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Abstract The detection of shaft cracks within oper-
ating rotors is an old subject of scientific research.
Several signal- and model-based approaches are devel-
oped. Here two approaches used for crack detection
in rotating machinery, model-based and signal-based
approaches, are compared. Strength and weak points
are discussed and compared for the two approaches
using two representative applicable methods, in order to
achieve a comparative overview of these two available
techniques. The PI-observer-based method is consid-
ered, as modern model-based technique, to give indi-
cation about possibilities and limitations of such kind
of methods. A novel signal-based approach is intro-
duced, based on SVM and wavelets as an example for
a modern machine learning technique. The concepts
of severity estimation and service life prediction are
investigated in the proposed approach. Furthermore, a
brief comparative discussion is presented in the con-
tribution, including ideas for combination of the intro-
duced approaches, in order to achieve more compre-
hensive and more robust monitoring system applied to
the detection of shaft cracks in rotating machines.
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1 Introduction

Diagnostics, fault detection and isolation (FDI)
approaches of rotating machines are crucial factors to
ensure cost-effective and reliable industrial processes.
Advanced approaches featuring monitoring and con-
trol of availability aspects of rotating machines like
condition-monitoring systems (CMS) or structural
health monitoring (SHM) systems require a reliable
diagnostics and prognostics system. In industrial prac-
tice nowadays, these systems include signal-based
approaches in combination with machine learning
methods. Model-based approaches using suitable sys-
tem description are also discussed mainly in acad-
emic research as a possible alternative to the more
application-oriented former signal-based approaches.
Modern approaches are based on feature extraction and
recognition algorithms, along with mathematical mod-
eling and simulations, in order to detect and/or avoid
faults that are able to breakdown machines and systems
by affecting the functionality. In the consequence, the
task of related diagnostics and prognostics approaches
is to establish relevant statements as early as possible.

Cracks in rotating machinery are the most critical
and fundamental damages in the related industry, often
caused by fatigue stress. Dynamically, they often lead
to vibration effects similar to those of asymmetry and
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misalignment, accompanied with changes in the vibra-
tion properties. These changing dynamical properties
are used as indicators for changed mechanical parame-
ters of the rotor, including deterioration effects. The
knowledge about the related causal chain initialized by
shaft cracks in effecting the system dynamics of the
rotating system can be used by model-based as well as
signal-based approaches.

It should be noted that both approaches (model-
based, signal-based) use knowledge, but in a different
way.

Signal-based approaches are using output signals
(denoted as So). Fault detection modules relate the
raw or filtered signals (denoted as S f ) to reference or
threshold values stating changes with respect to the nor-
mal (regular, healthy) conditions, called fault detection.
Additional knowledge and modules are necessary to
relate these signals (So, but mainly S f ) to those related
to distinguished one compared on a third level (fea-
ture space). Other classification approaches are used
(possibly in combination with suitable chosen filters)
to distinguish states/faults as classes. Relating to this,
also model information/knowledge is used implicitly,
but also these approaches are denoted as signal-based
(or data-driven) approaches.

Model-based approaches use, beside output signals
So, input signals Si and a model to be built (parame-
ter identification) or to be assumed (observer). The
comparison results directly from this level on the base
of comparison [of parameters: identification or the
outline establishment of residuum (observer)]. Filter-
ing of residuum allows the distinction of errors loca-
tion within a so-called parity space. These models are
assumed as given/known directly, so these approaches
are denoted as model-based.

In this contribution, two different related approaches
are explained in detail in order to evaluate their poten-
tial and applicability. The differences and the possibil-
ities are illustrated with respect to the development of
a reliable crack detection approach to be applied for
online monitoring in turbomachinery.

The paper is partly based on a previously published
model-based approach of the first author [30], firstly
published in 1993. Here, the approach is briefly intro-
duced and applied to a new example using realistic
model data. The signal-based alternative used here has
been previously published in complete different con-
text [25]. Both approaches are well developed within
the last years [25], or decades [30].

