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Abstract Ageneralized (3+1)-dimensional nonlinear
wave is investigated, which describes many nonlinear
phenomena in liquid containing gas bubbles. In this
paper, a lucid and systematic approach is proposed to
systematically study the complete integrability of the
equation by using Bell’s polynomials scheme. Its bilin-
ear equation, N -soliton solution andBäcklund transfor-
mation with explicit formulas are successfully struc-
tured, which can be reduced to the analogues of (3+1)-
dimensional KP equation, (3+1)-dimensional nonlin-
ear wave equation and Korteweg-de Vries equation,
respectively. Moreover, the infinite conservation laws
of the equation are found by using its Bäcklund trans-
formation. All conserved densities and fluxes are pre-
sented with explicit recursion formulas. Furthermore,
by employing Riemann theta function, the one- and
two-periodic wave solutions for the equation are con-
structed well. Finally, an asymptotic relation is pre-
sented, which implies that the periodic wave solutions
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can be degenerated to the soliton solutions under some
special conditions.
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1 Introduction

Investigating the integrability of the nonlinear evolu-
tion equation (NLEE) has become much more signif-
icant because it could be considered as a pretest and
the first step of its exact solvability. A lot of impor-
tant properties could characterize the integrability of
the NLEEs, such as bilinear form, infinite conservation
laws, Lax pairs, infinite symmetries, bilinear Bäcklund
transformation and Painlevé test. As we know, many
methods, such as inverse scattering transformation [1],
Darboux transformation [2], Bäcklund transformation
[3] and Hirota method [4], are proposed to cope with
the nonlinear equation.By employing the bilinear form,
we can construct a multisoliton solution for a nonlin-
ear equation; furthermore, the bilinear Bäcklund trans-
formation and some other important properties [5–7]
could be obtained. In addition to this, an approach that
combine the Hirota bilinear form and Riemann theta
function is feasible to deal with exact periodic wave
solutions for nonlinear equation.
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In 1980s, a straight approach is presented by Naka-
mura to construct a certain kind of quasi-periodic solu-
tions for nonlinear evolution equation in his essay [8].
He obtains the periodic wave solutions of KdV equa-
tion and Boussinesq equation, respectively. Recently,
this method is extended to study the (2+1)-dimensional
Bogoyavlenskii’s breaking soliton equation, KP equa-
tion and KdV equation by Fan and Hon [9–11]. Ma
[12–14] investigates the resonant solutions andperiodic
wave solutions of trilinear equations byusingBell poly-
nomials. Chen et al. [15] study the integrability of the
modified generalized Vakhnenko equation. Tian et al.
[16] extended this method to the Zhiber–Shabat equa-
tion, etc. Themethod is extended to study the integrabil-
ity and structure the periodic wave solutions for some
nonlinear equations, discrete soliton equations and
supersymmetric equations by Tian and Zhang [17–21].

Now, many people pay attention to a kind of gen-
eralized nonlinear equation since they admit much
more widely application in a great number physical
fields [22–36]. Through investigating a generalized
form for nonlinear evolution equations, many more
general properties of the equation(s) can be obtained.

In this paper, we focus on a generalized (3+1)-
dimensional nonlinear wave in liquid containing gas
bubbles

(ut + h1uux + h2uxxx + h3ux )x

+ h4uyy + h5uzz = 0, (1)

where u = u(x, y, z, t), hi (i = 1, 2, 3, 4, 5) are free
constants. By taking some appropriate parameters for
hi , we can construct a variety of nonlinear wave equa-
tions. Some important examples are given below.

• The (3+1)-dimensional KP equation [37]

(ut + uxxx − 6uux )x + 3uyy + 3uzz = 0, (2)

is investigated by Ablowitz and Segur. Its three-
wave soliton-type solutions, Wronskian and Gram-
mian solutions and a wide class of Pfaffianized sys-
tems of the equation are investigated by Ma, Xia
and Zhu [38,39].

• The (3+1)-dimensional nonlinear wave equation
[40]

(ut + uux + uxxx )x + 1

2
(uyy + uzz) = 0, (3)

is given for a description of the pressure waves in
admixture liquid and gas bubbles taking into con-
sideration the viscosity of liquid and the heat trans-

fer. Some exact solutions for the nonlinear evolu-
tion equation are presented by the application of the
Hirota method [40].

• The Korteweg-de Vries equation [41]

ut + 6uux + uxxx = 0, (4)

is found to describe many physical and engineering
phenomena, such as ion-acoustic waves, geophys-
ical fluid dynamics, lattice dynamics.

The main purpose of this paper is to study the bilin-
ear equation, Bäcklund transformations and infinite
conservation lawsof thegeneralized (3+1)-dimensional
nonlinear wave Eq. (1) by using Bell polynomial
approach. Furthermore, N -soliton solutions and peri-
odic wave solutions with a asymptotic property are also
constructed, respectively.

The paper is organized as follows. In Sects. 2–3,
the bilinear form, Bäcklund transformation and soliton
solutions forEq. (1) in liquid containing gas bubbles are
constructed by employing the binary Bell polynomials.
Then, the infinite conservation laws with all conserved
densities and fluxes are given by explicit recursion for-
mulas for Eq. (1) in Sect. 4. In Sect. 5, based on the
bilinear operator, by combining with Riemann theta
function, we get one- and two-periodic wave solutions
for Eq. (1). Finally, in Sect. 6, a asymptotic property
is investigated in detail, and as a result, the relation-
ship between the periodic wave solutions and soliton
solutions is obtained.

2 The bilinear representation and soliton solutions

In this section, we research the bilinear representation
for the generalized (3+1)-dimensional nonlinear wave
Eq. (1) by using the binary Bell polynomials.

2.1 The bilinear representation

Theorem 1 By employing the following transforma-
tion

u = 12h2h
−1
1 (ln f )xx , (5)

the generalized (3+1)-dimensional nonlinear wave
Eq. (1) admits the following bilinear equation

D
(
Dt , Dx , Dy, Dz

)

≡
(
Dx Dt + h2D

4
x + h3D

2
x + h4D

2
y + h5D

2
z

)
f

· f = 0. (6)
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Proof First of all, introducing a transformation

u = c(t)q2x , (7)

where c(t) is a free function, one can connect Eq. (1)
withP-polynomials. By the substitution of Eq. (7) into
Eq. (1), one has

(ct (t)q2x + c(t)q2xt + h1c
2(t)q2xq3x + h2c(t)q5x

+ h3c(t)q3x )x + h4c(t)q2x,2y + h5c(t)q2x,2z = 0.

(8)

By integrating Eq. (8) with respect to x , the result is
given by

ct (t)qx + c(t)qxt + h1
2
c2(t)q22x + h2c(t)q4x

+ h3c(t)q2x + h4c(t)q2y + h5c(t)q2z = d, (9)

i.e.,

E(q) = c(t)t
c(t)

qx + qxt + h1
2
c(t)q22x

+ h2q4x + h3q2x + h4q2y + h5q2z = d,

(10)

with d = d(t, y, z) is an integration constant. Letting
c(t) = 6h2h

−1
1 and by employing the formula (103),

Eq. (10) becomes

E(q) = Pxt (q) + h1P6x (q) + h2P3x,y(q)

+ h2P2y(q) + h5Pxz(q) = d. (11)

Finally, based on the property (105) and the following
transformation

q = 2 ln f ⇐⇒ u = c(t)q2x = 12h2h
−1
1 (ln f )xx ,

(12)

the standard identities of the Hirota D-operator

Dm
x Dn

y D
p
z D

q
t f (x, y, z, t) · g(x, y, z, t)

= (∂x − ∂x ′)m(∂y − ∂y′)n × (∂z − ∂z′)
p

×(∂t − ∂t ′)
q f (x, y, z, t)

· g (
x ′, y′, z′, t ′

)∣∣
x=x ′,y=y′,z=z′,t=t ′ , (13)

yields the bilinear form of Eq. (1) directly, that is bilin-
ear Eq. (6). ��

Equation (6) is a new bilinear equation, which can
also be reduced to the ones of the equations investigated
in [37–41] by taking the appropriate coefficients hi .

