − ls)d
T
s ṙ(t)gs

(
dTs r(t), z(t)

)

+ 2
m∑
s=1

dTs ṙ(t)(lsk
+
s − ωsk

−
s )dTs r(t)

= 2ṙ T (t)DT (Ω − L)g(Dr(t), z(t))

+ 2rT (t)DT [K+L − K−Ω]D ṙ(t)

= ξ T (t)

[
2
tk+1 − t

dk

(
e2D

T (Ω − L)eT6

+ e1D
T [K+L − K−Ω]DeT2

)
s

+ 2
t − tk
dk

(
e2D

T (Ω − L)eT6

+ e1D
T [K+L − K−Ω]DeT2

)
s

]
ξ(t). (24)

Next, for any scalars ζ , y and η, and arbitrary matrix
N with appropriate dimensions, we can obtain

0 = 2[ṙ T (t)ζ + rT (t)y + rT (tk)η]N [−ṙ(t) + A r(t)

+ Br(t − h) + W g(Dr(t), z(t)) − K C r(tk)]
= ξ T (t)

[
2
tk+1 − t

dk
([e2, e1, e3]Σ1NΣ2

×[e2, e1, e5, e6, e3]T
)
s
+ 2

t − tk
dk

×
(
[e2, e1, e3]Σ1NΣ2[e2, e1, e5, e6, e3]T

)
s

]
ξ(t).

(25)

According to the Eq. (7), for any positive diagonal
matrices Q1i = diag{q11i , q12, . . . , q1mi }, Q2i =
diag{q21i , q22i , . . . , q2mi }, and Q3i = diag{q31i , q32i ,
. . . , q3mi }, i = 1, 2, we may have following inequali-
ties

− 2
m∑
s=1

[
gs
(
dTs r(t), z(t)

)
− k−

s d
T
s r(t)

]
q1si

×
[
gs
(
dTs r(t), z(t)

)
− k+

s d
T
s r(t)

]
≥ 0, (26)

− 2
m∑
s=1

[
gs
(
dTs r(t − αh), z(t − αh)

)

−k−
s d

T
s r(t − αh)

]
q2si ×

[
gs
(
dTs r(t − αh),

z(t − αh) ) − k+
s d

T
s r(t − αh)

]
≥ 0, (27)

− 2
m∑
s=1

[
gs
(
dTs r(t − h), z(t − h)

)

−k−
s d

T
s r(t − h)

]
q3si ×

[
gs
(
dTs r(t − h),

z(t − h)) − k+
s d

T
s r(t − h)

]
≥ 0. (28)

From Eqs. (26)–(28), we can get

ζ1(i, t) = −2gT (Dr(t), z(t))Q1i g(Dr(t), z(t))

+ 2rT (t)DT (K− + K+)Q1i g(Dr(t), z(t))

− 2rT (t)DT K−Q1i K
+Dr(t) ≥ 0,

ζ2(i, t) = −2gT (Dr(t − αh), z(t − αh))

Q2i g(Dr(t − αh), z(t − αh))

+ 2rT (t − αh)DT (K− + K+)

Q2i g(Dr(t − αh), z(t − αh))

− 2rT (t − αh)DT K−Q2i K
+Dr(t − αh) ≥ 0,

ζ3(i, t) = −2gT (Dr(t − h), z(t − h))

Q3i g(Dr(t − h), z(t − h))

+ 2rT (t − h)DT (K− + K+)

Q3i g(Dr(t − h), z(t − h))

− 2rT (t − h)DT K−Q3i K
+Dr(t − h) ≥ 0.

Then

tk+1 − t

dk
ζ1(1, t) + t − tk

dk
ζ1(2, t)

= ξ T (t)

[
tk+1 − t

dk

[
− 2e6Q11e

T
6

− 2e1D
T K−Q11K

+DeT1

+ 2
(
e1D

T (K− + K+)Q11e
T
6

)
s

]

+ t − tk
dk

[
−2e6Q12e

T
6 − 2e1D

T K−Q12K
+DeT1

+2
(
e1D

T (K− + K+)Q12e
T
6

)
s

]]
ξ(t) ≥ 0,

(29)
tk+1 − t

dk
ζ2(1, t) + t − tk

dk
ζ2(2, t)

