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Abstract A generalized (3+1)-dimensional nonlinear
wave is investigated, which describes many nonlinear
phenomena in liquid containing gas bubbles. In this
paper, a lucid and systematic approach is proposed to
systematically study the complete integrability of the
equation by using Bell’s polynomials scheme. Its bilin-
ear equation, N -soliton solution and Bicklund transfor-
mation with explicit formulas are successfully struc-
tured, which can be reduced to the analogues of (3+1)-
dimensional KP equation, (3+1)-dimensional nonlin-
ear wave equation and Korteweg-de Vries equation,
respectively. Moreover, the infinite conservation laws
of the equation are found by using its Bécklund trans-
formation. All conserved densities and fluxes are pre-
sented with explicit recursion formulas. Furthermore,
by employing Riemann theta function, the one- and
two-periodic wave solutions for the equation are con-
structed well. Finally, an asymptotic relation is pre-
sented, which implies that the periodic wave solutions
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can be degenerated to the soliton solutions under some
special conditions.
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1 Introduction

Investigating the integrability of the nonlinear evolu-
tion equation (NLEE) has become much more signif-
icant because it could be considered as a pretest and
the first step of its exact solvability. A lot of impor-
tant properties could characterize the integrability of
the NLEEs, such as bilinear form, infinite conservation
laws, Lax pairs, infinite symmetries, bilinear Biacklund
transformation and Painlevé test. As we know, many
methods, such as inverse scattering transformation [1],
Darboux transformation [2], Bicklund transformation
[3] and Hirota method [4], are proposed to cope with
the nonlinear equation. By employing the bilinear form,
we can construct a multisoliton solution for a nonlin-
ear equation; furthermore, the bilinear Biacklund trans-
formation and some other important properties [5—7]
could be obtained. In addition to this, an approach that
combine the Hirota bilinear form and Riemann theta
function is feasible to deal with exact periodic wave
solutions for nonlinear equation.
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In 1980s, a straight approach is presented by Naka-
mura to construct a certain kind of quasi-periodic solu-
tions for nonlinear evolution equation in his essay [8].
He obtains the periodic wave solutions of KdV equa-
tion and Boussinesq equation, respectively. Recently,
this method is extended to study the (2+1)-dimensional
Bogoyavlenskii’s breaking soliton equation, KP equa-
tion and KdV equation by Fan and Hon [9-11]. Ma
[12-14]investigates the resonant solutions and periodic
wave solutions of trilinear equations by using Bell poly-
nomials. Chen et al. [15] study the integrability of the
modified generalized Vakhnenko equation. Tian et al.
[16] extended this method to the Zhiber—Shabat equa-
tion, etc. The method is extended to study the integrabil-
ity and structure the periodic wave solutions for some
nonlinear equations, discrete soliton equations and
supersymmetric equations by Tian and Zhang [17-21].

Now, many people pay attention to a kind of gen-
eralized nonlinear equation since they admit much
more widely application in a great number physical
fields [22-36]. Through investigating a generalized
form for nonlinear evolution equations, many more
general properties of the equation(s) can be obtained.

In this paper, we focus on a generalized (3+1)-
dimensional nonlinear wave in liquid containing gas
bubbles

(uy + hiuuy + hotyey + h3uy)x
+h4uyy + hsu;, =0, (D)

where u = u(x,y,z,t), hi(i = 1,2,3,4,5) are free
constants. By taking some appropriate parameters for
h;, we can construct a variety of nonlinear wave equa-
tions. Some important examples are given below.

e The (3+1)-dimensional KP equation [37]
(U + tyxx — OUUL)x + 3utyy + 3uz; =0, 2

is investigated by Ablowitz and Segur. Its three-
wave soliton-type solutions, Wronskian and Gram-
mian solutions and a wide class of Pfaffianized sys-
tems of the equation are investigated by Ma, Xia
and Zhu [38,39].

e The (3+1)-dimensional nonlinear wave equation
[40]

1
(ur +utty + tyxx)x + E(Myy +uz) =0, 3)

is given for a description of the pressure waves in
admixture liquid and gas bubbles taking into con-
sideration the viscosity of liquid and the heat trans-
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fer. Some exact solutions for the nonlinear evolu-
tion equation are presented by the application of the
Hirota method [40].

e The Korteweg-de Vries equation [41]

Uy + 6uny + uxyx =0, (€]

is found to describe many physical and engineering
phenomena, such as ion-acoustic waves, geophys-
ical fluid dynamics, lattice dynamics.

The main purpose of this paper is to study the bilin-
ear equation, Bécklund transformations and infinite
conservation laws of the generalized (3+1)-dimensional
nonlinear wave Eq. (1) by using Bell polynomial
approach. Furthermore, N-soliton solutions and peri-
odic wave solutions with a asymptotic property are also
constructed, respectively.

The paper is organized as follows. In Sects. 2-3,
the bilinear form, Béacklund transformation and soliton
solutions for Eq. (1) in liquid containing gas bubbles are
constructed by employing the binary Bell polynomials.
Then, the infinite conservation laws with all conserved
densities and fluxes are given by explicit recursion for-
mulas for Eq. (1) in Sect. 4. In Sect. 5, based on the
bilinear operator, by combining with Riemann theta
function, we get one- and two-periodic wave solutions
for Eq. (1). Finally, in Sect. 6, a asymptotic property
is investigated in detail, and as a result, the relation-
ship between the periodic wave solutions and soliton
solutions is obtained.

2 The bilinear representation and soliton solutions

In this section, we research the bilinear representation
for the generalized (3+1)-dimensional nonlinear wave
Eq. (1) by using the binary Bell polynomials.

