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Abstract Considering topography conditions, eco-
nomic factors and driving safety, in real traffic, a road
may be built as curved road. Traffic flow on curved
road is different from the one on straight road. And it
is worth to investigate the influencing mechanism of
traffic flow on curved road. In order to investigate traf-
fic flow on curved road analytically, in this paper, an
extended one-dimensional lattice hydrodynamicmodel
for traffic flow on curved road is proposed. The stabil-
ity condition is obtained by the use of linear stability
analysis. It is shown that the stability of traffic flow
varies with the radian, friction coefficient and curvature
radius of curved road. TheBurgers, Korteweg–deVries
and modified Korteweg–de Vries equations are derived
to describe the nonlinear density waves in the stable,
metastable and unstable regions, respectively. The sim-
ulations are given to verify the analytical results. The
results, which obtained from the theoretical analysis
and numerical simulations, show that traffic flow may
be affected by the angle going into curved road, the
increment of angle, friction coefficient and curvature
radius of curved road. And themaximal theoretical flux
and velocity of traffic flow are influenced by the above
factors as well.
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1 Introduction

Although urbanization provides modern science and
technologies, modern civilization and convenient way
of life for human beings, it also forms some problems
such as public security, air pollution and energy crisis.
Traffic flow is a topical issue in social problems; the
congested traffic flow not only causes much inconve-
nience, but also results in security risks for drivers. Due
to the importance of traffic, traffic flow has attracted
considerable attention in the field of physical science
[1–5]. In order to make a better understanding of traf-
fic flow, there is a demand for realistic and quantita-
tive models that can predict traffic flux and travel times
for a given infrastructure and duplicate the phenom-
ena observed in a real situation. To achieve this goal,
various traffic flow models including the car-following
models, the hydrodynamicmodels, the cellular automa-
ton models and gas kinetic models were proposed by
many scholars with different backgrounds. A series of
experiments had been done for investigating the mech-
anism of traffic flow and identifying the influencing
factors. Many interesting non-equilibrium phenomena
such as phase transition, density waves, stop-and-go
flows, local clusters and ghost jams had been observed.
See Refs. [6–37] for details.
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Among these models, Nagatani firstly proposed a
lattice hydrodynamic model for traffic flow in Ref.
[20]. By using the linear stability theory and nonlin-
ear analysis method, Nagatani found the neutral stabil-
ity line and the modified Korteweg–de Vries (MKdV)
equation successfully and derived the solutions of kink
density wave in the MKdV. Based on the model pro-
posed by Nagatani, many researchers had proposed
many extended versions with the consideration of dif-
ferent factors like backward effect, lateral effect, den-
sity difference effect, lane changing effect and antic-
ipation effect [24,25,29–32,37,38]. Considering two-
dimensional traffic flow, Nagatani extended his work
to two-dimensional lattice hydrodynamicmodel inRef.
[22].All the aboveworks andunmentioned in this paper
undoubtedly enrich the traffic flow theory andmake lat-
tice hydrodynamic models more realistic.

From the process of deducing the one-dimensional
lattice hydrodynamic model in Ref. [20], it can be seen
that the proposedmodel in Ref. [20] is based on the car-
following models and the continuum models. And one
assumption of car-following theory is that the vehicles
should travel in themiddle of a straight road. But in real
traffic environment, not every traffic road is straight,
it may be a curved road. And when turning a corner,
the track of vehicles is curved line. Considering the
road situation, Zhu and Zhang [39] proposed a lattice
model considering the effect of gradient. In Refs. [19,
40], by using car-following model and lattice model,
Zhu and Zhang, Cao and Shi, respectively, investigated
the effects of friction coefficient and radius of curvature
upon traffic flow on curved road.

But, as we know, traffic flow on curved road may be
affected by the length of curved road.Usually, when the
length of curved road is long, traffic flow will become
unstable; otherwise, traffic flow will become stable. In
the other words, traffic flow on curved road may be
affected by radian of curved road. Moreover, traffic
flow on curved road is affected by the angle going into
curved road. And these two factors have not been con-
sidered in lattice hydrodynamic models. Lattice hydro-
dynamic models have the merit that the linear stability
analysis and the nonlinear analysis can be applied. In
this paper, taking the effects of radian, friction coeffi-
cient and curvature radius of curved road into account,
an extended lattice hydrodynamicmodel for traffic flow
is proposed.

The paper is organized as follows. In Sect. 2, the
model is formulated by considering radian, friction

coefficient and curvature radius. The stability analysis
is obtained by using linear stability analysis in Sect. 3.
We can see the stability condition varies with radian,
friction coefficient and curvature radius. In Sect. 4, the
Burgers, Korteweg–de Vries (KdV) and MKdV equa-
tions are derived in three types of traffic flow regions
by using nonlinear analysis. The simulations are given
in Sect. 5. Section 6 is the conclusion.