= ξ T (t)

[
tk+1 − t

dk

[
− 2e7Q21e

T
7

− 2e4D
T K−Q21K

+DeT4

+ 2
(
e4D

T (K− + K+)Q21e
T
7

)
s

]

+ t − tk
dk

[
−2e7Q22e

T
7 − 2e4D

T K−Q22K
+DeT4

+2
(
e4D

T K− + K+)Q22e
T
7

)
s

]]
ξ(t) ≥ 0,

(30)
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tk+1 − t

dk
ζ3(1, t) + t − tk

dk
ζ3(2, t)

= ξ T (t)

[
tk+1 − t

dk

[
− 2e8Q31e

T
8

− 2e5D
T K−Q31K

+DeT5

+ 2
(
e5D

T (K− + K+)Q31e
T
8

)
s

]

+ t − tk
dk

[
−2e8Q32e

T
8 − 2e5D

T K−Q32K
+DeT5

+2
(
e5D

T (K− + K+)Q32e
T
8

)
s

]]
ξ(t) ≥ 0.

(31)

By adding the right-hand side of (25) and the left-hand
side of (29)–(31) to V (t) and letting U = NK , we
obtain from (12)–(24) that for t ∈ [tk, tk+1)

V̇ (t) ≤ ξ T (t)

[
tk+1 − t

dk
Ψ1(dk) + t − tk

dk
Ψ̂2(dk)

]
ξ(t),

(32)

where

Ψ̂2(dk) = Ξ0 + Ξ02 + dk[e1, e2, e3]MTX −1

M[e1, e2, e3]T .

It is noted that

Ψ1(dk) = dk
d

Ψ1(d) + d − dk
d

Ψ1(0), (33)

and

Ψ̂2(dk) = dk
d

Ψ̂2(d) + d − dk
d

Ψ̂2(0). (34)

From (9) and (10), we can find that

Ψ1(dk) < 0, Ψ̂2(0) < 0. (35)

Based on Schur complement, we have from (10)

Ψ̂2(d) < 0, (36)

which, in combination with (35) and (36), implies

Ψ̂2(dk) < 0. (37)

Thus, we obtain from (32), (35) and (37) that

V̇ (t) ≤ ξ T (t)

[
tk+1 − t

dk
Ψ1(dk)

+ t − tk
dk

Ψ̂2(dk)

]
ξ(t) < 0, (38)

which ensures that the synchronization error system
(5) is globally asymptotically stable. Therefore, master
system (1) and slave system (2) achieve global asymp-
totical synchronization. This completes the proof. ��
Remark 3 Since Φ(d̄) = d̄

dΦ(d) + d−d̄
d Φ(0) > 0,

then Ψ1(d̄) = d̄
dΨ1(d) + d−d̄

d Ψ1(0) < 0 and Ψ̂2(d̄) =
d̄
d Ψ̂2(d) + d−d̄

d Ψ̂2(0) < 0. LIMs (8), (9) and (10) are
convex in d, so they are feasible for all d̄ ∈ (0, d],
where d is the upper bound of all sampling intervals.

Remark 4 Unlike that term in [19,41,48], we construct
a novel LKF with a δ, σ , H1 and H2-dependent term
H , which is a kind of augmented functional. When
δ = σ = 1

2 , this term is a special case of that one in [19,
41,48]. Thus, the LKF used here is more general and
desirable than those employed in [19,41,48]. Besides,
for the use of H -dependent term, the constraint con-
ditions of the matrices in the LKF have been relaxed.
In the above theorem, this constraint is replaced by a
more relaxable condition (8) to keep V1(t) positive def-
inite. For these reasons, the use of this term for variable
sampling can improve further the obtained condition.

Remark 5 The informationof the slopeof the nonlinear
function has been considered fully. The slopes k−

s and
k+
s are applied to construct V6(t) of the LKF, while the
LKF chosen in [28–30] ignores this information.