2.1 The bilinear representation

Theorem 1 By employing the following transforma-
tion

u = 12hh 7 (In £y, )

the generalized (3+1)-dimensional nonlinear wave
Eq. (1) admits the following bilinear equation

2 (Dy, Dy, Dy, D)
- (DXD, +haD? + h3D? + hyD? + hst) f
f=0. (6)
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Proof First of all, introducing a transformation

u= C(I)Qsz (7)

where c(t) is a free function, one can connect Eq. (1)
with P-polynomials. By the substitution of Eq. (7) into
Eq. (1), one has

(ct()qax + c(O)qaxs + h1c*(D)qaxqax + hac(t)gsy
+h3c(t)qan)x + hac(t)qox 2y + hsc(t)gay 2, = 0.
)

By integrating Eq. (8) with respect to x, the result is
given by

hy
¢/ (Dgx + c()qy + 7c2<r>q%x + hoc(t)qax
+ h3c()qax + hac(t)qay + hsc(t)qa, = d, )

i.e.,

E(q) = (( ))t qx + qxr +

+ hagax + h3qox + haqoy + hsqo; = d,

1
c(t)q%x

(10)

with d = d(¢, y, z) is an integration constant. Letting

c(t) = 6h2hf1 and by employing the formula (103),

Eq. (10) becomes

E(Q) = th(‘]) + h1P6x(Q) + h2P3x,y(q)
+haPay(q) + hsPyz(q) =d. (11)

Finally, based on the property (105) and the following

transformation

q =2Inf < u=c(t)gay = 122k (In f),s,

(12)

(i — )i — vj) + ho(u;

— w4 ha(pi —

Equation (6) is a new bilinear equation, which can
also be reduced to the ones of the equations investigated
in [37-41] by taking the appropriate coefficients ;.

Lethi = —-6,h, =1,h3 =0,h4 =3, h5 = 3, Eq.
(1) is reduced to the (3+1)-dimensional KP Eq. (2), the
bilinear equation becomes

2 (D, Dy, Dy, D)
= (DXD,+D§+3D§+3D§)f-f=0. (14)
Lethy = 1,hy = L,h3 = 0,hy = 5, hs = 3,

Eq. (1) is degenerated into three-dimensional nonlinear
waves Eq. (3), the bilinear equation becomes

2 (D, Dy, Dy, D)

1 1
= (Dth +D¥+ 503 + 5Dg) f-f=0. (15

Leth; =6,hy = 1,h3 =0,hy = 0,hs =0, Eq.
(1) is reduced to the Korteweg-de Vries Eq. (4), the
bilinear equation becomes

7 (D,. D) = (DXD, +Dj)f e (16)

2.2 Soliton solutions

Next, based on the bilinear equation, we obtain the N-
soliton solution of Eq. (1) as of the form

u=12h7"ho(In £y, 17)
f= Z exp Z,OJTIJ + Z pipjAij |
p=0,1 1<j<i<N

in which u;, vj, 0}, §; are all free constants, and

1)? + ha(vi —v))* + hs(o; — 0;)?

exp(A;j) = —

(i + 1) Wi + ) +ho(ui + pp)* + h3(ui + 1 j)* + ha(vi +v)> + hs(o; + )%

(18)

the standard identities of the Hirota D-operator
DY DyDYD] f(x,y,2,1) - g(x,y,2,1)
= (0x — 9x)"™ (y — 0y)" x (3, — )"
X(at - 8[’)qf(-x1 ¥, Z, t)
g (x, Y. 21

(13)

x=x',y=y',z=,t=t'’

yields the bilinear form of Eq. (1) directly, that is bilin-
ear Eq. (6). |

with 17] = ujx + v]y + 0jz + yjt + 3j, vj =
—hzuj — h3u; —hmj —hsuj 0 1=j<
i <N), 21§j<i§N is the summatlon over all possi-
ble pairs selected from N elements with the condition
(1 <j<i<N),and szo,l denotes the summa-
tion over all possible combinations of p;, p; = 0,1
(i, j=12,...,N).

Its one-soliton and two-soliton solution could be eas-
ily obtained. For N = 1, the one-soliton solution is of
the form
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up = 1207 92 In (1 +¢"),
n=ux+vy-+oz

For the Korteweg-de Vries Eq. (4), we also obtain
its N-soliton wave solution, which has the following
form,

+ (—h2u3—h3u—h4u 1v2—h5,u_102)t+8.
u="2(In f)x,
(19)
For N = 2, the two-soliton solution is of the form f= Z exp Zp] nj+ Z pirjAij |, (26)
up = 1207 h292 In (1 +e e 4 M +n2+A‘2) , b p=0.1 1=y
Wit
Nj = XYY o) (i — )i = vj) + (i — )
3 _ —12 -1 2 exp(A;j) = — T
+ \—hawj — hapj —hap; vy —hspoi ) ¢ (i + )i +vj) + (i + 1))
+8j, (j=1,2), (20) @7
with aﬂdﬂj=/ij+vjy+0jz—,u3t+8j.
(1 — p2) (1 — y2) + ha(uy — p2)* + ha(ui — p2)? + ha(vi — »)? + hs(o1 — 02)?
exp(Ai2) = — (21)

(u1 + )1+ v2) + ha(r + u2)* + h3(ur + p2)? + ha(vi +v2)2 + hs(o1 + 02)?

As its special cases, the (3+1)-dimensional KP
Eq. (2) has a N-soliton wave solution given by

u = —2(In f)xx,

Zexp Z)Ojﬂ]+ Z /Oz,Oj ij | (22)

p=0,1 1<j<i<N

f

where u, vj, 0}, §; are all free constants, and

(i — )i —vj) + (i

— )t 30 —vj)? +3(0 — o)

The graph of Fig. 1 shows the one-soliton wave solu-
tion (19) plotted through selecting the appropriate para-
meters (see Fig. 1).

The graph of Fig. 2 shows the two-soliton wave solu-
tion (20) plotted by choosing the appropriate parame-
ters (see Fig. 2).

exp(Aij) = —

(i + )i+ )+ (i +pp)* 430 +v)% +3(0; +0)?’

(I=j<i=N), (23)

with n; = pjx +v;jy +ojz + (_Mj' — 3#;11)2
S/L]Tlajz)t—f—éj.