Let h1 = −6, h2 = 1, h3 = 0, h4 = 3, h5 = 3, Eq.
(1) is reduced to the (3+1)-dimensional KP Eq. (2), the
bilinear equation becomes

D
(
Dt , Dx , Dy, Dz

)

≡
(
Dx Dt + D4

x + 3D2
y + 3D2

z

)
f · f = 0. (14)

Let h1 = 1, h2 = 1, h3 = 0, h4 = 1
2 , h5 = 1

2 ,
Eq. (1) is degenerated into three-dimensional nonlinear
waves Eq. (3), the bilinear equation becomes

D
(
Dt , Dx , Dy, Dz

)

≡
(
Dx Dt + D4

x + 1

2
D2

y + 1

2
D2
z

)
f · f = 0. (15)

Let h1 = 6, h2 = 1, h3 = 0, h4 = 0, h5 = 0, Eq.
(1) is reduced to the Korteweg-de Vries Eq. (4), the
bilinear equation becomes

D (Dt , Dx ) ≡
(
Dx Dt + D4

x

)
f · f = 0. (16)

2.2 Soliton solutions

Next, based on the bilinear equation, we obtain the N -
soliton solution of Eq. (1) as of the form

u = 12h−1
1 h2(ln f )xx , (17)

f =
∑

ρ=0,1

exp

⎛

⎝
N∑

j=1

ρ jη j +
N∑

1≤ j<i≤N

ρiρ j Ai j

⎞

⎠ ,

in which μ j , ν j , σ j , δ j are all free constants, and

exp(Ai j ) = − (μi − μ j )(γi − γ j ) + h2(μi − μ j )
4 + h3(μi − μ j )

2 + h4(νi − ν j )
2 + h5(σi − σ j )

2

(μi + μ j )(γi + γ j ) + h2(μi + μ j )4 + h3(μi + μ j )2 + h4(νi + ν j )2 + h5(σi + σ j )2
. (18)

with η j = μ j x + ν j y + σ j z + γ j t + δ j , γ j =
−h2μ3

j − h3μ j − h4μ
−1
j ν2j − h5μ

−1
j σ 2

j (1 ≤ j <

i ≤ N ),
∑N

1≤ j<i≤N is the summation over all possi-
ble pairs selected from N elements with the condition
(1 ≤ j < i ≤ N ), and

∑
ρ=0,1 denotes the summa-

tion over all possible combinations of ρi , ρ j = 0, 1
(i, j = 1, 2, . . . , N ).

Its one-soliton and two-soliton solution could be eas-
ily obtained. For N = 1, the one-soliton solution is of
the form
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u1 = 12h−1
1 h2∂

2
x ln

(
1 + eη)

,

η = μx + νy + σ z

+
(
−h2μ

3−h3μ−h4μ
−1ν2−h5μ

−1σ 2
)
t+δ.

(19)

For N = 2, the two-soliton solution is of the form

u2 = 12h−1
1 h2∂

2
x ln

(
1 + eη1 + eη2 + eη1 +η2 +A12

)
,

η j = μ j x + ν j y + σ j z

+
(
−h2μ

3
j − h3μ j − h4μ

−1
j ν2j − h5μ

−1
j σ 2

j

)
t

+ δ j , ( j = 1, 2), (20)

with

exp(A12) = − (μ1 − μ2)(γ1 − γ2) + h2(μ1 − μ2)
4 + h3(μ1 − μ2)

2 + h4(ν1 − ν2)
2 + h5(σ1 − σ2)

2

(μ1 + μ2)(γ1 + γ2) + h2(μ1 + μ2)4 + h3(μ1 + μ2)2 + h4(ν1 + ν2)2 + h5(σ1 + σ2)2
. (21)

As its special cases, the (3+1)-dimensional KP
Eq. (2) has a N -soliton wave solution given by

u = −2(ln f )xx ,

f =
∑

ρ=0,1

exp

⎛

⎝
N∑

j=1

ρ jη j +
N∑

1≤ j<i≤N

ρiρ j Ai j

⎞

⎠, (22)

where μ j , ν j , σ j , δ j are all free constants, and

exp(Ai j ) = − (μi − μ j )(γi − γ j ) + (μi − μ j )
4 + 3(νi − ν j )

2 + 3(σi − σ j )
2

(μi + μ j )(γi + γ j ) + (μi + μ j )4 + 3(νi + ν j )2 + 3(σi + σ j )2
, (1 ≤ j < i ≤ N ), (23)

with η j = μ j x + ν j y + σ j z + (−μ3
j − 3μ−1

j ν2j −
3μ−1

j σ 2
j )t + δ j .

For (3+1)-dimensional nonlinear waves Eq. (3), its
N -soliton wave solution is given as follows

u = 12(ln f )xx ,

f =
∑

ρ=0,1

exp

⎛

⎝
N∑

j=1

ρ jη j +
N∑

1≤ j<i≤N

ρiρ j Ai j

⎞

⎠, (24)

in which μ j , ν j , σ j , δ j are all free constants, and

exp(Ai j ) = − (μi − μ j )(γi − γ j ) + (μi − μ j )
4 + 1

2 (νi − ν j )
2 + 1

2 (σi − σ j )
2

(μi + μ j )(γi + γ j ) + (μi + μ j )4 + 1
2 (νi + ν j )2 + 1

2 (σi + σ j )2
, (1 ≤ j < i ≤ N ) (25)

with η j = μ j x + ν j y + σ j z + (−μ3
j − 1

2μ
−1
j ν2j −

1
2μ

−1
j σ 2

j )t + δ j .

For the Korteweg-de Vries Eq. (4), we also obtain
its N -soliton wave solution, which has the following
form,

u = 2(ln f )xx ,

f =
∑

ρ=0,1

exp

⎛

⎝
N∑

j=1

ρ jη j +
N∑

1≤ j<i≤N

ρiρ j Ai j

⎞

⎠, (26)

with

exp(Ai j ) = − (μi − μ j )(γi − γ j ) + (μi − μ j )
4

(μi + μ j )(γi + γ j ) + (μi + μ j )4
,

(27)

and η j = μ j x + ν j y + σ j z − μ3
j t + δ j .

The graph of Fig. 1 shows the one-solitonwave solu-
tion (19) plotted through selecting the appropriate para-
meters (see Fig. 1).

The graph of Fig. 2 shows the two-solitonwave solu-
tion (20) plotted by choosing the appropriate parame-
ters (see Fig. 2).