We consider the following sampled-data master–
slave synchronization scheme free of time delay:

M:
{
ẋ(t) = A x(t) + W f (Dx(t)),
γ (t) = C x(t),

(39)

S:
{
ż(t) = A z(t) + W f (Dz(t)) + u(t),
λ(t) = C z(t),

(40)

C: u(t) = K (γ (tk) − λ(tk)), t ∈ [tk, tk+1), (41)

which has been studied in [19,28–30,42,46]. Corre-
spondingly, the synchronization error system (5) is
written as the following (∀k, t ∈ [tk, tk+1)):

ṙ(t) = A r(t) + W g(Dr(t), z(t)) − K C r(tk), (42)

123



1268 K. Shi et al.

and the LKF (11) is constructed as

V (t) = V1(t) + V2(t) + V6(t), t ∈ [tk, tk+1), (43)

where V1(t), V2(t) and V6(t) are given in (11). Based
on Theorem 1, we have the following Theorem.

Theorem 2 For given scalars d > 0, δ, x, y and z,
the master system (1) and the slave system (2) are
globally asymptotically synchronous for all dk ≤ d
if there exist matrices P > 0, X > 0, Ω =
diag{ω1, ω2, . . . , ωm} > 0, L = diag{l1, l2, . . . ,
lm} > 0, Q1i = diag{q1i1, q1i2, . . . , q1im} > 0,
(i = 1, 2), and any appropriately dimensioned matri-
ces H , N , U, M = [M1, M2, M3] and M̃(d̄) =
[d̄ 1

2 M1, d̄
1
2 M2, d̄

1
2 M3, 0], such that

Φ(d) =
[
P + 2δd(H1)s −dH1 + dH2

∗ 2d(−H2) + σH1)s

]
,

(44)

Ψ̃1(d̄) = Ξ̃0 + Ξ̃01 + Ξ̃1(d̄) < 0, (45)

Ψ̃2(d̄) =
[

Ξ̃0 + Ξ̃02 M̃T (d̄)

∗ −X

]
< 0, d̄ = 0, d,

(46)

where

Ξ̃0 = −[ẽ1, ẽ3]H [ẽ1, ẽ3]T

+ 2
(
ẽ1Pẽ

T
2 + ẽ2D

T (Ω − L)ẽT6

+ ẽ1D
T [K+L − K−Ω]D ẽT2

+ [ẽ2, ẽ1, ẽ3]Σ1NΣ2 × [ẽ2, ẽ1, ẽ4, ẽ3]T

+[ẽ1, ẽ2, ẽ3]MT [ẽ1 − ẽ3]T
)
s
,

Ξ̃01 = −2[ẽ1DT K−Q11K
+D ẽT1 + ẽ4Q11e

T
4 ]

+ 2
(
ẽ1D

T (K− + K+)Q11ẽ
T
4

)
s
,

Ξ̃02 = −2[ẽ1DT K−Q12K
+D ẽT1 + ẽ4Q12ẽ

T
4 ]

+ 2
(
ẽ1D

T (K− + K+)Q12ẽ
T
4

)
s
,

Ξ̃1(d̄) = 2
(
d̄[ẽ1, ẽ3]H [ẽ2, 0]T

)
s
+ d̄ ẽ2X ẽT2 .

Moreover, the gain matrix of state estimator is given by
K = N−1U.

Remark 6 Different from the existing approaches in
[28–30], in order to obtain less conservative stabil-

ity conditions, we propose a novel integral inequal-
ity to deal with the integral terms

∫ t
t−αh ṙ

T (s)R3ṙ(s)ds

and
∫ t−αh
t−h ṙ T (s)R4ṙ(s)ds, which encompasses the cel-

ebrated Wirtinger’s integral inequality and Jensen’s
inequality as two special cases by introducing four tun-
ing parameters μi and νi (i = 1, 2).

Remark 7 Moreover, the above tuning parameters can
coordinate well the relations between the weight coef-
ficient of

∫ t
t−αh ṙ

T (s)R3ṙ(s)ds, r(t), r(t − αh)) and∫ t
t−h r(s)ds, and

∫ t−αh
t−h ṙ T (s)R4ṙ(s)ds, r(t − αh),

r(t − h) and
∫ t−αh
t−h r(s)ds, which reduce more sig-

nificantly the conservatism of stability criteria than
the existing ones. Thus, this kind of treatment method
has greater potential and practicality than the existing
ones.