For (3+1)-dimensional nonlinear waves Eq. (3), its
N-soliton wave solution is given as follows

u = 12(In f)yx,

f=2 exp Zp,n,+ Z pipjAij |, (24)

p=0,1 1<j<i<N

in which j, vj, 0}, §; are all free constants, and

— )t S =)t +

3 Backlund transformation

Theorem 2 Let f be a solution of Eq. (0), if g satisfies
the following system

(D} +MD.—x)f-g=0.
[ax (D, + haD3 + (3hah + h3) Dy — 3Mha Dy DZ)
+0,(haDy)] f -5 =0, 28)

where M? = hs/3hy, then g is another solution of the
Eq. (6). The system (28) is called a Biacklund transfor-

| 2
(0 —0j)

Lo 101 (I=j<i=N) (25)
2\9i J

(i — )i —vj)+ (i
exp(Aij) = — Y 3
(i + i +v)+ Wi +p)*+ 50 +vj)*+
Ch ‘ . 31, -12
with nj = wjx +vjy + 05z + (=p; — 0 v; —

%,u;lojz)t + 4.

@ Springer

mation of the generalized (3 4 1)-dimensional nonlin-
ear wave Eq. (1).
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O

—44

(d)

Fig. 1 (Color online) Spatial structures of the one-soliton solu-
tion (19) with the parameters hy = —1,hy = —1,h3 =3, hy =
I,hs = 1l,u = —1,v = 1.5,0 = 2 and § = 1. a The per-
spective view of the wave as y = 0,z = 0. b The perspective

Proof In order to obtain the Béacklund transformation
of the generalized (3+1)-dimensional nonlinear wave
Eq. (1), let
g=2lng, ¢ =2Inf, (29)
be two different solutions for Eq. (10). Considering Eq.
(29) and Eq. (10), one then has
E(@)—E@=(q"~q), +h(qd" —q),,

+3h2 (4" +q)y, (@' —4),,

+h3(q' = q),, +halqd' - q)Zy

+ hs (q/ - q)zZ =0. (30)

When under suitable additional constraints, it can pro-
duce the transformation.

Introducing the following two new auxiliary vari-
ables

v=(¢'—q)/2=In(f/g),
w=_(q"+4q)/2=1In(fg), 31)

(e) ®

view of the wave as t = 0,z = 0. ¢ The perspective view of
the wave as y = 0,7 = 0. d The corresponding contour plot as
y =0, z = 0. e The corresponding contour plotas ¢ = 0, z = 0.
f The corresponding contour plotas y = 0,7 =0

and the condition (30) could be rewritten as another
form

E(q) - E(q) = E(w +v) — E(w = v) = vy
+ hy (Vax + 6w2xvV2x) + MUk
+havay + hsuy,
= 0 [Z (V) + ha%5: (v, W)]
L R, w) =0, (32)
where
(v, w) = 3howryvay — 3hrv w3y — 3h2U§U2x
+ h3vay + havyy + hsvy,
= 3hyWronskian [%5, (v, ), %, (V)]
+ h3vay + havay + hsvy,. (33)

For writing Z (v, ) as the form of % -polynomials
with x-derivative, we introduce the following con-
straint

D (v, @) + M%(v, ) = A, (34)
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(@)

Fig. 2 (Color online) Spatial structures of the two-soliton solu-
tion (20) with the parameters iy = 2, hy = —1,h3 = =3, hy =
Lhs=1lLui=1Lu=—lvi=1Lvy=10=2,00=2.5
and 61 = 1,82, = 1. a The perspective view of the wave
as y = 0,z = 0. b The perspective view of the wave as

in which M is an undetermined constant, and A is an
arbitrary parameter. By employing Eq. (34), Z (v, o)
can be rewritten as follows
R (v, w) = 3hodvy, — M~

X (hSCUZx,z + (2hs — 3M*h2)vc vy .

+ 3M2/’l21)2x Uz)
+ h3vay + havyy, (35)

and under the constraint 3M2hy = hs, it is equivalent
to the following expression

R (v, 0) =0y [(Bhar+h3) %, (v) —3Mha %, (v, )]
+9y (% (v)) (36)

Finally, linking Egs. (34)—(36), the % -polynomials
could be derived as follows

@ Springer

(e)

®

t =0, z = 0.c¢The perspective view of the waveasy = 0,7 = 0.
d The corresponding contour plot as y = 0,z = 0. e The cor-
responding contour plot as t = 0,z = 0. f The corresponding
contour plotas y =0,t =0

(v, 0) + MY (v, 0) — 1 =0,
I [Z (V) + haP3x (v, ) + Bhok + h3) P (v)
—3Mha%; (v, )] + 3y (haPy(v)) =0.  (37)
Through employing the identity (102), the system (37)

leads to the Bicklund transformation (28) at once. O

In order to benefit more interested audience in the
research community, one can also construct the bilin-
ear Bécklund transformation involving a few free para-
meters by using the same way presented by Ma and
Abdeljabbar [42].

4 Infinite conservation laws

Theorem 3 The generalized (3+ 1)-dimensional non-
linear wave Eq. (1) admits the following infinite con-
servation laws
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jn,t"‘%l,x +gn,y+z)£/n,z=0a n=12,....
(38)

The conversed densities .7, s are presented by the fol-
lowing recursion formulas

1 1 -1
S = —56]2;: = _Ehlhz u,
1 1 (N .
Ir = s+ Mane = gzhihy! (s + M7 ).
1 n—1
jnJr] = _E(jn,x +Max_lfn,z +Z<ﬂijni)’
i=1
n=273,..., 39)

the first fluxes € s are presented by

S = hy A 25 + h3 I\ — 60y I — 6ha MO 9, -,
M = hy I 25 +h3 I — 120 91 9,
—6haMd ' A, — 6haM 107 7

Iy = h2<jn,2x _6Z<ﬁlﬁfn+]7f

i=1

-2 Z I, Ty s

k1+ko+k3=n
n
—6hyM (a;lfnﬂ,z +> fka;lfn_k,y)
k=1
+h3Iy n=3.4,..., (40)

the second fluxes 4)s are given by

_ 1 1 el
G1=h40, lﬂl,y =—§h4qu = —Eh1h4h2 ]ax 1uy,

B 1
% = hy4o; lﬂzgy = Zh4 (q2xy + M‘Iyz)