3 Bäcklund transformation

Theorem 2 Let f be a solution of Eq. (6), if g satisfies
the following system

(D2
x + MDz − λ) f · g = 0,

[
∂x

(
Dt + h2D

3
x + (3h2λ + h3)Dx − 3Mh2Dx Dz

)

+ ∂y(h4Dy)
]
f · g = 0, (28)

where M2 = h5/3h2, then g is another solution of the
Eq. (6). The system (28) is called a Bäcklund transfor-

mation of the generalized (3+ 1)-dimensional nonlin-
ear wave Eq. (1).
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Fig. 1 (Color online) Spatial structures of the one-soliton solu-
tion (19) with the parameters h1 = −1, h2 = −1, h3 = 3, h4 =
1, h5 = 1, μ = −1, ν = 1.5, σ = 2 and δ = 1. a The per-
spective view of the wave as y = 0, z = 0. b The perspective

view of the wave as t = 0, z = 0. c The perspective view of
the wave as y = 0, t = 0. d The corresponding contour plot as
y = 0, z = 0. e The corresponding contour plot as t = 0, z = 0.
f The corresponding contour plot as y = 0, t = 0

Proof In order to obtain the Bäcklund transformation
of the generalized (3+1)-dimensional nonlinear wave
Eq. (1), let

q = 2 ln g, q ′ = 2 ln f, (29)

be two different solutions for Eq. (10). Considering Eq.
(29) and Eq. (10), one then has

E(q ′) − E(q) = (
q ′ − q

)
xt + h2

(
q ′ − q

)
4x

+ 3h2
(
q ′ + q

)
2x

(
q ′ − q

)
2x

+ h3
(
q ′ − q

)
2x + h4

(
q ′ − q

)
2y

+ h5
(
q ′ − q

)
2z = 0. (30)

When under suitable additional constraints, it can pro-
duce the transformation.

Introducing the following two new auxiliary vari-
ables

υ = (
q ′ − q

)
/2 = ln( f/g),

ω = (
q ′ + q

)
/2 = ln( f g), (31)

and the condition (30) could be rewritten as another
form

E(q ′) − E(q) = E(ω + υ) − E(ω − υ) = υxt

+ h2 (υ4x + 6ω2xυ2x ) + h3υ2x

+ h4υ2y + h5υ2z

= ∂x [Yt (υ) + h2Y3x (υ, ω)]

+R(υ, ω) = 0, (32)

where

R(υ, ω) = 3h2ω2xυ2x − 3h2υxω3x − 3h2υ
2
xυ2x

+ h3υ2x + h4υ2y + h5υ2z

= 3h2Wronskian [Y2x (υ, ω),Yx (υ)]

+ h3υ2x + h4υ2y + h5υ2z . (33)

For writingR(υ, ω) as the form of Y -polynomials
with x-derivative, we introduce the following con-
straint

Y2x (υ, ω) + MYz(υ, ω) = λ, (34)
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Fig. 2 (Color online) Spatial structures of the two-soliton solu-
tion (20) with the parameters h1 = 2, h2 = −1, h3 = −3, h4 =
1, h5 = 1, μ1 = 1, μ2 = −1, ν1 = 1, ν2 = 1, σ1 = 2, σ2 = 2.5
and δ1 = 1, δ2 = 1. a The perspective view of the wave
as y = 0, z = 0. b The perspective view of the wave as

t = 0, z = 0. cThe perspective viewof thewave as y = 0, t = 0.
d The corresponding contour plot as y = 0, z = 0. e The cor-
responding contour plot as t = 0, z = 0. f The corresponding
contour plot as y = 0, t = 0

in which M is an undetermined constant, and λ is an
arbitrary parameter. By employing Eq. (34), R(υ, ω)

can be rewritten as follows

R(υ, ω) = 3h2λυ2x − M−1

×
(
h5ω2x,z + (2h5 − 3M2h2)υxυx,z

+ 3M2h2υ2xυz

)

+ h3υ2x + h4υ2y, (35)

and under the constraint 3M2h2 = h5, it is equivalent
to the following expression

R(υ, ω)=∂x
[
(3h2λ+h3)Yx (υ)−3Mh2Yx,z(υ, ω)

]

+ ∂y
(
h4Yy(υ)

)
, (36)

Finally, linking Eqs. (34)–(36), the Y -polynomials
could be derived as follows

Y2x (υ, ω) + MYz(υ, ω) − λ = 0,

∂x [Yt (υ) + h2Y3x (υ, ω) + (3h2λ + h3)Yx (υ)

−3Mh2Yx,z(υ, ω)
] + ∂y

(
h4Yy(υ)

) = 0. (37)

Through employing the identity (102), the system (37)
leads to the Bäcklund transformation (28) at once. ��

In order to benefit more interested audience in the
research community, one can also construct the bilin-
ear Bäcklund transformation involving a few free para-
meters by using the same way presented by Ma and
Abdeljabbar [42].

4 Infinite conservation laws

Theorem 3 The generalized (3+1)-dimensional non-
linear wave Eq. (1) admits the following infinite con-
servation laws
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In,t + Hn,x + Gn,y + Kn,z = 0, n = 1, 2, . . . .

(38)

The conversed densities I ′
ns are presented by the fol-

lowing recursion formulas

I1 = −1

2
q2x = − 1

12
h1h

−1
2 u,

I2 = 1

4
q3x + 1

4
Mqxz = 1

24
h1h

−1
2

(
ux + M∂−1

x uz
)

,

In+1 = −1

2

(

In,x + M∂−1
x In,z +

n−1∑

i=1

IiIn−i

)

,

n = 2, 3, . . . , (39)

the first fluxes H ′
n s are presented by

H1 = h2I1,2x + h3I1 − 6h2I
2
1 − 6h2M∂−1

x I2,z,

H2 = h2I2,2x + h3I2 − 12h2I1I2

− 6h2M∂−1
x I3,z − 6h2MI1∂

−1
x I1,z,

Hn = h2

(

In,2x − 6
n∑

i=1

IiIn+1−i

− 2
∑

k1+k2+k3=n

Ik1Ik2Ik3

⎞

⎠

− 6h2M

(

∂−1
x In+1,z +

n∑

k=1

Ik∂
−1
x In−k,y

)

+ h3In n = 3, 4, . . . , (40)

the second fluxes G ′
ns are given by

G1=h4∂
−1
x I1,y =−1

2
h4qxy =− 1

12
h1h4h

−1
2 ∂−1

x uy,

G2 = h4∂
−1
x I2,y = 1

4
h4

(
q2xy + Mqyz

)

= 1

24
h1h4h

−1
2

(
uy + M∂−1

xx uyz

)
,

Gn+1 = h4∂
−1
x In,y, n = 2, 3, . . . , (41)

where ∂−1
xx means integrating with respect to x twice,

and the third fluxes K ′
n s are presented by

K1 = 6h2MI2 + h5∂
−1
x I1,z,

K2 = 3h2MI 2
1 + 6h2MI3 + h5∂

−1
x I2,z,

Kn+1 = 3h2M
n−1∑

i=1

IiIn−i + 6h2MIn+1

+ h5∂
−1
x In,z, n = 2, 3, . . . . (42)

Proof TheR(υ, ω) that in the two-field condition (30)
can be rewritten as another form

R(υ, ω) = ∂x
[
(3h2λ + h3)υx − 3Mh2υxυz

]

+ ∂z(−3Mh2w2x ) + ∂y(h4υy) = 0, (43)

by employing the relationship ∂x (υt ) = ∂t (υx ) = υxt .
The system (37) admits a conserved form

ω2x + υ2
x + Mυz − λ = 0,

∂t (υx ) + ∂x

[
h2υ3x + 3h2υxω2x + h2υ

3
x

+ (3h2λ + h3)υx − 3Mh2υxυz

]

+ ∂z

[
−3Mh2λ+h5υz+3Mh2υ

2
x

]
+∂y(h4υy) = 0.