2 Model

In Ref. [20], Nagatani proposed a lattice hydrodynamic
model to describe the jam transition in traffic flow. By
the use of the proposed model, Nagatani successfully
derived the MKdV equation to describe traffic conges-
tion as the kink density wave. The model is

∂tρ( j, t) + ρ0∂ jρ( j, t)v( j, t) = 0, (1)

where ρ0 is the total average density, and it is the
reciprocal of average headway δ, that is ρ0 = 1/δ.
ρ( j, t), v( j, t) denote the density and velocity at site j
at time t , respectively.

In terms of Nagatani’s idea [20], the traffic flux ρv

at site j is determined by the total optimal current at
site j + 1 with delay time τ , that is

ρ( j, t + τ)v( j, t + τ) = ρ0V (ρ( j + 1, t)), (2)

V (ρ( j, t)) is the optimal velocity function. InRef. [22],
Nagatani proposed the optimal velocity function as fol-
lows

V (ρ( j, t)) =
[
tanh

(
2
ρ0

−ρ( j,t)
ρ2
0

− 1
ρc

)
+ tanh

(
1
ρc

)]
.

(3)

where ρc is the critical density and it is equal to the
inverse of the safety distance [26].

The model (1)–(2) is a very abstract model. When
the road is horizontal, the model (1)–(2) can be rewrit-
ten as

∂tρ(x, t) + ∂xρ(x, t)v(x, t) = 0, (4)

and

ρ(x, t + τ)v(x, t + τ) = ρ0V (ρ(x + δ, t)) (5)

by using the following formulas, that is

j = x/δ, ρ0 = 1/δ,
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Fig. 1 The illustration of vehicles running on curved road
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Fig. 2 The abstract illustration of Fig. 1

then

ρ0∂ jρ( j, t)v( j, t) = ∂xρ(x, t)v(x, t), (6)

and Eqs. (4) and (5) can be deduced. The process is
similar as in Ref. [20].

Now, we consider the vehicles running on curved
road. Figure 1 is the illustration of vehicles running
on curved road. And Fig. 2 is an abstract illustra-
tion of Fig. 1. We denote the curved road as y =√
R2 − (x − R)2, where R represents the curvature

radius of the curved road. The length between site j
and j − 1 is

∫ x

x−x0

√
1 + y′2dx ≈ x0

sin θ j
,

where θ j represents the radian at site j of the curved
road. This formula shows the relationship between
average headway on straight road and the one on curved
road.

Now, considering the curved road, we modify the
lattice hydrodynamic model as follows

∂tρ( j, t) + ρ0

sin θ j
∂ jρ( j, t)v( j, t) = 0, (7)

and

ρ( j, t + τ)v( j, t + τ) = ρ0

sin θ j
V (ρ( j + 1, t)). (8)

Here, compared with Eqs. (1) and (2), 1
sin θ j

in Eqs. (7)
and (8) is a new factor which represents the difference
between traffic flow on curved road and traffic flow on
straight road.

As we know, objects running on curved road are
affected by the centripetal force, and the maximal lin-
ear velocity vmax can be represented as vmax = √

μgR,
where μ is the friction coefficient, R is the radius of
curved road, g is gravity acceleration. Taking the sit-
uation of curved road into account, we use a modified
optimal velocity function [40] which is similar as the
one in Ref. [22], that is

V (ρ( j, t)) = k

√
μgR

2

[
tanh

(
2

ρ0
−ρ( j, t)

ρ2
0

− 1

ρc

)

+ tanh

(
1

ρc

) ]
,

(9)

where k is the control parameter of vmax. Becausewhen
running on curved road, drivers always slow downwith
the consideration of safety. The velocity is far less than
the maximal velocity. Here, based on the characteristic
of vehicles running on curved road, we introduce the

new factor
√

μgR
2 for addressing the difference between

traffic flow on curved road and traffic flow on straight
road.

By inserting Eq. (8) into Eq. (7), and when site j is
sufficiently close to site j − 1, then θ j ≈ θ j−1. And
the total density equation is obtained as

ρ( j, t + 2τ) − ρ( j, t + τ)

+ τρ2
0

sin2 θ j
[V (ρ( j + 1, t)) − V (ρ( j, t))] = 0.