Remark 8 In this paper, we construct a new LKF with
two triple integral terms

∫ t
t−αh

∫ t
λ

∫ t
θ
ṙ T (s)R5ṙ(s)dsdθ

dλ and
∫ t
t−h

∫ t
λ

∫ t
θ
ṙ T (s)R6ṙ(s)dsdθdλ, which are not

applied in the existing papers [19,28–30,47,48].
Besides, by using a double integral form of WBII
in [51], we can take fully the relationship between∫ t
t−αh

∫ t
θ
ṙ T (s)R5ṙ(s)dsdθ , r(t),

∫ t
t−αh r(s)ds and∫ t

t−αh

∫ t
θ
r(s)dsdθ , and

∫ t
t−h

∫ t
θ
ṙ T (s)R6ṙ(s)dsdθ , r(t),∫ t

t−αh r(s)ds,
∫ t−αh
t−h r(s)ds and

∫ t
t−h

∫ t
θ
r(s)dsdθ into

consideration. Furthermore, one numerical simula-
tion example of Chua’s circuit is given in this paper.
It will be shown expressly that the new double
integral form of WBII enhances further the feasi-
ble region of stability criterion by comparing maxi-
mum delay bounds with the results obtained in our
paper.

Remark 9 In many actual engineering and applica-
tions, the maximum allowable sampling period d is
valuable and meaningful. Such as, set ρ = 1

d in Theo-
rem1with fixed values h, δ andα, the optimal value can
be obtained through following optimization procedure:

{
Minize ρ for μi , νi ∈ [0, 1], i = 1, 2,
Respect to (8)−(10).

(47)

Inequality (47) is a convex optimization problem and
can be obtained efficiently by using theMATLABLMI
Toolbox.
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4 Numerical examples

In this section, three numerical simulation examples are
given to illustrate the effectiveness of the main results
derived earlier.

Example 1 Consider the following delayed Chua’s cir-
cuit via sampled-data feedback control [28–30,42,46].
The equation of Chua’s circuit can be expressed as:

⎧⎨
⎩
ẋ1(t) = a(x2(t) − m1x1(t) + f (x1(t))) − cx1(t − h),

ẋ2(t) = x1(t) − x2(t) + x3(t) − cx1(t − h),

ẋ3(t) = −bx2(t) + c(2x1(t − h) − x3(t − h),

(48)

with nonlinear characteristic satisfying

f (x1(t)) = 0.5(m1 − m0)(|x1(t) + 1| − |x1(t) − 1|),

belonging to sector [0, 1], and parameters m0 = − 1
7 ,

m1 = 2
7 , a = 9, b = 14.28, c = 0.1, and the constant

delay h = 1.

Obviously, the system can be rewritten as the Lur’e
form with the following parameters:

A =
⎡
⎣−am1 − 1 a 0

1 −2 1
0 −b −1

⎤
⎦ , B =

⎡
⎣−c 0 0

−c 0 0
2c 0 −c

⎤
⎦ ,

W =
⎡
⎣−a(m0 − m1)

0
0

⎤
⎦ , C = D =

⎡
⎣ 1
0
0

⎤
⎦
T

.

The initial conditions of the master and slave systems
are chosen as x(0) = [0.2, 0.3, 0.2]T and z(0) =
[−0.3,−0.1, 0.4]T , t ∈ [−1, 0]. Figures 3 and 4 show
themaster system states x(t) and the slave system states
z(t) with u(t) = 0, respectively.
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Fig. 3 State trajectories of master system
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Fig. 4 State trajectories of slave system without u(t)
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Fig. 5 State trajectories of master–slave system with u(t)

0 5 10 15 20 25 30 35 40 45 50−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

A
m
pl
itu

de

r1(t)

r2(t)

r3(t)

Fig. 6 State trajectories of synchronization error system with
the sampling period d = 0.4369

When μ1 = 0.5085, μ2 = 0.4915, ν1 = 0.5108,
ν2 = 0.4892, δ = 0.8176, α = 0.7948, ζ =
0.2886, y = −0.2428 and η = 0.6232, by apply-
ing Theorem 1, the maximum value of the sam-
pling period is d = 0.4369, and the corresponding
sampled-data feedback control gain matrix is K =
[3.0960, 0.3779,−2.3436]T .