(44)

We introduce a new potential function

η = (
q ′
x − qx

)
/2, (45)

and based on the relationship (31), we have

υx = η, ωx = qx + η. (46)

By substituting (46) into (44), system (32) can be
reduced to a Riccati-type equation

q2x + ηx + η2 + M∂−1
x ηz − ε2 = 0, (47)

which is a new potential function with regard to q.
Similarly, from Eq. (47), one can obtain the following
divergence-type equation

ηt + ∂x

[
h2η2x + 6ε2h2η − 2h2η

3

− 6h2Mη∂−1
x ηz + h3η

]
+ ∂y(h4∂

−1
x ηy)

+ ∂z

(
−3Mh2ε

2+h5∂
−1
x ηz+3Mh2η

2
)

= 0, (48)

by taking λ = ε2. Inserting the following formula

η = ε +
∞∑

n=1

In(q, qx , q2x , · · · )ε−n, (49)

into Eq. (47) and considering the coefficients with
regard to the power of ε, then one can directly derive the
recursion relationship (39) of the conserved densities
In as follows

q2x +
∞∑

n=1

In,xε
−n + M∂−1

x

∞∑

n=1

In,zε
−n + 2I1

+ 2
∞∑

n=1

In+1ε
−n +

∞∑

n=1

(
n−1∑

n=1

IiIn−iε
−n

)

= 0.

(50)
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Additionally, combining the expansion (49) with
divergence-type Eq. (48), we have
∞∑

n=1

In,tε
−n + ∂x

{

h2

∞∑

n=1

In,2xε
−n + 4ε3h2

− 2h2

∞∑

n=1

⎛

⎝
∑

k1+k2+k3=n

Ik1Ik2Ik3ε
−n

⎞

⎠

− 6h2ε
∞∑

n=1

(
n−1∑

i=1

IiIn−iε
−n

)

− 6h2Mε∂−1
x

( ∞∑

n=1

In,zε
−n

)

− 6h2M

( ∞∑

n=1

Inε
−n

)

∂−1
x

( ∞∑

n=1

In,zε
−n

)

+ h3

(

ε +
∞∑

n=1

Inε
−n

)}

+ ∂y

(

h4∂
−1
x

∞∑

n=1

In,yε
−n

)

+ ∂z

{

3h2M

[ ∞∑

n=1

(
n−1∑

i=1

IiIn−iε
−n

)

+ 2

(

I1 +
∞∑

n=1

In+1ε
−n

)]

+ h5

(

∂−1
x

∞∑

n=1

In,zε
−n

)}

= 0, (51)

which shows the infinite conservation laws (38)

In,t + Hn,x + Gn,y + Kn,z = 0, n = 1, 2, . . . ,

(52)

where H ′
n s are determined by system (40), and G ′

ns,
K ′

n s are determined by system (41), (42), respectively.
��

5 Riemann theta function periodic wave solutions

5.1 Riemann theta function preliminary

To begin with, we provide some fundamental defini-
tions about Riemann theta function. The Riemann theta
function with genus n is defined as

ϑ(ξ) = ϑ(ξ, τ ) =
∑

n∈ZN

eπ i〈nτ,n〉+2π i〈ξ,n〉, (53)

where ξ = (ξ1, · · · , ξN )T ∈ C
N and n = (n1, · · · ,

nN )T ∈ Z
N . Let f = ( f1, · · · , fN )T and g =

(g1, · · · , gN )T be two vectors, the inner product is
defined as

〈 f, g〉 = f1g1 + f2g2 + · · · + fN gN . (54)

In particular, let N = 1, the Riemann theta function
(53) becomes

ϑ(ξ, τ ) =
+∞∑

n=−∞
eπ in2τ+2π inξ , (55)

with the phase variable ξ = αx + βy + ρz + ωt + ε

and Im(τ ) > 0. Let N = 2, the Riemann theta function
(53) becomes

ϑ(ξ, τ ) = ϑ(ξ1, ξ2, τ ) =
∑

n∈Z2

eπ i〈τn,n〉+2π i〈ξ,n〉, (56)

with the phase variable ξi = αi x+βi y+ρi z+ωi t+εi ,
i = 1, 2, n = (n1, n2)T ∈ Z

2, ξ = (ξ1, ξ2) ∈ C
2, and

−iτ is a positive definite and real-valued symmetric
2 × 2 matrix which is given by

τ =
(

τ11 τ12

τ12 τ22

)

, Im(τ11) > 0, Im(τ22) > 0,

τ11τ22 − τ 212 < 0. (57)

For obtaining the periodic wave solutions, a more
generalized bilinear equation should be considered.
Suppose that Eq. (1) admits u → u0 when |ξ | → 0,
the periodic wave solution of Eq. (1) satisfies

u = u0 + 12h2h
−1
1 ∂2x ln ϑ(ξ), (58)

where ξ = (ξ1, . . . , ξN )T , ξi = αi x + βi y + ρi z +
ωi t + εi , i = 1, 2 . . . , N , u0 is a special solution with
constant of Eq. (1). Linking Eq. (1) with Eq. (58), a
more generalized bilinear equation is derived as

W (Dx , Dy, Dz, Dt )ϑ(ξ) · ϑ(ξ)

=
(
Dx Dt + h2D

4
x + u0h2D

4
x + h3D

2
x

+ h4D
2
y + h5D

2
z + c

)
ϑ(ξ) · ϑ(ξ) = 0, (59)

with c = c(y, z, t) being an integration constant.

5.2 One-periodic wave solutions

Theorem 4 If ϑ(ξ, τ ) is one Riemann theta function
(55) as N = 1, a one-periodic wave solution of the
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generalized (3+1)-dimensional nonlinear wave Eq. (1)
is given by

u = u0 + 12h−1
1 h2∂

2
x ln ϑ(ξ), (60)

with

ω = b1a22 − b2a12
a11a22 − a12a21

, c = b1a21 − b2a11
a12a21 − a11a22

,

(61)

and

a11 = −
∞∑

n=−∞
16π2n2α℘2n2 , a12 =

∞∑

n=−∞
℘2n2 ,

a21 = −
∞∑

n=−∞
4π2(2n − 1)2α℘2n2−2n+1,

a22 =
∞∑

n=−∞
℘2n2−2n+1,

b1 =
∞∑

n=−∞

(−256h2π
4n4α4 − 256h2u0π

4n4α4

+16h3n
2π2α2+16h4n

2π2β2+16h5n
2π2ρ2) ℘2n2 ,

b2 =
∞∑

n=−∞
(−16h2π

4(2n−1)4α4−16h2u0π
4(2n−1)4α4

+ 4h3π
2(2n − 1)2α2 + 4h4π

2(2n − 1)2β2

+ 4h5π
2(2n − 1)2ρ2)℘2n2−2n+1, ℘ = eπ iτ ,

(62)

where α, β, ρ, τ, ε are arbitrary parameters.

Proof The parameters α, β, ρ, ω, ε should satisfy the
following system based on Theorem 1 in Ref. [17]

+∞∑

n=−∞
W (4nπ iα, 4nπ iβ, 4nπ iρ, 4nπ iω)e2n

2π iτ = 0,

(63a)
+∞∑

n=−∞
W (2π i(2n − 1)α, 2π i(2n − 1)β, 2π i

×(2n − 1)ρ, 2π i(2n − 1)ω)e(2n2−2n+1)π iτ = 0.