(10)

Here, 1
sin2 θ j

in Eq. (10) is a new factor which reflects

the effect of curved road upon traffic flow. And the
total density equation (10) is different from the previous
work in Refs. [20,40].
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3 Linear stability analysis

Weapply the linear stability theory to analyze the traffic
flow model described by Eq. (10). Supposing the vehi-
cles running on curved road with the uniform density
ρ0 and optimal velocity V (ρ0), then we get the uniform
steady-state solution ρ( j, t) for Eq. (10)

ρ( j, t) = ρ0, v( j, t) = V (ρ0). (11)

Assuming y( j, t) be a small deviation from the uniform
steady solution, that is

ρ( j, t) = ρ0 + y( j, t). (12)

Inserting it and Eq. (11) into Eq. (10), then the lin-
earized equation for y( j, t) is obtained from Eq. (10)

y( j, t + 2τ) − y( j, t + τ)

+ τρ2
0

sin2 θ j
V ′(ρ0) [y( j + 1, t) − y( j, t)] = 0,

(13)

where V ′(ρ0) is the derivative of optimal velocity
function V (ρ) at point ρ = ρ0. Expand y( j, t) ∝
exp[ik j + zt] resulting in the following equation of
z

e2zτ − ezτ + τρ2
0

sin2 θ j
V ′(ρ0)(eik − 1) = 0, (14)

where z = z1(ik)+ z2(ik)2 + · · · , and inserting it into
Eq. (14), the first- and second-order terms of ik are
obtained

z1 = − ρ2
0

sin2 θ j
V ′(ρ0), (15)

z2 = −3τρ4
0V

′2(ρ0)
2 sin4 θ j

− ρ2
0V

′(ρ0)
2 sin2 θ j

. (16)

If z2 > 0, the uniform steady state becomes stable,
while the uniform steady state becomes unstable if z2 <

0. Then the stable condition for traffic flow is

τ <
− sin2 θ j

3ρ2
0V

′(ρ0)
. (17)

Moreover, for small disturbances of long wavelength,
the neutral stability condition is given by

τs = − sin2 θ j

3ρ2
0V

′(ρ0)
. (18)

When θ j = π/2, the results are agreed with the ones
in Ref. [20].
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Fig. 3 Phase diagram in the (ρ, a) space with ρ0 = ρc =
0.2, μ = 0.3, R = 20, k = 0.14 for different θ j

The coexisting curves (dash lines) and neutral sta-
bility lines (solid lines) in the space (ρ, a) (a = 1/τ )
for different values of θ with ρ0 = ρc = 0.2, μ =
0.3, R = 20, k = 0.14 are shown in Fig. 3. The coex-
isting curve and the neutral stability line are similar
to the conventional gas–liquid phase transition. Three
regions in traffic flow are distinguished: the unstable
region which is within the neutral stability line, the
metastable region which is between the neutral stabil-
ity line and the coexisting curve and the stable region
which is out of the coexisting curve. The apex of each
curve represents the critical point (ρc, ac). From Fig. 3,
it is shown that traffic flow becomes stable with the
increasing radian θ j .

Figure 4 shows the phase diagram in the space
(ρ, a) for different values of R with ρ0 = ρc =
0.2, μ = 0.3, θ j = π/4, k = 0.14. From Fig. 4, we
can see that the critical sensitivity ac increases with the
increase in R which means traffic flow becomes more
andmore unstable with the increasing curvature radius.
The results are agreed with the ones in Refs. [19,40].
And the results also mean that traffic flow will become
unstable with the increase in length of curved road.

Figure 5 shows the phase diagram in the space (ρ, a)

for different values of μ with ρ0 = ρc = 0.2, R =
20, θ j = π/4. From Fig. 5, we can see that the critical
sensitivity ac increases with the increase in μ which
means traffic flow becomes more and more unstable
with the increase in friction coefficient. The results are
agreed with the ones in Refs. [19,40].
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Fig. 4 Phase diagram in the (ρ, a) space with ρ0 = ρc =
0.2, θ = π/6, μ = 0.3, k = 0.14 for different R
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(c) r=20, θj=π/4
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Fig. 5 Phase diagram in the (ρ, a) space with ρ0 = ρc =
0.2, θ = π/6, R = 20, k = 0.14 for different μ

Figure 6 shows the plot of ac against θ j with
ρ2
c V

′
0(ρc) = −1, R = 20, μ = 0.3, k = 0.14. From

Fig. 6, the critical sensitivity ac decreases with the
increase in θ j . Compared with straight road, the result
also shows that curved road will make traffic flow
become unstable.