1 _ _
= hahy! (uy + Mogluyc).
Gor1 = had; ' Iy, n=2.3,..., (41)

where Bx_x] means integrating with respect to x twice,
and the third fluxes s are presented by

JH = 6hyM %) + h53;]f1,z,

s =3 M I+ 6haM I35 + hsd ' o,
n—1

g1 = 3hoM Zﬂijn—i + 6hoM S 41
i=1

+hsd ' I, n=2,3,.... (42)

Proof The % (v, w) that in the two-field condition (30)
can be rewritten as another form

R, ®) = dx [Bhak + h3)vy — 3Mhyuyv,
+0;(=3Mhyway) + ay(h4Uy) =0, (43)

by employing the relationship 9y (v;) = 0;(Uyx) = Uys.
The system (37) admits a conserved form

w2 + U2 + Mu, — A =0,
8y (Uy) + Oy [hzvgx + 3havsany + hov

+ Ghah + ha)ug — 3Mhov, .|

+o. [—3Mh2x+h5uz+3Mh2u§]+ay(h4uy) —0.
(44)
We introduce a new potential function
n=(qx —qx) /2. 45)
and based on the relationship (31), we have
Ux =1, x =4qx+1. (46)

By substituting (46) into (44), system (32) can be
reduced to a Riccati-type equation

Gox +nx + 0P+ Mo n, — e =0, (47)

which is a new potential function with regard to ¢.
Similarly, from Eq. (47), one can obtain the following
divergence-type equation

Nt + Ox I:h2n2x + 682han — 2hon®
— 6haMnd 'y, + h3n] + 3y (had ' ny)
+9, (—3Mh282+h58x_1nz+3Mh2772) —0, 48)

by taking A = 2. Inserting the following formula

oo
n=e+ > I, qx, qae )", 49)
n=1
into Eq. (47) and considering the coefficients with
regard to the power of ¢, then one can directly derive the
recursion relationship (39) of the conserved densities
Z, as follows

o o0
G+ D Iuxe MO D Iy e 429

n=1 n=1
00 oo /n—1

+2> Fe "+ Z(Z f,-f,,_,-g") =0.
n=1 n=1 \n=1

(50)
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Additionally, combining the expansion (49) with
divergence-type Eq. (48), we have

00 o0
Zjn,tg_n + 8x [hZ an,er_n
n=1

n=1

+ 483h2

o]

—2hy Z Z fklszfk_@_
n=I k1+ky+k3=n

oo /n—1
—6hye Z (Z fifn—itﬁ_")
n=1 \i=1
o
- 6h2M£8;1 (Z fn,zsn)

n=1

o0 o0
—6hoyM (Z ﬂns_”) Bx_l (Z fn,za_")
n=1 n=1

h3 (e + i fns")}

(h48 ' Z In e~ )

00 n—1
+32[3h2M[ (Z,ﬂ,yn_,-e")

+2(f1 + Zﬂnﬂe )}

hs (3;1 > y,,,zs—”)} =0, (51)
n=1

which shows the infinite conservation laws (38)
rﬂn,t"‘jﬁz,x +%n,y+<}gn,z =0, n=12,...,
(52)

where .7Zs are determined by system (40), and ¥ s,
;s are determined by system (41), (42), respectively.
0

5 Riemann theta function periodic wave solutions
5.1 Riemann theta function preliminary

To begin with, we provide some fundamental defini-
tions about Riemann theta function. The Riemann theta
function with genus » is defined as

19(5) — ﬁ(g’ T) — Z eﬂi(nr,n)+2ﬂi(é,n)’ (53)

neZN

@ Springer

where § = (&,--- ,&y)" e CN andn = (ny,- -,
np)’ e ZN. Let f = (fi,--, fv)" and g =
(g1, - ,gN)T be two vectors, the inner product is
defined as

(f.8)=figi+ faga+---+ fngn- (54)

In particular, let N = 1, the Riemann theta function
(53) becomes

+00

Z eﬂin2r+2nin§, (55)

n=—oo

v, T) =

with the phase variable § = ax + By + pz + ot + ¢
and Im(t) > 0.Let N = 2, the Riemann theta function
(53) becomes

OE, 1) =0, &, 1) = D TN (56

neZ?

with the phase variable §; = «a;x+ ;i y+piz+wit +¢€,
i=1,2,n=n,nm)! €Z? &=, &) e C? and
—i7T is a positive definite and real-valued symmetric
2 x 2 matrix which is given by

11 T12

T = ( ), Im(zq1) > 0, Im(rp) > 0,
T2 122

1122 — 5 < 0. (57)

For obtaining the periodic wave solutions, a more
generalized bilinear equation should be considered.
Suppose that Eq. (1) admits # — ug when |£] — O,
the periodic wave solution of Eq. (1) satisfies

u = ug + 12h2h 792 In 9 (8), (58)

where § = (&1,....6n)7. & = aix + Biy + piz +
wit +¢&i,i =1,2..., N, ug is a special solution with
constant of Eq. (1). Linking Eq. (1) with Eq. (58), a
more generalized bilinear equation is derived as

W (Dx, Dy, Dz, D)V (§) - 9 (&)
- (DxD, + hyD* + uphy D* + h3D?

+hyD} +hsD? +¢) 9(E) - 9(E) =0, (59)

with ¢ = ¢(y, z, t) being an integration constant.