(63b)

Substituting the bilinear Eq. (59) into the system (63a)
and (63b), one can obtain the following results

W̃ (0) =
∞∑

n=−∞

(
−16π2n2αω + 256h2π

4n4α4

+ 256h2u0π
4n4α4 − 16h3n

2π2α2

−16h4n
2π2β2 − 16h5n

2π2ρ2 + c
)

× e2π in
2τ = 0,

W̃ (1) =
∞∑

n=−∞

(
−4π2(2n − 1)2αω + 16h2π

4

× (2n − 1)4α4 + 16h2u0π
4(2n − 1)4α4

− 4h3π
2(2n − 1)2α2 − 4h4π

2(2n − 1)2β2

− 4h5π
2(2n − 1)2ρ2 + c

)
eπ i(2n2−2n+1)τ

= 0,

which can be equivalently rewritten as the following
system with the notations (62)
(
a11 a12
a21 a22

) (
ω

c

)
=

(
b1
b2

)
. (64)

From system (64), one can obtain the following a one-
periodic wave solution

u = u0 + 12h−1
1 h2∂

2
x ln ϑ(ξ), (65)

which is also determined by the free parameters
α, β, ρ, ε and τ . ��

The graph of Fig. 3 shows the one-periodic wave
solution (60) plotted through selecting the appropriate
parameters (see Fig. 3) .

5.3 Two-periodic wave solutions

Theorem 5 If ϑ(ξ1, ξ2, τ ) is Riemann theta function
(56) as N = 2, a two-periodic wave solution of the
generalized (3+1)-dimensional nonlinearwaveEq. (1)
is given by

u = u0 + 12h−1
1 h2∂

2
x ln ϑ(ξ1, ξ2, τ ), (66)

with the parameters ω1, ω2, u0, c have the following
system

H(ω1, ω2, u0, c)
T = b, (67)

in which

H = (hi j )4×4, b = (b1, b2, b3, b4)
T ,

hi1 = −4π2
∑

(n1,n2)∈Z2

〈2n − θi , α〉(2n1 − θ1i )�i (n),

hi2 = −4π2
∑

(n1,n2)∈Z2

〈2n − θi , α〉(2n2 − θ2i )�i (n),

hi3 =
∑

(n1,n2)∈Z2

16h2π
4〈2n − θi , α〉4�i (n),
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Fig. 3 (Color online) Spatial structures of the one-periodicwave
solution (60) with the parameters h1 = 1, h2 = −1, h3 =
1, h4 = 1, h5 = 1, τ = i, α = 1, β = 1, ρ = 2, u0 = 0 and
ε = 0. a The perspective view of the wave as y = 0, z = 0. b
The perspective view of the wave as t = 0, z = 0. c The perspec-

tive view of the wave as y = 0, t = 0. d The wave propagation
pattern of the wave along the x axis. e The wave propagation
pattern of the wave along the y axis. f The wave propagation
pattern of the wave along the z axis

hi4 =
∑

(n1,n2)∈Z2

�i (n),

bi =
∑

(n1,n2)∈Z2

(−16h2π
4〈2n − θi , α〉4

+ 4h3π
2〈2n − θi , α〉2 + 4h4π

2〈2n − θi , β〉2
+ 4h5π

2〈2n − θi , ρ〉2) �i (n)

�i (n) = ℘
n21+(n1−θ1i )2

1 ℘
n22+(n2−θ2i )2

2 ℘
n1n2+(n1−θ1i )(n2−θ2i )

3 ,

℘1=eπ iτ11 , ℘2=eπ iτ22 , ℘3=e2π iτ12 , i =1, 2, 3, 4,

(68)

and θi = (θ1i , θ2i )T , θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 =
(0, 1)T , θ4 = (1, 1)T , i = 1, 2, 3, 4; αi , βi , ρi , τi j , εi
(i, j = 1, 2) are all free parameters.

Proof Based on Theorem 2 inRef. [17], the parameters
αi , βi , ρi , ωi , εi (i = 1, 2) should satisfy

W̃ (0, 0)

=
∑

n∈Z2

W (2π i〈2n − θ1, α〉,

2π i〈2n − θ1, β〉, 2π i〈2n − θ1, ρ〉,
2π i〈2n − θ1, ω〉eπ i[〈τ(n−θ1),n−θ1〉+〈τn,n〉] = 0,

(69a)

W̃ (1, 0)

=
∑

n∈Z2

W (2π i〈2n − θ2, α〉,

2π i〈2n − θ2, β〉, 2π i〈2n − θ2, ρ〉,
2π i〈2n − θ2, ω〉eπ i[〈τ(n−θ2),n−θ2〉+〈τn,n〉] = 0,

(69b)

W̃ (0, 1)

=
∑

n∈Z2

W (2π i〈2n − θ3, α〉,

2π i〈2n − θ3, β〉, 2π i〈2n − θ3, ρ〉,
2π i〈2n − θ3, ω〉eπ i[〈τ(n−θ3),n−θ3〉+〈τn,n〉] = 0,

(69c)

W̃ (1, 1)

=
∑

n∈Z2

W (2π i〈2n − θ4, α〉,
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2π i〈2n − θ4, β〉, 2π i〈2n − θ4, ρ〉,
2π i〈2n − θ4, ω〉eπ i[〈τ(n−θ4),n−θ4〉+〈τn,n〉] = 0,

(69d)

where θi = (θ1i , θ2i )T , θ1 = (0, 0)T , θ2 = (1, 0)T ,
θ3 = (0, 1)T , θ4 = (1, 1)T , i = 1, 2, 3, 4.

Considering (69a)–(69d) with (59), we have the fol-
lowing system

∑

n∈Z2

[
−4π2〈2n − θ1, α〉〈2n − θ1, ω〉

+ 16h2π
4〈2n − θ1, α〉4

+ 16u0h2π
4〈2n − θ1, α〉4 − 4h3π

2〈2n − θ1, α〉2
− 4h4π

2〈2n − θ1, β〉2 − 4h5π
2〈2n − θ1, ρ〉2 + c

]

× eπ i[〈τ(n−θ1),n−θ1〉+〈τn,n〉] = 0, (70a)
∑

n∈Z2

[
−4π2〈2n − θ2, α〉〈2n − θ2, ω〉

+16h2π
4〈2n − θ2, α〉4

+16u0h2π
4〈2n − θ2, α〉4 − 4h3π

2〈2n − θ2, α〉2
− 4h4π

2〈2n − θ2, β〉2 − 4h5π
2〈2n − θ2, ρ〉2 + c

]

× eπ i[〈τ(n−θ2),n−θ2〉+〈τn,n〉] = 0, (70b)
∑

n∈Z2

[
−4π2〈2n − θ3, α〉〈2n − θ3, ω〉

+ 16h2π
4〈2n − θ3, α〉4

+ 16u0h2π
4〈2n − θ3, α〉4 − 4h3π

2〈2n − θ3, α〉2
− 4h4π

2〈2n − θ3, β〉2 − 4h5π
2〈2n − θ3, ρ〉2 + c

]

× eπ i[〈τ(n−θ3),n−θ3〉+〈τn,n〉] = 0, (70c)
∑

n∈Z2

[
−4π2〈2n − θ4, α〉〈2n − θ4, ω〉

+ 16h2π
4〈2n − θ4, α〉4

+ 16u0h2π
4〈2n − θ4, α〉4 − 4h3π

2〈2n − θ4, α〉2
− 4h4π

2〈2n − θ4, β〉2 − 4h5π
2〈2n − θ4, ρ〉2 + c

]

× eπ i[〈τ(n−θ4),n−θ4〉+〈τn,n〉] = 0. (70d)

From (68), the above system can be equivalent to

⎛

⎜
⎜⎜
⎝

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜
⎝

ω1

ω2

u0
c

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

b1
b2
b3
b4

⎞

⎟
⎟
⎠ . (71)

From system (71), one can get the following two-
periodic wave solution

u = u0 + 12h−1
1 h2∂

2
x ln ϑ(ξ1, ξ2, τ ). (72)

The two-periodic wave solution is also determined by
the free parameters αi , βi , ρi , εi and τi j . ��

The graph of Fig. 4 shows a degenerate two-periodic
wave solution plotted through selecting the suitable
parameters (see Fig. 4).