In a previous publication of the authors, this combi-
nation of SVM and wavelet was introduced [25]. Nev-
ertheless, in this publication this approach is improved
and applied to a different system class. This spe-
cific kind of system and also application task (crack
detection of rotor) is used to compare the introduced
approach with a model-based approach also previously
introduced [30]. In comparison with this very early and
novel (model-based) investigation, here now a realistic
model is used (no lumped-mass approach) and a pro-
fessional simulation program is used, and the results
are compared. The formerly novel approach [30] (often
cited) is compared with the new approach introduced
showing strongly improved results.

1.1 Cracks in rotors

Rotating shafts are considered among the most impor-
tant and most critical machine elements in the indus-
trial processes and machines such as turbines, compres-
sors, and pumps. The rotors of such machines are usu-
ally subjected to extreme working conditions of load-
ing and temperature variations. Accordingly the conse-
quent failures can lead to enormous damages, economi-
cal losses, and injuries. A profound and actual overview
is given in [14]; here, Ishida introduced case histories
of accidents and cracks found in industrial machines.

Different kinds of faults and flaws have been
recorded in the rotating machinery such as unbalance,
misalignment, rub, and looseness [35]. The cracks in
rotors have long been considered as factors limiting the
safe and reliable operation of the rotating machinery.
A crack may be developed from some surface or inter-
nal imperfections and propagate without much appar-
ent warning. In ductile steels used for rotors, cracks
are influenced by many factors such as the rapid fluc-
tuation of the bending stresses, the presence of stress
raisers and possible design or manufacturing flaws, and
the variations in temperature and environment [26].

Methods of crack formation and propagation vary
from high and low cycle fatigue to temperature and
environment effects. A typical event of cracking in
ductile steels can be divided into three stages: crack
initiation, in which tiny discontinuities are initiated in
the uncracked parent material; crack propagation, in
which the discontinuity grows in size as a result of
the cyclic stresses induced in the material; and fail-
ure, which occurs when the material that has not been

123



Detection of rotor cracks 1155

affected by the crack cannot withstand the applied loads
[3,26].

The transverse breathing crack is the most critical
type of cracks in rotating shafts. Here the cross section
is reduced weakening the rotor under certain condi-
tions. In case of breathing, the opening and closing the
rotating crack are due to the rotation of the shaft. The
crack moves from the upper position in which the sta-
tic bending moment forces the crack to be closed, to
the opposite position in which the crack is forced to be
open [3].

The influence of the crack existence in the rotor
structure is related to the change of the local stiffness
of the crack. A crack introduces local flexibilities and
time-dependent changes in the stiffness of the struc-
ture due to strain energy concentration, hence reducing
the natural frequencies of the original uncracked rotor
[3,10].

1.2 Crack detection of elastic rotors: a brief review

Several crack models are developed and used in the
eighties and seventies, mostly used to be integrated
within simulation studies.

Several techniques have been used to monitor cracks
in rotors such as vibration sensors, ultrasonic measure-
ments, tribological analysis, and recently the acoustic
emission techniques [3,21]. However, the vibration-
based techniques have been used widely as tools
for fault diagnosis in the rotating machinery [11,34].
Vibration-based systems directly measure the rotor
response forced by rotor flaws. A general review of
the vibration-based condition monitoring for struc-
tures is given by Carden and Fanning [4]. They pre-
sented several approaches adopted in the literature
for time, frequency, and modal domains, such as the
natural frequency-based methods which are modal
methods dependent on frequency shifts and the rela-
tion between stiffness changes and natural frequency
changes. According to Carden and Fanning, the reli-
ability of such methods is limited to single or few
damage locations and/or small laboratory structures.
They presented and discussed other approaches based
on mode shape, modal strain energy, dynamically mea-
sured flexibility matrix, residual force vector, wavelet
transform, neural networks, genetic algorithms, and
statistical pattern recognition. They stressed that there
is a lack in research to deal with synchronous faults

and the remaining service life. The vibrational behav-
ior of cracked rotors is also studied by Silani et al. [29].
They used a finite element approach and short-time
Fourier transform (STFT) to investigate the detection
of small cracks. They presented that though the tran-
sient response does not change sensibly in the presence
of very small cracks, the STFT of the response behavior
can clearly identify cracks. In the work of Sawicki et
al. [27], the method of multiresolution wavelet analysis
has been applied on the vibration signal of a rotating
system with and without external force excitation, in
order to distinguish the existence of a transverse crack.
They found that the differences are more pronounced
in the presence of external force excitation. They pre-
sented the RMS amplitude values of the vibration signal
in different frequency bands as a simple quantification
method for fault severity. Several other vibration-based
techniques are introduced in the literature [12,40].