5.2 One-periodic wave solutions

Theorem 4 If ¥ (&, t) is one Riemann theta function
(85) as N = 1, a one-periodic wave solution of the
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generalized (3+1)-dimensional nonlinear wave Eq. (1)
is given by

u=ug+ 1207 had? In 9 (&), (60)

with

_ biax —banp _ biayy — byayy

9 —?
appazz — apzdazy appdzy —apa2

(61)
and
ad 2 s 2
ajy = — Z 16n?n’ap™, ap = Z o2,
n=—0oo n=—oQ
ad 2
a = — Z 47_[2(2” _ 1)20[@211 —2n-|—lY
n=—0o
ad 2
ax = Z 502” 7211+17
n=—0oQ
o0
62
by= Y (-256hym*n*a* — 256houom*ne’t 62)

n=—o00
+16h3n> 120 +16han’n B2+ 16hsn’n o) o7

o0
by = Z (=16hy7* 2n—1)*a* —16haugn* 2n—1)%a*

n=—0oo

+4h3m2(2n — D2a? + dhan?(2n — 1)2 82
+ 4hs722n — 1)2102)6/')2”2—211-5-1’ o =T,

where o, B, p, T, € are arbitrary parameters.

Proof The parameters «, 8, p, w, ¢ should satisfy the
following system based on Theorem 1 in Ref. [17]

+o00
> W @nmia, dnmip, dnnip, dnwiw)e? T =0,
n=—0oo

(63a)
+oo
> w@mi@n— Da, 2mi2n — 1B, 2xi

x(2n — D)p, 27i 2n — D)@’ 2Dt _
(63b)

Substituting the bilinear Eq. (59) into the system (63a)
and (63b), one can obtain the following results

o
”‘/’/V(O) = Z (—16n2n2aa) + 256hytntat
n=—0oo

+256h2u0n4n4a4 — 16h3n2n2a2

—16hyn72 % — 16hsn’72p? + c)

22
XeZmn T =0,

o0
= (—47‘[2(2n—1)2aa)+16h27r4

n=—oo
x (2n — D*a* + 16haugn* 2n — D*a*
—4h3?2n — 1)*a? — dhan®(2n — 1) B2
—4hs72@n —1)2p? +C> oTi@n? =2+
=0,

which can be equivalently rewritten as the following
system with the notations (62)

(o =) (0)-(2) <64>
ay an ) \c by

From system (64), one can obtain the following a one-
periodic wave solution

u=uo+ 121 1292 In 9 (8), (65)

which is also determined by the free parameters
o, B, p,eand t. O

The graph of Fig. 3 shows the one-periodic wave
solution (60) plotted through selecting the appropriate
parameters (see Fig. 3) .

5.3 Two-periodic wave solutions

Theorem 5 If ¥ (&1, &, T) is Riemann theta function
(56) as N = 2, a two-periodic wave solution of the
generalized (3+1)-dimensional nonlinear wave Eq. (1)
is given by

u=ug+ 1207 1292 In (&1, &, 1), (66)

with the parameters w1, w2, uo, ¢ have the following
system

H (w1, w,ug, )" =b, (67)
in which

H = (hij)axa, b= (b1, b, b3, bs)T,

hiv=—47> > (2n—6;, @)2n1 — 63 (n),
(ny1,n2)eZ?
hiz=—47> D" (20— 06, @)2n2 — 1) (n),
(nl,nz)EZZ
hiz= Q. 16hn*@n 6. 0)'Ym),
(n1.n2)€Z?
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0 0

—201 20 20

—40 —40 —40

(d (e) (®

Fig.3 (Color online) Spatial structures of the one-periodic wave
solution (60) with the parameters hy = 1,hy = —1,h3 =
Lhy=1Lhs=1L1t=i,a=1,=1,p=2,up =0and
& = 0. a The perspective view of the waveas y = 0,z = 0. b
The perspective view of the wave ast = 0, z = 0. ¢ The perspec-

his= > i),
(nl,nz)EZ2

bi= Y (—16hom*(2n —6;, )

(n1,n2)eZ?

+ 4h3m? (20 — 6, @)® + dhym? (2n — 6;, B)?

+4hsm?(2n — 6;, p)?) Si (n)
ooy M= ni(12—07)7  nina+(n1—6})(n2—-67)
Si(n) = g, £ 3 )
o1 =€ﬂir”, 602:87‘”"[227 ©3 =e27‘[i‘r12’ i=1,2.3,4,

(68)
and 0; = (61,657 0, = 0,007, 6, = (1,0)7, 63 =

1’71

O, D7, 04 = A, DT, i =1,2,3,4; o4, Bi, pis Tijs €
(i, j = 1,2) are all free parameters.

Proof Based on Theorem 2 in Ref. [17], the parameters
i, Bi, pi, wi, & (i = 1,2) should satisfy
70, 0)

= > W Qri2n -0, a),

neZ?

@ Springer

tive view of the wave as y = 0, ¢ = 0. d The wave propagation
pattern of the wave along the x axis. e The wave propagation
pattern of the wave along the y axis. f The wave propagation
pattern of the wave along the z axis

2ri(2n — 01, B), 2mi(2n — 61, p),
27_[1-(2” _ 01’ w>eni[(r(n—6’1),n—91)+(rn,n)] — 0’
(69a)
#(1,0)
= Z W(Qwi(2n — 65, &),

neZ?

27i(2n — 61, B), 27i (2n — 62, p),
27i (2n — 65, w)em’[(r(n—02),n—92)+(rn,n>] =0,
(69b)
70, 1)
= z W (2ri(2n — 63, a),
neZ?

2mi(2n — 03, B), 2wi(2n — 03, p),
27_[1(2” _ 03’ w)eﬂi[(r(n—6’3),n—93)+(1:n,n)] — 0’
(69c¢)
7,1
=D W Qri2n — b4, @),

neZ?
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27'[1(2” — 047 w>eni[<r(n—04),n—94)+(tn,n)] = Os

(69d)

where 6; = (01,0)T , 0, = (0,007, 6, = (1,07,
=007, 0,=1,DT,i=1,2,3,4

Considering (69a)—(69d) with (59), we have the fol-
lowing system

> [—4712(211 — 61, a)(2n — 61, )
neZ?
+ 16ha*(2n — 01, a)*
+ 16uphomt*(2n — 61, a)* — 4h3?(2n — 61, a)?

— 4hu7 (20 — 0y, B)? — 4hsm2(2n — 6y, p)? + c]

X erri[(r(n—01),n—91)+(1n,n)] — O, (70&)
> [—4712(2;1 — 6y, @) (21 — 65, @)
neZ?