6 Asymptotic analysis

In this section, the asymptotic behavior of the peri-
odic wave solutions is researched. Here we deduce the
relationship between the periodic wave solutions and
soliton solutions.

Theorem 6 Let (ω, c)T be a solution for system (64),
we take

u0 = 0, α = μ

2π i
, β = ν

2π i
, ρ = σ

2π i
,

ε = δ + πτ

2π i
(73)

for the one-periodic wave solution (60), in which
μ, ν, σ and δ are determined by Eq. (19). The limit-
ing properties are as follows

c → 0, ξ → η + πτ

2π i
, ϑ(ξ, τ ) → 1 + eη,

when ℘ → 0. (74)

The above equations imply that the periodic wave solu-
tion (60) can be reduced to the soliton solution (19)
where (u, ℘) −→ (u1, 0).

Proof By employing Eqs. (62), expanding the matrix
elements ai j (i, j = 1, 2) and bi (i = 1, 2) as ℘, we
have

a11 = −32π2α
(
℘2 + 4℘8 + · · · + n2℘2n2 + · · ·

)
,

a12 = 1 + 2
(
℘2 + ℘8 + · · · + ℘2n2 + · · ·

)
,

a21 = −8π2α
(
℘+9℘5+· · ·+(2n−1)2℘2n2−2n+1

+ · · ·
)
,

a22 = 2
(
℘ + ℘5 + · · · + ℘2n2−2n+1 + · · ·

)
,
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Fig. 4 (Color online) Spatial structures of a degenerate two-
periodic wave solution with the parameters h1 = 1, h2 =
−1, h3 = −3, h4 = 1, h5 = 1, α1 = 0.1, α2 = 0.3, β1 =
1, β2 = 0.3, ρ1 = 0.1, ρ2 = 1, τ11 = i , τ12 = 0.5i , τ22 = 2i
and ε1 = 0, ε2 = 0. a The perspective view of the wave

as y = 0, z = 0. b The perspective view of the wave as
t = 0, z = 0. cThe perspective viewof thewave as y = 0, t = 0.
d The wave propagation pattern of the wave along the x axis. e
The wave propagation pattern of the wave along the y axis. f The
wave propagation pattern of the wave along the z axis

b1 = 32π2
(
−16h2π

2α4 − 16h2u0π
2α4 + h3α

2

+ h4β
2 + h5ρ

2
)

℘2

+ 128π2(−64h2π
2α4 − 64u0h2π

2α4 + h3α
2

+ h4β
2 + h5ρ

2)℘8 + · · · + 32π2

×
(
−16h2π

2n4α4 − 16h2u0π
2n4α4

+ h3n
2α2 + h4n

2β2 + h5n
2ρ2

)
℘2n2 + · · · ,

b2 = 8π2
(
−4h2π

2α4 − 4h2u0π
2α4 + h3α

2

+ h4β
2 + h5ρ

2
)

℘ + 72π2
(

− 36h2π
2α4

− 36h2u0π
2α4 + h3α

2 + h4β
2 + h5ρ

2
)
℘5

+ · · · + 8π2
(

− 4h2π
2α4(2n − 1)4

− 4h2u0π
2α4(2n − 1)4 + h3α

2(2n − 1)2

+ h4β
2(2n − 1)2 + h5ρ

2(2n − 1)2
)
℘2n2−2n+1

+ · · · . (75)

The following formulas can be obtained by using Eqs.
(4.10) and (4.12) in Ref. [17]

A0 =
(
0 1

0 0

)

, A1 =
(

0 0

−8π2α 2

)

,

A2 =
(

−32π2α 2

0 0

)

, A5 =
(

0 0

−72π2α 2

)

,

A3 = A4 = 0, . . . ,

B0 = 0, B1 =
(
0, 8π2(−4h2π

2α4 − 4u0h2π
2α4

+ h3α
2 + h4β

2 + h5ρ
2)

)T
,

B2 =
(
32π2(−16h2π

2α4 − 16u0h2π
2α4

+ h3α
2 + h4β

2 + h5ρ
2), 0

)T
, B3 = 0,

B5 =
(
0, 72π2(−36h2π

2α4 − 36u0h2π
2α4

+ h3α
2 + h4β

2 + h5ρ
2)

)T
, B4 = 0, . . . .

(76)
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Considering Proposition 3 in Ref. [17], system (76)
yields

X0 =
(
4h2π2α3 + 4h2u0π2α3 − h3α − h4β2α−1 − h5ρ2α−1

0

)

,

X2 =
(

8
(
4h2π2α3 + 4h2u0π2α3 − h3α − h4β2α−1 − h5ρ2α−1

)

128h2π4α4 + 128h2u0π4α4 − 32h3π2α2 − 32h4π2β2 − 32h5π2ρ2

)

,

X4 =
(

480h2π2α3 + 480h2u0π2α3 − 48h3α − 48h4β2α−1 − 48h5ρ2α−1

768h2π4α4 + 768h2u0π4α4 − 192h3π2α2 − 192h4π2β2 − 192h5π2ρ2

)

,

X1 = X3 = 0, . . . , (77)

and from system (4.11) in Ref. [17], we have the fol-
lowing formulas

ω =
(
4h2π

2α3 + 4h2u0π
2α3 − h3α − h4β

2α−1

− h5ρ
2α−1

)
+ 8

(
4h2π

2α3 + 4h2u0π
2α3

− h3α − h4β
2α−1 − h5ρ

2α−1
)
℘2

+
(
480h2π

2α3 + 480h2u0π
2α3

− 48h3α − 48h4β
2α−1 − 48h5ρ

2α−1
)

℘4

+ o(℘4),

c =
(
128h2π

4α4 + 128h2u0π
4α4 − 32h3π

2α2

− 32h4π
2β2 − 32h5π

2ρ2
)

℘2

+
(
768h2π

4α4 + 768h2u0π
4α4

− 192h3π
2α2 − 192h4π

2β2 − 192h5π
2ρ2

)
℘4

+ o(℘4). (78)

Considering the formulas (73) and the condition ℘ →
0, one has

c → 0, ω → 4h2π
2α3 + 4h2u0π

2α3

− h3α − h4β
2α−1 − h5ρ

2α−1, (79)

i.e.,

2π iω →−h2μ3−h3μ−h4ν
2μ−1−h5σ

2μ−1. (80)

In addition, the periodic function ϑ(ξ) could be rewrit-
ten as follows

ϑ(ξ, τ ) = 1 +
(
e2π iξ + e−2π iξ

)
℘

+
(
e4π iξ + e−4π iξ

)
℘4 + · · · . (81)

On account of the transformation (73), one has

ϑ(ξ, τ ) = 1 + eξ̃ +
(
e−ξ̃ +e2ξ̃

)
℘2+

(
e−2ξ̃ +e3ξ̃

)
℘6

+ · · · → 1 + eξ̃ , when ℘ → 0,

ξ̃ = 2π iξ − πτ = μx + νy + σ z + 2π iωt + δ, (82)

from system (80) to (82), the following formulas can
be obtained by

ξ̃ → μx + νy + σ z

+
(
−h2μ

3 − h3μ − h4ν
2μ−1 − h5σ

2μ−1
)
t

+ δ = η, when ℘ → 0,

ξ → η + πτ

2π i
, when ℘ → 0. (83)

From system (82) and system (83), one finally derives

ϑ(ξ) → 1 + eη, when ℘ → 0. (84)

From all above analyses, it implies that the conclusion
of Theorem 6 is hold when ℘ → 0. ��
Theorem 7 Let (ω1, ω2, u0, c)T be a solution for the
system (71), we take

αi = μi

2π i
, βi = νi

2π i
, ρi = σi

2π i
,

εi = δi + πτi j

2π i
, τ12 = A12

2π i
, i = 1, 2, (85)

for the two-periodic wave solution (66), in which
μi , νi , σi , δi , A12 i = 1, 2 depend onEq. (20) and (21).
The limiting properties as follows

u0 → 0, c → 0, ξi → ηi + πτi j

2π i
, i = 1, 2,

ϑ(ξ1, ξ2, τ ) → 1 + eη1 + eη2 + eη1+η2+A12 ,

as ℘1, ℘2 → 0. (86)
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which shows that the periodic wave solution (66)
can be degraded to the soliton solution (20) when
(u, ℘1, ℘2) → (u1, 0, 0).