4 Nonlinear analysis

In this section, we study the nonlinear behavior in the
stable, metastable and unstable regions, respectively.
Note that the Eq. (10) is a nonlinear partial differential

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

θj

a c

Fig. 6 Plot of ac with ρ2
0V

′(ρ0)|ρ0=ρc = −1, R = 20, μ =
0.3, k = 0.14 against θ j

equation, and it is difficult to get the exact and analyt-
ical solution for Eq. (10). To overcome this difficulty,
we apply the reductive perturbation method introduced
in Ref. [32] to solve Eq. (10) and derive the correspond-
ing Burgers, KdV and MKdV equations in the stable,
metastable and unstable regions, respectively. These
three equations are solvable equations. And we get the
approximate solutions of the models with the help of
exact and analytical solutions of the above three solv-
able equations.We introduce slow scales for space vari-
able j,m and time variable t and define slow variables
X and T for 0 < ε � 1 [38]

X = ε( j + bt), T = εs t (19)

where b is a constant to be determined. Assume

ρ( j, t) = ρ0 + εl R(X, T ). (20)

The values of the index s, l represent different phases
of the traffic flow. Three groups of values s = 2, l = 1;
s = 3, l = 2; s = 3, l = 1 are corresponding to the
stable traffic flow region, metastable traffic flow region
and unstable traffic flow, respectively.

By substituting Eqs. (19)–(20) into Eq. (10) and
expanding to the s + l + 1 order of ε, we obtain the
following nonlinear partial differential equation

εl+1

(
b + ρ2

0V
′(ρ0)

sin2 θ j

)
∂X R + εl+2

×
(
3b2τ

2
+ ρ2

0V
′(ρ0)

2 sin2 θ j

)
∂2X R
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+ εl+3

(
7b3τ 2

6
+ ρ2

0V
′(ρ0)

6 sin2 θ j

)
∂3X R

+ εl+4

(
5b4τ 3

8
+ ρ2

0V
′(ρ0)

24 sin2 θ j

)
∂4X R

+ ε2l+1 ρ2
0V

′′(ρ0)
2 sin2 θ j

∂X R
2 + ε2l+2 ρ2

0V
′′(ρ0)

4 sin2 θ j
∂2X R

2

+ ε3l+1 ρ2
0V

′′′(ρ0)
6 sin2 θ j

∂X R
3 + ε3l+2 ρ2

0V
′′′(ρ0)

12 sin2 θ j
∂2X R

3

+ εs+l∂T R + εs+l+1(3bτ)∂X∂T R = 0. (21)

Firstly, we discuss the triangular shock waves of
traffic flow in the stable region. The nonlinear par-
tial differential equation is obtained from Eq. (21) for
s = 2, l = 1.

ε2

(
b + ρ2

0V
′(ρ0)

sin2 θ j

)
∂X R + ε3

×
[
∂T R + ρ2

0V
′′(ρ0)

2 sin2 θ j
∂X R

2

+
(
3b2τ

2
+ ρ2

0V
′(ρ0)

2 sin2 θ j

)
∂2X R

]
= 0.

(22)

Taking b = −ρ2
0V

′(ρ0)
sin2 θ j

, the second-order term of ε is

eliminated in Eq. (22). We obtain the following partial
differential equation

∂T R + ρ2
0V

′′(ρ0)
sin2 θ j

R∂X R

= − sin2 θ j − 3ρ2
0V

′(ρ0)τ
2 sin4 θ j

ρ2
0V

′(ρ0)∂2X R.

(23)

In accordance with criterion equation (18), the coef-
ficient of the second derivative of Eq. (23) is positive
in the stable region. Therefore, in the stable region,
Eq. (23) is just the Burgers equation. If R(X, 0) is of
compact support, then the solution R(X, T ) of Eq. (23)
is

R(X, T ) = sin2 θ j

|ρ2
0V

′′(ρ0)|T
[
X − ηn+1 + ηn

2

]

− sin2 θ j (ηn+1−ηn)

2|ρ2
0V

′′(ρ0)|T
tanh

[− sin2 θ j − 3ρ2
0V

′(ρ0)τ
2 sin2 θ j

× ρ2
0V

′
0(ρ0)

(ηn+1 − ηn)(X − ξn)

4|ρ2
0V

′′(ρ0)|T
]
.

(24)

where ξn are the coordinates of the shock fronts and
ηn are the coordinates of the intersections of the slopes
with the x-axis (n = 1, 2, . . . , N ). As O( 1

T ), R(X, T )

decays to 0 when T → +∞. That means any shock
wave expressed by Eq. (24) in stable traffic flow region
will evolve to a uniform flow when time is sufficiently
large.

Secondly,wediscuss the solitonwaves of trafficflow
in themetastable region. The nonlinear partial differen-
tial equation is obtained fromEq. (21) for s = 3, l = 2.

ε3

(
b + ρ2

0V
′(ρ0)

sin2 θ j

)
∂X R

+ ε4

(
3b2τ

2
+ ρ2

0V
′(ρ0)

2 sin2 θ j

)
∂2X R

+ ε5

[
∂T R + ρ2

0V
′′(ρ0)

2 sin2 θ j
∂X R

2

+
(

ρ2
0V

′(ρ0)
6 sin2 θ j

+ 7b3τ 2

6

)
∂3X R

]

+ ε6

[
ρ2
0V

′′(ρ0)
4 sin2 θ j

∂2X R
2 + (3bτ)∂X∂T R

+
(
5b4τ 3

8
+ ρ2

0V
′(ρ0)

24 sin2 θ j

)
∂4X R

]
= 0.