+16hym*2n — 65, a)*
+16u0h27r4(2n — 6, a)4 — 4h3n2(2n — 6, a)2
— Ahy72 20 — 6r, B)? — dhs? (20 — 63, p)2 + c]

% eni[(r(n—02),n—92>+<rn,n>] — 0, (70b)
> [—4n2(2n — 63, )(2n — 63, )
neZ?

+ 16ha7* (20 — 63, a)*
+ 16uphamt® (2n — 63, a)* — 4h32(2n — 63, a)?
— Ahy72 (20 — 63, B)? — dhsw? (20 — 63, p)> + c]

X erri[(r(nf(?}),n793)+(rn,n)] — O, (7OC)
> [—4712(2;1 — 6y, @) (21 — 64, @)
neZ?

+ 16hom* (20 — 64, a)*

+ 16uoh2714(2n — by, a)4 — 4h3n2(2n — By, oe)2

— Ahy72 (20 — Oy, B)? — dhs? (20 — 64, p)2 + c]
 TilT =) =0 +(Tn.m)] _ o (70d)

From (68), the above system can be equivalent to

hir hia hiz hig

w1 by
h h h h
21 hoo haz hyg w | _ | b2 _ 1)
h31 h3y h3z hia uo b3

c by

hay hay haz hag

From system (71), one can get the following two-
periodic wave solution

u=ug+ 1207 1292 n v (&1, &, 7). (72)

The two-periodic wave solution is also determined by
the free parameters o;, B;, p;, & and T;;. m]

The graph of Fig. 4 shows a degenerate two-periodic
wave solution plotted through selecting the suitable
parameters (see Fig. 4).

6 Asymptotic analysis

In this section, the asymptotic behavior of the peri-
odic wave solutions is researched. Here we deduce the
relationship between the periodic wave solutions and
soliton solutions.

Theorem 6 Let (w, c)! be a solution for system (64),

we take
% v o
=0, a=—, B=z—, p=—,
1o 2mi b 2mi P 2mi
S+t
&= - (73)
2mi

for the one-periodic wave solution (60), in which
w, v, o and § are determined by Eq. (19). The limit-
ing properties are as follows

DT S ) > 1 4o,

when g — 0. (74)

c—>0, &—

The above equations imply that the periodic wave solu-
tion (60) can be reduced to the soliton solution (19)
where (u, ) — (u1, 0).

Proof By employing Egs. (62), expanding the matrix
elements ¢;;(i, j = 1,2) and b;(i = 1,2) as p, we
have

ay = =327« (pz+45@8+...+n2&)2"2+...)’
a12=1+2(592+@8+...+692"2+...),
ay = _87-[20[(60_}_9@5_'_. . .+(2n_1)26{)2n2—2n+1

b)),

a22=2(@+695+"'+@2n2_2n+]“r"‘),

@ Springer



1210

J-M. Tuet al.

75036.4

Ii
75036.2]1l
|
I}
| 75034

75035.4

X
(d)
Fig. 4 (Color online) Spatial structures of a degenerate two-
periodic wave solution with the parameters 1 = 1,hy =

—1,h3 = =3,hqs = 1,hs = 1,01 = 0.1,ap = 03,8 =
1,,32 = 0.3,p1 = 0.1,p2 = l, 711 = i, T12 = 0.5i, T2 = 2i
and &1 = 0,& = 0. a The perspective view of the wave

by = 327> (—16h2712a4 — 16haugr’a® + hia?
Fhaf? ) 7
+ 12872 (—64hym e — 64ugham e’ + hiyo?
+ haB? + hsp?)p® + - + 3272
X (—16h2n2n4a4 — 16h2u0n2n4a4
+h3n2062 + h4n2,32 + h5n2p2) 502"2 4+
by = 87> (—4h27t2a4 — dhougr et + hya?
S haf? + h5p2) o+ 72712( — 36hyma?
— 36hauom e’ + ha + haf? + hsp?) ’
ot 8712( — 4yt @n — 1
—dhougna*2n — D* + hya®(2n — 1)2
+h4,82(2n _ 1)2 4 h5p2(2n _ 1)2)602)12—2114-1
4o (75)

@ Springer

78065.4
I
-20 —10 0 10 20
(e ®
as y = 0,z = 0. b The perspective view of the wave as

t =0, z = 0. ¢ The perspective view of the waveas y = 0,1 = 0.
d The wave propagation pattern of the wave along the x axis. e
The wave propagation pattern of the wave along the y axis. f The
wave propagation pattern of the wave along the z axis

The following formulas can be obtained by using Eqgs.
(4.10) and (4.12) in Ref. [17]

e 01 e 0 0

°=\o o) =\ sn2e 2 )

o —327%q 2 e 0 0
2= o o) TP\ 7272 2)

A3 =A4=0,...,
By =0, B = (O, 8n2(—4h2n2a4 — 4u0h2n2a4

T
+ h3a® 4+ haf? + hspz)) ,
By = (32n2(—16h2n2a4 — 16ughy’a®
2 2 2 T
Fh3e® + haf? + hsp ),o) . By =0,
Bs = (0, 7272 (=36hym e — 36uhymla®

T
+h3(¥2+h4,32+h5,02)) , B4=0,....
(76)



Bécklund transformation, infinite conservation laws and periodic wave solutions 1211

Considering Proposition 3 in Ref. [17], system (76)
yields

¥ (4h2n2a3 + dhouor?a® — hyo — h4;320F1 — h5p2a’] )
0= s

0

8 (4hpm?a® + dhyuom?a® — hsa — hap?a™ — hsp?a™")
Xo = 4 4 4 4 2.2 202 22 )
128hsmta® + 128hauom*a® — 32h3m2a® — 32han? B2 — 32hsn?p
X 480hs 72> + 480hsugm?a® — 48hza — 48hy 2o~ — 48hspa!
4 = 9
768hymt*a* + 768hougn*a* — 192h3 w20 — 192ham? % — 192hs57? p?