Proof At beginning, expanding the functions H, b,
(ω1, ω2, u0, c)T in terms of the series about ℘

H = H0 + H1℘1 + H2℘2 + H3℘
2
1 + H4℘

2
2

+ H5℘1℘2 + H6℘1℘2℘3 + · · ·
b = B1℘1 + B2℘2 + B3℘

2
1 + B4℘

2
2

+ B5℘1℘2 + B6℘1℘2℘3

+ · · · (ω1, ω2, u0, c)
T = Λ0 + Λ1℘1 + Λ2℘2

+ Λ3℘
2
1 + Λ4℘

2
2 + Λ5℘1℘2 + Λ6℘1℘2℘3

+ · · · .

(87)

According to Eqs. (68) and (87), we obtain

H =

⎛

⎜⎜⎜
⎜
⎝

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

+

⎛

⎜⎜⎜
⎜
⎝

0 0 0 0

−8π2α1 0 32h2π4α4
1 2

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

℘1

+

⎛

⎜⎜⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 −8π2α2 32h2π4α4
2 2

0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

℘2

+

⎛

⎜⎜⎜
⎜
⎝

−32π2α1 0 512h2π4α4
1 2

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

℘2
1

+

⎛

⎜⎜⎜
⎜
⎝

0 −32π2α2 512h2π4α4
2 2

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

℘2
2

+

⎛

⎜⎜
⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

Δ1 −Δ1 Δ2 −2

⎞

⎟⎟
⎟⎟
⎠

℘1℘2

+

⎛

⎜⎜⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

Δ3 Δ3 Δ4 −2

⎞

⎟⎟⎟
⎟
⎠

℘1℘2℘3

+ o
(
℘i
1℘

j
2℘k

3

)
, i + j + k ≥ 3, (88)

b =

⎛

⎜⎜
⎜
⎝

0

Υ1

0

0

⎞

⎟⎟
⎟
⎠

℘1 +

⎛

⎜⎜
⎜
⎝

0

0

Υ2

0

⎞

⎟⎟
⎟
⎠

℘2 +

⎛

⎜⎜
⎜
⎝

Υ3

0

0

0

⎞

⎟⎟
⎟
⎠

℘2
1

+

⎛

⎜⎜⎜
⎝

Υ4

0

0

0

⎞

⎟⎟⎟
⎠

℘2
2+

⎛

⎜⎜⎜
⎝

0

0

0

Υ5

⎞

⎟⎟⎟
⎠

℘1℘2+

⎛

⎜⎜⎜
⎝

0

0

0

Υ6

⎞

⎟⎟⎟
⎠

℘1℘2℘3

+ o
(
℘i
1℘

j
2℘k

3

)
, i + j + k ≥ 3, (89)

⎛

⎜⎜⎜⎜⎜
⎝

ω1

ω2

u0

c

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

ω
(00)
1

ω
(00)
2

u(00)
0

c(00)

⎞

⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

ω
(11)
1

ω
(11)
2

u(11)
0

c(11)

⎞

⎟⎟⎟⎟⎟⎟
⎠

℘1 +

⎛

⎜⎜⎜⎜⎜⎜
⎝

ω
(21)
1

ω
(21)
2

u(21)
0

c(21)

⎞

⎟⎟⎟⎟⎟⎟
⎠

℘2

+

⎛

⎜⎜
⎜⎜⎜⎜
⎝

ω
(12)
1

ω
(12)
2

u(12)
0

c(12)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

℘2
1 +

⎛

⎜⎜
⎜⎜⎜⎜
⎝

ω
(22)
1

ω
(22)
2

u(22)
0

c(22)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

℘2
2

+

⎛

⎜⎜⎜⎜
⎜⎜
⎝

ω
(2)
1

ω
(2)
2

u(2)
0

c(2)

⎞

⎟⎟⎟⎟
⎟⎟
⎠

℘1℘2 +

⎛

⎜⎜⎜⎜
⎜⎜
⎝

ω
(3)
1

ω
(3)
2

u(3)
0

c(3)

⎞

⎟⎟⎟⎟
⎟⎟
⎠

℘1℘2℘3

+ o
(
℘i
1℘

j
2℘k

3

)
, i + j + k ≥ 3, (90)

with

Δ1 = −8π2(α1 − α2), Δ2 = 32h2π
4(α1 − α2)

4,

Δ3 = −8π2(α1 + α2), Δ4 = 32h2π
4(α1 + α2)

4,

Υ1 = −32h2π
4α4

1 + 8h3π
2α2

1 + 8h4π
2β2

1

+ 8h5π
2ρ2

1 ,

Υ2 = −32h2π
4α4

2 + 8h3π
2α2

2 + 8h4π
2β2

2

+ 8h5π
2ρ2

2 ,

Υ3 = −512h2π
4α4

1 + 32h3π
2α2

1 + 32h4π
2β2

1

+ 32h5π
2ρ2

1 ,

Υ4 = −512h2π
4α4

2 + 32h3π
2α2

2 + 32h4π
2β2

2

+ 32h5π
2ρ2

2 ,

Υ5 = −32h2π
4(α1 − α2)

4 + 8h3π
2 (α1 − α2)

2

+ 8h4π
2(β1 − β2)

2 + 8h5π
2(ρ1 − ρ2)

2,
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Υ6 = −32h2π
4(α1 + α2)

4 + 8h3π
2(α1 + α2)

2

+ 8h4π
2(β1 + β2)

2 + 8h5π
2(ρ1 + ρ2)

2. (91)

Substituting Eqs.(88)–(91) into the system (71) yields
the following system

c(00) = c(11) = c(21) = c(2) = c(3) = 0,

− 8π2α1ω
(00)
1 + 32h2π

4α4
1u

(00)
0 = Υ1,

− 8π2α2ω
(00)
2 + 32h2π

4α4
2u

(00)
0 = Υ2,

c(12) − 32π2α1ω
(00)
1 + 512h2π

4α4
1u

(00)
0 = Υ3

− 8π2α1ω
(11)
1 + 32h2π

4α4
1u

(11)
0 = 0,

c(22) − 32π2α2ω
(00)
2 + 512h2π

4α4
2u

(00)
0 = Υ4

− 8π2α2ω
(21)
2 + 32h2π

4α4
2u

(21)
0 = 0,

− 8π2α1ω
(21)
1 + 32h2π

4α4
1u

(21)
0 = 0,

− 8π2α2ω
(11)
2 + 32h2π

4α4
2u

(11)
0 = 0,

Δ1ω
(00)
1 − Δ1ω

(00)
2 + Δ2u

(00)
0 = Υ5. (92)

By the consideration of u(00)
0 = 0, one has

u0 = o(℘1, ℘2) → 0,

c = −384h2π
4α4

1℘
2
1 − 384h2π

4α4
2℘

2
2

+ o(℘1℘2) → 0,

ω1 = 4h2π
2α3

1 − h3α1 − h4β
2
1α

−1
1 − h5ρ

2
1α

−1
1

+ o (℘1℘2) → 4h2π
2α3

1 − h3α1

− h4β
2
1α

−1
1 − h5ρ

2
1α

−1
1 ,

ω2 = 4h2π
2α3

2 − h3α2 − h4β
2
2α

−1
2 − h5ρ

2
2α

−1
2

+ o (℘1℘2) → 4h2π
2α3

2 − h3α2

− h4β
2
2α

−1
2 − h5ρ

2
2α

−1
2 ,

when (℘1℘2) → (0, 0).