Under the above K , the responses of the state x(t)
and z(t), the error signal r(t) and control inputs u(t)
are shown in Figs. 5, 6 and 7, respectively. Thus, we
can synchronize successfully the master–slave systems
by the proposed sampled-data controller. Moreover, by
using Theorem 1, our obtained maximum sampling
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Fig. 7 State trajectories of the slave control input u(t)

Table 1 Comparison of maximum value of the sampling period
of d in Example 1

Method [28] [29] [30] Theorem 1

d 0.3582 0.4355 0.4357 0.4369

period d and the detailed comparison with those in
[28–30] are given in Table 1. From the Table 1, one
can clearly see that the criterion in this letter provides
a much less conservative result.

To demonstrate ulteriorly the reduced conservatism
of the proposed condition, we choose c = 0; that
is, the time-delay Chua’s circuit (48) decreases to
a Lur’e system free of time delay. This system has
been studied in [28–30,42,46]. Applying Theorem 2,
we have that the maximum value of the sampling
period is 0.5218. When δ = 0.4694, ζ = −0.9762,
y = −0.3258 and η = −0.6756, the corresponding
sampled-data feedback control gain matrix is K =
[2.6123, 0.2601,−1.6555]T .

Therefore, our sampled-data controlmethod is supe-
rior to the existing ones. The responses of the error sig-
nal r(t) and control inputs u(t) are shown in Figs. 8
and 9, where the initial conditions of the master and
slave systems are chosen as x(0) = [0.7, 0.3, 0, 4]T
and z(0) = [−0.7,−0.5, 0.5]T . The figures show
that the controller achieves the master–slave synchro-
nization. The comparisons on the allowable maximum
value d are given in Table 2. The result illustrates that
the sampled-data controller derived by the proposed
criterion can achieve the synchronization of themaster–
slave systems under a larger sampling period.

Example 2 Consider themaster–slave systems in (39)–
(41) with the following parameters [28,47,48]:
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Fig. 8 State trajectories of synchronization error system with
the sampling period d = 0.5218 for c = 0
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Fig. 9 State trajectories of the slave control input u(t) for c = 0

Table 2 Comparison of maximum value of the sampling period
of d for c = 0 in Example 1

Method [42] [28] [46]

d 0.3914 0.3981 0.4800

Method [29] [30] Theorem 1

d 0.5144 0.5147 0.5218

A =
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ ,W =

⎡
⎣ 1.2 −1.6 0
1.24 1 0.9
0 2.2 1.5

⎤
⎦ ,

C = D = I.

which implies that the Lur’e system reduces to a neural
network with three neurons. Furthermore, the neuron
activation functions fs(xs(t)) = 0.5(|xs(t) + 1| −
|xs(t) − 1|), s = 1, 2, 3, and thus k−

1 = k−
2 = k−

3 = 0
and k+

1 = k+
2 = k+

3 = 1.

The initial states of the master and slave systems
are chosen as x(0) = [0.4, 0.3, 0.8]T and z(0) =
[0.2, 0.4, 0.9], respectively. The trajectories of themas-
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Fig. 11 State trajectories of slave system without u(t)

ter system and slave system with u(t) = 0 are shown
in Figs. 10 and 11, respectively.

When δ = 0.6324, ζ = −0.8049, y = −0.4430 and
η = 0.0938, based on Theorem 1, the maximum value
of the sampling period is d = 0.3818, and the corre-
sponding sampled-data feedback control gain matrix
is

K =
⎡
⎣ 2.0123 −1.9221 0.1277
1.6062 1.8970 0.8669
0.3166 1.6856 2.6986

⎤
⎦ .

The responses of the state x(t) and z(t), the error signal
r(t) and control inputs u(t) are shown in Figs. 12, 13
and 14 for system (39)–(41) with the sampling period
of 0.3818. We can observe that the controller achieves
the master–slave synchronization. The maximum sam-
pling period bound of this paper and that of [28,47,48]
is shown in Table 3. The result declares clearly that the
obtained sampled-data controller can achieve the syn-
chronization of the master–slave system under a longer
sampling period.

Example 3 Consider themaster–slave synchronization
of two unidirectionally coupled Chua’s circuits via
sampled-data feedback control [19].