X1=X3=0,...,

77

and from system (4.11) in Ref. [17], we have the fol-
lowing formulas

w= (4h2712a3 + dhouora® — hya — hafla”!
— h5p2a71) + 8(4h27r2a3 + dhougn e’
— h3a — hafPa! — hspzot_l)goz
n (480h2712013 + 480haugr e’
— 48h3a — 48hypla! — 48h5p2a*‘) o
+o(p"),
c= (128h2n4a4 + 128haugr et — 32h3m%e>
— 3hyr2p? — 32h5n2p2) 0>
+ (768h2n4a4 + 768hyuorat
—192h37%a® — 192h4n? g% — 192h57‘[2,02) p*

+o(p™). (78)

Considering the formulas (73) and the condition g —
0, one has

w — 4h2n2a3 + 4h2u07r20{3

—haa — hapa™" — hspPa™, (79)

c— 0,

i.e.,
2miw =~ —hap—hav? " —hso?pn Tl (80)

In addition, the periodic function ¥ (§) could be rewrit-
ten as follows

FE, ) =1+ (ez’”S +e_2”i§) %)

+ (e‘“”f + e*“”’f) AR 1)

On account of the transformation (73), one has
9E.T) =1+ + (e—§+e2§) o+ (e—2§+e3§) 0°
4> 1+ef, when o — 0,

E=2mi§k —nt=px+vy+oz+2miot + 35, (82)

from system (80) to (82), the following formulas can

be obtained by

§ — UX +Vvy—+oz

+ (—h2u3 — hap — hav?p! — h502,u_1) t

+46=mn, when o — 0,

n+nt
2mi

From system (82) and system (83), one finally derives

& —

, when p — 0. (83)

() — 1+¢€", when p — 0. (84)

From all above analyses, it implies that the conclusion
of Theorem 6 is hold when g — 0. O

Theorem 7 Let (w1, w3, ug, c)T be a solution for the
system (71), we take

i Vi o}
o = —, i = 3 . i = T .
2mi 2mi 2mi
8+ A
g = g =2 i=1,2 (85)
2mi 2mi

for the two-periodic wave solution (66), in which
Wi, Vi, 0i,6i, A1oi = 1,2dependon Eq. (20) and (21).
The limiting properties as follows

Uy =0, ¢—0, &— WTTEL Gy o,
2mi

V(ELE,T) = 1+ 4 e _{_em+772+A12’

as @1, — 0. (86)
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which shows that the periodic wave solution (66) 0
can be degraded to the soliton solution (20) when 7 2
(u, o1, $2) = (u1,0,0). b= 0 1
Proof At beginning, expanding the functions H, b, 0
(w1, wy, ug, c)T in terms of the series about g T4 0
H=H0+H1p1+H2502+H3502+H502 0 2 0 0
1 482 + 0 7+ 0 P12+ o |#1#283
+ Hspi162 + Hop1623 + -+ 0 v
6
b= Bip1 + Bapy + B3pi + B Pk o
+ Bsp142 + Bep15£263 (87 to (601502@3) ititk=z3 (89)
+ (w1, w2, 10, )T = Ao+ A1 + Avgn
2 2 » 60(00) 60(11) w(21)
+ A3 + Aapy + Aspi§2 + Aep1626€3 1 1 1 1
T o wéOO) wén) w§21)
= + o1+ 2
According to Egs. (68) and (87), we obtain uo ME)OO) ué“) u(()zl)
0001 0 0 0 0 ¢ (00 cb @b
|00 0 0] |8 0 32mrtef 2 o) o
= +
0000 o o o o™ (12) 22)
, 5 w5 5
0000 0 0 0 0 + (12 o1+ o | #2
0 0 0 0 “o “o
0 0 0 0 ct1? c®
_l’_
0 —872mp 32h2n4a§ 2 2 a)gz) w§3)
0 0 0 0 w;2) oo(23)
—32n%a; 0 S512hymwia} 2 oo |ee2 | o [P0
u u
0o 0 0 ol , 0 0
+ o o 0 o |# ) ®
o 0 0 o0 +o(p;p§p§), i+j+k>3 (90)
252 4 4
0 —327%a; S512hymtad 2 with
0 0 0 0 ) 5 4 4
+ 0 0 0 0 (25 Ay = 8r (a1 —an), A =32hymw () — a2)”,
o o 0 0 Az = =87 (a1 + o), A4 =32hym (@) + a)?,
0 0o 0 7 = —32h27t40/11 + 8h3n2af + 8h4712,312
+ 8hsm?p?,
0 0 0 4 4 2.2 202
+ 0 0 2162 1o = —32hym" a5 4+ 8h3m oy + 8ham” 5
8hsw2p2.
Al —A Ay =2 s '042 4 2.2 202
0 0 0 0 T3 = —=512hon" o 4+ 32h3mw oy + 32ham B
0 0 0 0 +32hs7°p1.
o o o o |02 Ty = —512hyntay + 32h3w2a3 + 32k’ B3
32hsn?p3,
Az Az Ay =2 - 57T4 P 4 2 2
( P k) i3 88) Y5 = —32hom™ (a1 — )™ + 8h3m” (o — @2)
+o(pipes), i+j+k=3,
Pigags). tr +8ham(B1 — B2)* + 8hsm* (p1 — p2)°,
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To = —32hym* (a1 + a2)* + 832 () + a2)?
+8han*(B1 + B2)° + 8hs (p1 + p2)*. (O1)
Substituting Eqs.(88)—(91) into the system (71) yields
the following system
(00 _ (D _ 2D _ @) _ O _
— 872 oelwl 0 4 325 7r4oz4u(()00) =T,
—8xn? ozza) +32h T azu(oo) 1>,
12 307 ala)(o ) + 512hym alu(oo) =73
— 872 ocla)l 1 + 32h 7T4ot4ué”) =0,
¢® — 327200\ + 51201t adul” = 14
—8712a2a)(21) + 32h n4a§ué2l) 0,
—8r2aj0P" 4 32hntatul =0,
— 8 2ar0" 4+ 32mymtadul! = o,
20" — 21087 + 25ul” = 15, 92)

(00)

By the consideration of u, ~ = 0, one has

up = o(p1, 2) — 0,

¢ = —384hymtatp? — 384homtadp?
+o(p12) = 0,

w) = 4y’ — hsay —h4;31a] — hspla;!