(25)

Near the neutral stability line in the unstable region,
let
τ

τs
= 1 − ε2. (26)

By taking b = −ρ2
0V

′(ρ0)
sin2 θ j

, and then τ = 1−ε2

3b , the

third- and fourth-order terms of ε are eliminated from
Eq. (25), and Eq. (25) can be rewritten as

ε5
[
∂T R − f1∂

3
X R − f2R∂X R

]

+ ε6
[
− f3∂

2
X R + f4∂

2
X R

2 + f5∂
4
X R

]
= 0

(27)

where

f1 = −ρ2
0V

′(ρ0)
27 sin2 θ j

, f2 = −ρ2
0V

′′(ρ0)
2 sin2 θ j

,

f3 = −ρ2
0V

′(ρ0)
2 sin2 θ j

,

f4 = −ρ2
0V

′′(ρ0)
4 sin2 θ j

, f5 = −ρ2
0V

′(ρ0)
54 sin2 θ j

.
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In order to derive the standard KdV equation with
higher-order correction, we make the following trans-
formation in Eq. (27)

T = √
f1Tk, X = −√

f1Xk, R = 1

f2
Rk . (28)

ByusingEq. (28),we obtain the standardKdVequation
with higher-order correction term

∂Tk Rk + ∂3Xk
Rk + Rk∂Xk Rk

+ ε√
f1

[
− f3∂

2
Xk

Rk + f4
f2

∂2Xk
R2
k + f5

f1
∂4Xk

Rk

]
= 0.

(29)

Next, we assume that Rk(Xk, Tk) = R0(Xk, Tk) +
εR1(Xk, Tk) to consider theO(ε) correction inEq. (29).
If we ignore the O(ε) term in Eq. (29), it is just theKdV
equation with soliton solutions

R0(Xk, Tk) = A sech2
[√

A

12

(
Xk − A

3
Tk

)]
, (30)

where A is a free parameter. It is the amplitude of
soliton solutions of the KdV equation. The perturba-
tion term in Eq. (29) gives the condition of selecting
a unique member from the continuous family of KdV
solitons. In order to obtain the value of A, the solvabil-
ity condition [10,41,42] is

(R0, M[R0]) ≡
∫ ∞

−∞
dXk R0M[R0] = 0 (31)

that must be satisfied, here M[R0] is the O(ε) term in
Eq. (29). By computing the integration in Eq. (31), we
obtain the value of amplitude A

A = 21 f1 f2 f3
24 f1 f4 − 5 f2 f5

. (32)

Substituting the values of f1- f5 intoEq. (32),we get the
value of A. Substituting each variable by the original
one, we obtain soliton solutions of the density

ρ( j, t) = ρ0 + A

f2

(
τ

τs
− 1

)
sech2

[√
A

12 f1

(
τ

τs
− 1

)

×
(
j + ρ2

0V
′(ρ0)t + A

3

(
τ

τs
− 1

)
t

)]
.

(33)

Now, we have derived the soliton density wave
described by the KdV equation near the neutral sta-
bility line.

Finally, we discuss the kink–antikink waves of traf-
fic flow in the unstable region. The nonlinear par-
tial differential equation is obtained from Eq. (21) for
s = 3, l = 1.

ε2

(
b + ρ2

c V
′(ρc)

sin2 θ j

)
∂X R

+ ε3

(
3b2τ

2
+ ρ2

c V
′(ρc)

2 sin2 θ j

)
∂2X R

+ ε4

[(
ρ2
c V

′(ρc)
6 sin2 θ j

+ 7b3τ 2

6

)
∂3X R

+ ρ2
c V

′′′(ρc)
6 sin2 θ j

∂X R
3 + ∂T R

]

+ ε5

[(
5b4τ 3

8
+ ρ2

c V
′(ρc)

24 sin2 θ j

)
∂4X R

+ ρ2
c V

′′′(ρc)
12 sin2 θ j

∂2X R
3 + 3bτ∂X∂T R

]
= 0.