The master system is given by
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Fig. 12 State trajectories of master–slave system with u(t)
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Fig. 13 State trajectories of synchronization error system with
the sampling period d = 0.3818 for c = 0
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Fig. 14 State trajectories of the slave control input u(t) for c = 0

Table 3 Comparison of maximum value of the sampling period
of d in Example 2

Method [47] [48] [28] Theorem 2

d 0.1732 0.3212 0.3687 0.3818

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = α(x2(t) − h(x1(t))),
ẋ2(t) = x1(t) − x2(t) + x3(t),
ẋ3(t) = −βx2(t),
ẋ4(t) = α(x5(t) − h(x4(t))),
ẋ5(t) = x4(t)−x5(t)+x6(t) + G(x5(t) − x2(t)),
ẋ6(t) = −βx5(t),

(49)
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with nonlinear characteristic satisfying (i = 1, 4)

h(xi (t)) = l1xi (t) + 0.5(l0 − l1)(|xi (t)
+ c| − |xi (t) − c|),

belonging to a sector [0, 1], and parameters l0 = − 1
7 ,

l1 = 2
7 , α = 9, β = 14.28, c = 1 and G = 0.01. The

system can be represented in the Lur’e form with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−αl1 α 0 0 0 0
1 −1 1 0 0 0
0 −β 0 0 0 0
0 0 0 −αl1 α 0
0 −G 0 1 −1 + G 1
0 0 0 0 −β 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α(l0 − l1) 0
0 0
0 0
0 −α(l0 − l1)
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C = D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

,

The slave system is considered with the same parame-
ters as the master system studied in [19]. Applying the
method proposed in [19], the maximum value of the
upper bound is d = 0.25, while using Theorem 2 with
δ = 0.4218, ζ = 0.8315, y = 0.5844 and η = 0.9190
given in this paper, the maximum value of the upper
bound d that allows the synchronization of the mas-
ter and slave systems is 0.26, and the corresponding
sampled-data feedback control gain matrix is

K =
[

4.9685 0.8770 −3.3940 −0.0022 −0.0020 0.0055
−0.0004 −0.0000 0.0025 4.9706 0.8796 −3.4019

]
.

The initial values of master and slave systems are
assumed to be x(0) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]T
and z(0) = [−0.8,−0.6,−0.4,−0.2, 0, 0.2]T , respec-
tively. The trajectories of the master system and slave
system with u(t) = 0 are shown in Figs. 15 and 16,
respectively. Moreover, the responses of the state x(t)
and z(t), the error signal r(t) and control inputs u(t)
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Fig. 17 State trajectories of synchronization error system with
the sampling period d = 0.26 on the space
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Fig. 18 State trajectories of synchronization error system with
the sampling period d = 0.26

are shown in Figs. 17, 18 and 19 for the systems (39)–
(41) with the sampling period of 0.26, which demon-
strates that the control law can guarantee the asymptot-

123



Novel integral inequality approach 1273

t
0 1 2 3 4 5 6 7 8 9 10−8

−6

−4

−2

0

2

4

6

8

10
A
m
pl
itu

de

u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

u6(t)

Fig. 19 State trajectories of the slave control input u(t)

ical synchronization of the master–slave system. Thus,
it is clear to show that our approach is more effective
than the recently reported one.

5 Conclusions

In this paper, the problem of master–slave synchro-
nization of chaotic Lur’e systems with or without
delays has been investigated by using sampled-data
control method. A novel integral inequality is devel-
oped for the synchronization error systems by intro-
ducing new adjustable parameters, which is proved to
be more tighter to estimate the bounds of the inte-
gral terms than the exiting ones. Besides, a new and
continuous LKF is constructed by taking full advan-
tage of all kinds of available information. Thus, several
less conservative synchronization criteria are obtained
via a more general delay-partition approach. Further-
more, the desired feedback sampled-data controller is
achieved by using a double integral form of WBII,
which can provide a longer sampling period in realiz-
ing synchronization comparedwith the existing results.
Finally, the feasibility and effectiveness of the proposed
methods have been demonstrated via three numeri-
cal examples with simulations of typical Chua’s cir-
cuit. The foregoing methods may be potentially useful
for further study of chaotic Lur’e systems with vary-
ing time delay. Meanwhile, it is expected that these
approaches can be further used for other time-delay
systems.
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