(93)

Considering (85) yields

2π iω1 → −h2μ
3
1 − h3μ1 − h4ν

2
1μ

−1
1 − h5σ

2
1 μ−1

1 ,

2π iω2 → −h2μ
3
2 − h3μ2

− h4ν
2
2μ

−1
2 − h5σ

2
2 μ−1

2 ,when (℘1℘2) → (0, 0).

(94)

Next, the periodic wave function ϑ(ξ1, ξ2, τ ) can be
rewritten as the following form

ϑ(ξ1, ξ2, τ ) = 1 +
(
e2π iξ1 + e−2π iξ1

)
eπτ11

+
(
e2π iξ2 + e−2π iξ2

)
eπτ22

+
(
e2π i(ξ1+ξ2) + e−2π i(ξ1+ξ2)

)

× eπ(τ11+2τ12+τ22) + · · · . (95)

Considering the transformation (85), we have

ϑ(ξ1, ξ2, τ ) = 1 + eξ̃1 + eξ̃2 + eξ̃1+ξ̃2−2πτ12

+℘2
1e

−ξ̃1 + ℘2
2e

−ξ̃2

+℘2
1℘

2
2e

−ξ̃21−ξ̃2−2πτ12 + · · ·
→ 1 + eξ̃1 + eξ̃2

+ eξ̃1+ξ̃2+A12 , as ℘1, ℘2 → 0, (96)

where ξ̃i = μi x + νi y + σi z + 2π iωi t + δi , i = 1, 2.
From Eqs. (93) and (96), we get

ξ̃i → μi x + νi y + σi z

+ (−h2μ
3
i − h3μi − h4μ

−1
i ν2i − h5μ

−1
i σ 2

i )t

+ δi = ηi , ξi → ηi + πτi j

2π i
as ℘1, ℘2 → 0. (97)

Combining Eq. (96) with Eq. (97), we obtain

ϑ(ξ1, ξ2, τ ) → 1 + eη1

+ eη2 + eη1+η2+A12 , as ℘1, ℘2 → 0. (98)

It implies that the conclusion ofTheorem7 is holdwhen
(u, ℘1, ℘2) → (u1, 0, 0). ��

7 Conclusions

In this paper, the integrability properties of the gen-
eralized (3+1)-dimensional nonlinear waves (1) in liq-
uid containing gas bubbles are researched. The bilinear
equation, Bäcklund transformation, infinite conserva-
tion laws, N -soliton solution for Eq. (1) are systemati-
cally structured based on the binary Bell polynomials.
These results can be reduced to the analogues of (3+1)-
dimensional KP equation, (3+1)-dimensional nonlin-
ear wave equation and Korteweg-de Vries equation,
respectively. Furthermore, by the virtue of Riemann
theta functions, we construct one- and two-periodic
wave solutions for Eq. (1). Finally,we present a asymp-
totic property in detail, which implies that the periodic
wave solutions can be degraded to the soliton solutions.
All the results verify that the approach which combines
the Hirota bilinear method and Riemann theta function
is feasible and efficient to deal with the integrability
properties of NLEE.

Acknowledgments This work is supported by the Fundamen-
tal Research Funds for the Central Universities under the Grant
No. 2015XKQY14.
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Appendix: Multidimensional Bell polynomials

First of all, we give a brief description on multidimen-
sional Bell polynomials. For details, refer to Lembert
and Gilson’s work [43–45]. The definition of multidi-
mensional Bell polynomial is given as follows:

Yn1x1,...,nr xr ( f ) ≡ Yn1,...,nr
(
fl1x1 , . . . , flr xr

)

= e− f ∂n1x1 · · · ∂nrxr e f , (99)

with f = f (x1, x2, . . . , xn) being a function with mul-
tivariables, and f ∈ C

∞. fl1x1,...,lr xr = ∂
l1
x1 · · · ∂ lrxr

(0 ≤ li ≤ ni , i = 1, 2, . . . , r). When n = 1, Eq. (99)
can be rewritten as the following form

Ynx ( f ) ≡ Yn( f1, . . . , fn)

=
∑ n!

s1! · · · sn !(1!)s1 · · · (n!)sn f s11 · · · f snn ,

n =
n∑

k=1

ksk,

Yx ( f ) = fx , Y2x ( f ) = f2x + f 2x , Y3x ( f )

= f3x + 3 fx f2x + f 3x , · · · .

(100)

For combining Hirota D-operator with Bell polyno-
mials, we can write the definition of multidimensional
binary Bell polynomials as follows [44]:

Yn1x1,...,nr xr (υ, ω)

= Yn1,...,nr ( f )

∣∣∣∣
∣∣∣∣∣
fl1x1,...,lr xr =

{
υl1x1,...,lr xr , l1+···+lr is odd,

ωl1x1,...,lr xr , l1+···+lr is even,

Yx (υ, ω) = υx , Y2x (υ, ω) = υ2
x + ω2x ,

Yx,t (υ, ω) = υxυt + ωxt ,

Y3x (υ, ω) = υ3x + 3υxω2x + υ3
x , · · · ,

which could take over the lightly recognizable partial
structure of the Bell polynomials.

We can write the relationship between the Y -
polynomials and the Hirota bilinear equation Dn1

x1
· · · Dnr

x1 F · G [4] by the identity [44] as follows

Yn1x1,...,nr xr (υ = ln F/G, ω = ln FG)

= (FG)−1Dn1
x1 · · · Dnr

xr F · G, (101)

in which F and G are functions about the variables x
and t . In particular, when F = G, the identity (101)
turns into

F−2Dn1
x1 · · · Dnr

xr F · F = Y (0, q = 2 ln F)

=
{
0, n1 + · · · + nr is odd,
Pn1x1,...,nr xr (q), n1 + · · · + nr is even,

(102)

where the P-polynomials can be substituted by an
equally recognizable partial structure

P2x (q) = q2x , Px,t (q) = qxt , P4x (q) = q4x+3q22x ,

P6x (q) = q6x + 15q2xq4x + 15q32x , . . . . (103)

Separating the binary Bell polynomialsYn1x1,...,nr xr
(υ, ω) into P-polynomials and Y -polynomials

(FG)−1Dn1
x1 · · · Dnr

xr F · G
= Yn1x1,...,nr xr (υ, ω)|υ=ln F/G,ω=ln FG

= Yn1x1,...,nr xr (υ, υ + q)|υ=ln F/G,ω=ln FG

=
∑

n1+···+nr=even

n1∑

l1=0

· · ·
nr∑

lr=0

r∏

i=0

(
ni
li

)

×Pl1x1,...,lr xr (q)Y(n1−l1)x1,...,(nr−lr )xr (υ). (104)

The critical property for the multidimensional Bell
polynomials as follows

Yn1x1,...,nr xr (υ)|υ=lnψ = ψn1x1,...,nr xr /ψ, (105)

which shows that the binary Bell polynomials
Yn1x1,...,nr xr (υ, ω) can also be linearized through using
the Hopf–Cole transformation υ = lnψ , that is, ψ =
F/G.
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