(34)

Supposing

τ

τc
= 1 + ε2 (35)

for τ near the critical point (hc, 1/τc), where τc =
− sin2 θ j

3ρ2
c V

′(ρc) . Let b = −ρ2
c V

′(ρc)
sin2 θ j

, and then τ = 1+ε2

3b , the

second- and third-order terms of ε can be eliminated
from Eq. (34). Then Eq. (34) can be rewritten as

ε4
[
∂T R − g1∂

3
X R + g2∂X R

3
]

+ ε5
[
g3∂

2
X R + g4∂

2
X R

3 + g5∂
4
X R

]
= 0

(36)

where

g1 = −ρ2
c V

′(ρc)
27 sin2 θ j

, g2 = ρ2
c V

′′′(ρc)
6 sin2 θ j

,

g3 = −ρ2
c V

′(ρc)
2 sin2 θ j

,

g4 = −ρ2
c V

′′′(ρc)
12 sin2 θ j

, g5 = − ρ2
c V

′(ρc)
54 sin2 θ j

.

In order to derive the standard MKdV equation with
higher-order correction, we make the following trans-
formation in Eq. (36)

T = 1

g1
Tm, R =

√
g1
g2

Rm . (37)
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Then we obtain the standard MKdV equation with
higher-order correction term

∂Tm Rm − ∂3X Rm + ∂X R
3
m

+ ε

g1

[
g3∂

2
X Rm+g1g4

g2
∂2X R

3
m+g5∂

4
X Rm

]
= 0.

(38)

If we ignore the O(ε) term in Eq. (37), it is just the
MKdV equation with the kink–antikink solution

Rm0(X, Tm) = √
B tanh

√
B

2
(X − BTm). (39)

Similar to the process of deriving the amplitude A
for KdV equation, we obtain the value of propagation
velocity B for the kink–antikink solution as follows

B = 5g2g3
2g2g5 − 3g1g4

. (40)

Inserting Eq. (37) into Eq. (39), we get the solution of
the MKdV equation

R(X, T ) =
√
g1B

g2
tanh

√
B

2
(X − Bg1T ). (41)

Then we gain the kink–antikink solution of the den-
sity

ρ( j, t) = ρc +
√
g1B

g2

(
τ

τc
− 1

)
tanh

[√
B

2

(
τ

τc
− 1

)

×
(
j + ρ2

c V
′(ρc)t − Bg1

(
τ

τc
− 1

)
t

)]
. (42)

And the amplitude C of the kink–antikink solution
equation (42) is given by

C =
√
g1B

g2

(
τ

τc
− 1

)
.

The kink solution represents the coexisting phase,
which consists of the freely moving phase with low
density and the congested phase with high density. The
coexisting curve can be described by ρ = ρc ± C .
Therefore, we get the coexisting curve in the (ρ, a)

plane (see Fig. 3).

5 Simulation

In order to check the theoretical results, we carry out
numerical simulations in this section. The initial condi-
tions of the numerical simulation are as follows: There
are N = 100 lattices in the system, and the periodical
boundary condition is applied. The initial perturbations
are adopted as follows: ρ( j, 0) = ρ0 = ρc = 0.2. The
local densities ρ(N/2, 1) and ρ(N/2 − 1, 1) at sites
N/2 and N/2 − 1 at time t = 1 are set as 0.15 and
0.25, k = 0.14.

In order to check the effect of the angle going into
curved road upon traffic flow, we carry out correspond-
ing simulations. The results are shown in Figs. 7, 8,
9, 10, 11, 12 and 13. We denote the angle going into
curved road as θ0, and the increment of the angle Δθ is
same in different patterns. Here we select Δθ = π/12
for a = 3.

Figure 7 shows the traffic patterns after a suffi-
ciently long time t = 100,000 with different θ0 for
μ = 0.3, R = 20. In Fig. 7, the patterns (a), (b),
(c) exhibit the time evolution of the density ρ( j, t) for
θ0 = π/12, π/6, π/4. The initial disturbance leads to
the kink–antikink density waves as shown in patterns
(a) and (b). This small amplitudedisturbancegrows into
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Fig. 7 The traffic patterns from time t = 99,000 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k = 0.14,Δθ = π/12
for θ0 = π/12, π/6, π/4, respectively
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Fig. 8 The density profiles ρ( j, t) at time t = 90,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k = 0.14,Δθ = π/12 for
θ0 = π/12, π/6, π/4, respectively
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Fig. 9 The density profiles ρ(20, t) from time t = 99,900 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14,Δθ = π/12 for θ0 = π/12, π/6, π/4, respectively
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Fig. 10 The density profiles ρ(60, t) from time t = 99,900 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14,Δθ = π/12 for θ0 = π/12, π/6, π/4, respectively

congested flow as the stability condition is not satis-
fied. When the stability condition is satisfied, the small
amplitude disturbance will dissipate, and traffic flow

becomes uniform which is shown in pattern (c). The
results show that with the increase in θ0, traffic flow
will become more and more stable. It also means that
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Fig. 11 The phase space plot at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14,Δθ = π/12 for θ0 = π/12, π/6, π/4, respectively
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Fig. 12 The hysteresis loop of flux at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14,Δθ = π/12 for θ0 = π/12, π/6, π/4, respectively
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Fig. 13 The hysteresis loop of velocity at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ =
0.3, k = 0.14,Δθ = π/12 for θ0 = π/12, π/6, π/4, respectively
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the angle going into curved road has a great effect upon
the stability of traffic flow.