+ o0 (p192) — 4har’ei — haay

— h4ﬁ%a;‘

4h27T 0[2

_ (93)
— hspja; !,

h3or — h4/32a2 — h5p2a2

+ o0 (p192) — 4ar’e3 — hias

- h4/320!2 — hspiay b

when (gp162) — (0, 0).

Considering (85) yields

2miw) — —hap} — hapy — havipy' — hsolui!,

2riwy — —hzu% — h3uy

— h5022,u2_1, when (p12) — (0, 0).
%94)

— havipy !
Next, the periodic wave function 9 (&1, &, 7) can be

rewritten as the following form

V1,6, 1) =1+ (62’”‘?‘ + e—zmgl) e’

+ (62ﬂi§2 +€—2m’§2) T2

" ( Q2T+ e—zm(sl+sz))

x e (@H2ttm) (95)
Considering the transformation (85), we have
D(E1 £, T) = | + €51 4 &8 4 Q12T

+pfe ™t 4 ple®

4 p%pge—éf—éz—%flz +..

— 1+l 4B

R ag o o) > 0, (96)

where é’i =uix +viy+oiz+2miwit +6;,i =1, 2.
From Eqgs. (93) and (96), we get

& — wix +viy +oiz

+ (—hopi — hapi — h4/L,-_1V,-2 - hslt,-_laiz)t
O =& — "QT’ as 1.2 — 0. (97)

Combining Eq. (96) with Eq. (97), we obtain

V1, 6,1) > 14+

+e 4 e’]1+n2+A12, as g1, 2 — 0. (98)

Itimplies that the conclusion of Theorem 7 is hold when
(u, 1, 2) — (11, 0,0). O

7 Conclusions

In this paper, the integrability properties of the gen-
eralized (3+1)-dimensional nonlinear waves (1) in lig-
uid containing gas bubbles are researched. The bilinear
equation, Bicklund transformation, infinite conserva-
tion laws, N-soliton solution for Eq. (1) are systemati-
cally structured based on the binary Bell polynomials.
These results can be reduced to the analogues of (3+1)-
dimensional KP equation, (3+1)-dimensional nonlin-
ear wave equation and Korteweg-de Vries equation,
respectively. Furthermore, by the virtue of Riemann
theta functions, we construct one- and two-periodic
wave solutions for Eq. (1). Finally, we present a asymp-
totic property in detail, which implies that the periodic
wave solutions can be degraded to the soliton solutions.
All the results verify that the approach which combines
the Hirota bilinear method and Riemann theta function
is feasible and efficient to deal with the integrability
properties of NLEE.

Acknowledgments This work is supported by the Fundamen-
tal Research Funds for the Central Universities under the Grant
No. 2015XKQY14.
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Appendix: Multidimensional Bell polynomials

First of all, we give a brief description on multidimen-
sional Bell polynomials. For details, refer to Lembert
and Gilson’s work [43—-45]. The definition of multidi-
mensional Bell polynomial is given as follows:

Ynlxl,...,n,xr ()= Ynl ..... ny (fl]xl y oo flrxr)

=e Tl atrel, (99)
with f=f(x1,x2,...,x,) being a function with mul-
tivariables, and f € C®.fj 4 .Lx = 8)1511 B)Z{r

O<li<ni,i=1,2,...,r). Whenn = 1, Eq. (99)
can be rewritten as the following form

Yix () =Y (f1,..., fa)
n! . |
zzsll---sn!(l!)sl e (nl)sn 1 " Jn o
n= ikslm (100)

Yo(f) = fro Yox(f) = fox + 2 Vau(f)

= fae +3fe S+ f2
For combining Hirota D-operator with Bell polyno-
mials, we can write the definition of multidimensional
binary Bell polynomials as follows [44]:

g/n]x],..‘,n,xr (v, w)

OLxp,lpxes L1+ iseven,

- _[vnxytyxys it isodd,
fl])q ..... lyxr =

Z (v, ) =vx, %V, 0) = Ux + wox,
Xy 1(U, @) = Uy U + Wy,
Dy (v, ©) = U3y + 3Uyway F UL, -
which could take over the lightly recognizable partial
structure of the Bell polynomials.
We can write the relationship between the #/-
polynomials and the Hirota bilinear equation Dj!
- DYI'F - G [4] by the identity [44] as follows
Dixtrnyy 0= F/G, © =In FG)
=(FG)"'D{!---DIF -G, (101)
in which F and G are functions about the variables x

and ¢. In particular, when F = G, the identity (101)
turns into

F72D!"...D"F.F=%(0,q=2InF)

_[0’ n1+...
Pnlxl ,,,,, nrx,(Q)» ny+---

+ n, is odd,

. (102)
+ n, 1S even,

@ Springer

where the P-polynomials can be substituted by an
equally recognizable partial structure

P (q) = qax, Pri(q) = qx, Pax(q) = Q4x+3qu,
Psx(q) = gex + 15¢2:qax + 15g3,. . . .. (103)

Separating the binary Bell polynomials %, ,
(v, w) into P-polynomials and % -polynomials

(FG)''D}'---D'F -G
= g/n]xh‘..,n,x, (v, ®)|y=In F/G,o=InFG
= @nlxl

,,,,,

WXy (v, v + q)lv=In F/G,0o=InFG

-y > ZH(”’)

ny+--+ny=even [} =0 =0i=0
XPllxl,.‘.,lrxr(Q)Y(mf[])xl,u.,(n,flr)xr(U)- (104)

The critical property for the multidimensional Bell
polynomials as follows

,,,,, n,x, (U, ) can also be linearized through using
the Hopf—Cole transformation v = In ¢, that is, ¥ =
F/G.
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