Figure 8 shows the density profile obtained at t =
90,000 corresponding to Fig. 7. And it makes us see
the evolution of the density with the small disturbances
more clearly. From pattern (a), we can see that the con-
gested flow easily occurs at the entrance of curved road.

Figures 9 and 10 show the density profile obtained
for t = 99,900−100,000 at site j = 20, 60 cor-
responding to Fig. 7, respectively. The radian at site
j = 60 is larger than the one at site j = 20. From the
figures, it is shown that traffic flow will become stable
with the increase in the radian of curved road.

Figure 11 represents the phase space plot of den-
sity difference ρ( j, t)−ρ( j, t − 1) against ρ(t) at site
j = 60 for t = 60,000−70,000 s, corresponding to
Fig. 7. The patterns (a) and (b) exhibit the character-

istic of periodicity in the form of limit cycle, and the
nodes on the right sides as well as on the left sides
are corresponding to the traffic states within and out
of the kink traffic jam. For pattern (c) with θ0 = π/4,
the limit cycle leads to a single point which represents
the uniform flow in the stable region. When a = 3, the
jamming transition occurs among freelymoving phase,
the coexisting phase with kink–antikink density wave
and the uniformly congested phase with an increase in
the value of θ0.

Figures 12 and 13 show the hysteresis loop of the
flux and velocity for different θ0 at site j = 60 for
t = 60,000−70,000 s corresponding to Fig. 7, respec-
tively. From Figs. 12, it shows that with the increase
in the value of θ0, the size of loops will shrink and the
maximal flux decreases. When θ0 = π/4 in Fig. 12c,
the stability condition is held, the traffic flow is sta-
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Fig. 14 The traffic patterns from time t = 99,000 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k = 0.14, θ0 = π/6
for Δθ = π/12, π/6, π/3, respectively
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Fig. 15 The density profiles ρ( j, t) at time t = 90,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k = 0.14, θ0 = π/6 for
Δθ = π/12, π/6, π/3, respectively
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ble, and the hysteresis loop will not be generated, and
in phase space, there will be only a point on the opti-
mal current curve instead. From Fig. 13, it shows that
with the increase in the value of θ0, the size of loops
will shrink and the maximal velocity decreases. When
θ0 = π/4 in Fig. 13c, the stability condition is held,
the traffic flow is stable, and the hysteresis loop will
not be generated, and in phase space, there will be only
a point on the optimal velocity curve instead. Further-
more, fromFigs. 12 and 13,we can see that themaximal
theoretical flux and velocity, which are represented by
the curves in Figs. 12 and 13, decreasewith the increase
in θ0. Therefore, the above results furthermore verify
that the angle going into curved road has an important
effect upon traffic flow.

Next, we do the corresponding simulations to ver-
ify the effect of the increment of the angle Δθ upon

traffic flow. Here, we keep θ0 = π/6 as a constant,
Δθ = π/12, π/6, π/3 with a = 2.5, respectively.
The results are shown in Figs. 14, 15, 16, 17, 18, 19
and 20. From Figs. 14, 15, 16, 17, 18, 19 and 20, we
can see traffic flow becomes stable with the increase
in the increment of the angle Δθ . Furthermore, from
Figs. 19 and 20, we can see that the maximal theo-
retical flux and velocity, which are represented by the
curves in Figs. 19 and 20, decrease with the increase
in Δθ . Through the process, we can deduce that when
the angle leaving out the curved road θN is fixed, the
increase in the increment of the angle Δθ will make
traffic flow become unstable, but the maximal theoret-
ical flux and velocity increase. In real traffic situation,
the angle leaving out the curved road is always fixed, so
the traffic flow will become unstable with the increase
in the length of curved road which means the increase
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Fig. 16 The density profiles ρ(20, t) from time t = 99,900 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14, θ0 = π/6 for Δθ = π/12, π/6, π/3, respectively

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time t

de
ns

ity
 ρ

(6
0,

99
90

0:
10

00
00

)

(a) Δθ = pi/12

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time t

(b) Δθ = pi/6

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time t

(c) Δθ = pi/3

de
ns

ity
 ρ

(6
0,

99
90

0:
10

00
00

)

de
ns

ity
 ρ

(6
0,

99
90

0:
10

00
00

)

Fig. 17 The density profiles ρ(60, t) from time t = 99,900 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14, θ0 = π/6 for Δθ = π/12, π/6, π/3, respectively

123



Lattice hydrodynamic model for traffic flow... 1229

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

density ρ(60,60000:70000)

ρ(
60

,t)
−ρ

(6
0,

t−
1)

(a)Δθ = pi/12

0.1985 0.199 0.1995 0.2 0.2005 0.201 0.2015
−3

−2

−1

0

1

2

3
x 10−5 (b)Δθ = pi/6

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

−2

−1

0

1

2

3
x 10−11 (c) Δθ = pi/3

ρ(
60

,t)
−ρ

(6
0,

t−
1)

ρ(
60

,t)
−ρ

(6
0,

t−
1)

density ρ(60,60000:70000) density ρ(60,60000:70000)

Fig. 18 The phase space plot at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14, θ0 = π/6 for Δθ = π/12, π/6, π/3, respectively
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Fig. 19 The hysteresis loop of flux at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, μ = 0.3, k =
0.14, θ0 = π/6 for Δθ = π/12, π/6, π/3, respectively
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Fig. 21 The traffic patterns from time t = 99,000 to t = 100,000 with a = 2.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 = π/4,Δθ =
π/12 for R = 10, 20, 30, 40, respectively
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Fig. 23 The phase space plot at site 60 from time t = 60,000 to t = 70,000 with a = 2.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4,Δθ = π/12 for R = 10, 20, 30, 40, respectively
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Fig. 24 The hysteresis loop of flux at site 60 from time t = 60,000 to t = 70,000 with a = 2.5, ρ0 = ρc = 0.2, μ = 0.3, k =
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Fig. 25 The hysteresis loop of velocity at site 60 from time t = 60,000 to t = 70,000 with a = 2.5, ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, θ0 = π/4,Δθ = π/12 for R = 10, 20, 30, 40, respectively
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Fig. 26 The traffic patterns from time t = 99,000 to t = 100,000 with a = 3, ρ0 = ρc = 0.2, R = 20, k = 0.14, θ0 = π/4,Δθ =
π/12 for μ = 0.3, 0.5, 0.7, 0.9, respectively
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Fig. 27 The density profiles ρ( j, t) at time t = 90,000 with a = 3, ρ0 = ρc = 0.2, R = 20, k = 0.14, θ0 = π/4,Δθ = π/12 for
μ = 0.3, 0.5, 0.7, 0.9, respectively
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π/4,Δθ = π/12 for μ = 0.3, 0.5, 0.7, 0.9, respectively
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Fig. 29 The hysteresis loop of flux at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, k = 0.14, θ0 =
π/4,Δθ = π/12 for μ = 0.3, 0.5, 0.7, 0.9, respectively
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Fig. 30 The hysteresis loop of velocity at site 60 from time t = 60,000 to t = 70,000 with a = 3, ρ0 = ρc = 0.2, R = 20, k =
0.14, θ0 = π/4,Δθ = π/12 for μ = 0.3, 0.5, 0.7, 0.9, respectively
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in the increment of the angle Δθ when the radius R is
fixed.

We also carry out the corresponding simulation to
show the effect of radius of curved road on traffic flow.
Here we select a = 2.5, θ0 = π/4,Δθ = π/12, μ =
0.3. The results are shown in Figs. 21, 22, 23, 24 and 25.
The results show that with the increase in radius, traffic
flow will become unstable, but the maximal theoretical
flux and velocity will increase. The results are agreed
with the ones in Refs. [19,40].

Figures 26, 27, 28, 29 and 30 show the effect of
friction coefficient of curved road on traffic flow. The
results show that with the increasing friction coefficient
μ, traffic flow will become unstable, but the maximal
theoretical flux and velocity will increase. The results
are in agreement with the ones in Refs. [19,40].

6 Summary

In order to investigate the influencing mechanism of
traffic flow on curved road, we propose an extended
lattice hydrodynamic model for traffic flow on curved
road by taking radian, friction coefficient and curvature
radius of the curved road into account. We obtain the
stability condition of the proposed model by the use
of linear stability theory. The stability condition shows
that the angle, friction coefficient and curvature radius
play an important role in influencing the stability of
traffic flow. The Burgers, KdV and MKdV equations
are obtained to describe traffic flow behavior in the sta-
ble, metastable and unstable region, respectively. The
analytical and simulation results show that enlarging
the angle going into curved road may enhance the sta-
bility of traffic flow, reducing curvature radiusmay lead
to the stabilization of traffic flow, and increasing fric-
tion coefficient could aggravate traffic jams. But the
maximal theoretical flux and velocity of traffic flow
increase with the increase in the curvature radius and
friction coefficient, as well as the decrease in angle
going into the curved road. When the angle leaving out
the curved road and the radius of the curved road are
fixed, the increase in the increment of radian of curved
road which means enlarging the length of curved road
will make traffic flow unstable.
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