The objectives of any crack monitoring system
comprise crack detection, localization, severity quan-
tification, and remaining service life prediction. The
crack detection and localization have been much more
emphasized in the literature than the other two objec-
tives.

An early concept of model-based crack detection
based on the theory of disturbance observer is intro-
duced by Söffker et al. [30]. Here, based on the nomi-
nal behavior of the system, the fault effects caused by
the crack are interpreted as unknown external effects
acting to the nominal behavior of the rotor. Measure-
ments of displacements and/or velocities of the vibrat-
ing dynamic system are necessary, together with fur-
ther information such as the mechanical model of the
rotor and the characteristics of the typical behavior of
the crack. Another model-based method is proposed
by Sekhar [28] for the online identification of cracks
in a rotor while it is passing through its flexural crit-
ical speed. The fault-induced change of the rotor sys-
tem is taken into account by equivalent loads in the
mathematical model. For crack modeling, the flexibil-
ity matrices of the cracked section are utilized accord-
ing to Papadopoulos and Dimarogonas [23]. The equiv-
alent loads are virtual forces and moments acting on
the linear undamaged system to generate a dynamic
behavior identical to the measured one of the damaged
system. The rotor has been modeled using FEM, and
the crack has been identified for its depth and loca-
tion on the shaft for different rotor accelerations. The
CWT has been used to extract the subharmonic fea-
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tures of crack from the time response. The work results
show accurate estimation of crack location; however,
the error of crack depth estimation increases with the
decrease in measured vibration data (DOF). On the con-
trary, results of Xiang et al. [37] show better accuracy
of crack depth estimation than that of location estima-
tion. The model-based detection system proposed by
Xiang et al. is based on the combination of wavelet-
based elements and genetic algorithm. Genetic algo-
rithm is applied to eliminate the errors of frequencies
between numerical simulation and experimental mea-
surement. The wavelet transform is used also in the
work of Nagaraju et al. [22]. They studied the tran-
sient analysis of rotor system with transverse breath-
ing crack for flexural vibrations. To extract the hidden
features of the crack, the time signal obtained from
the transient analysis is transformed to 3D-CWT plots
in which the time–frequency components are clearly
represented. A new wavelet plot called cross-wavelet
transform (XWT) has been applied to the time signals
to obtain the phase angles. The XWT gives the phase
angles of different frequency components along with
the subcritical peaks in a single plot. The inverse prob-
lem of crack detection has been carried out using arti-
ficial neural network (ANN).

Some other reference papers for model-based sys-
tems are recommended [6,32].

The signal-based systems for monitoring rotating
machines have been used for long time. The tech-
niques used are gradually updated according to data
acquisition and signal processing techniques used. The
advances in machine learning and feature extraction
techniques have induced new methods and techniques
to be adopted in the field of rotating machinery fault
detection.

The work introduced by Tao et al. [33] comprises a
detection method based on Fisher discriminant analy-
sis (FDA) as linear dimensionality reduction tech-
nique and Mahalanobis distance (MD) for performance
assessment. Data samples are projected into a new low-
dimensional space in which MD between the new mea-
surement data and normal population is calculated for
performance assessment. As a conclusion, the trans-
formation of MD into the feature space and the deter-
mination of an adaptive threshold for fault detection is
still a challenge. An energy-based approach to defect
diagnosis in rotary machines is introduced by Yan and
Gao [38]. The method uses continuous wavelet trans-
form CWT and is based on the analysis of the energy

content associated with the signal to determine the best
suited base wavelet and decomposition scale for ana-
lyzing the signal.

Some other reference papers for signal-based sys-
tems are recommended [36,39].

For deep understanding about the cracked rotors
techniques and recent advances in general and for the
two main categories model- and feature-based, some
recommended general review references are helpful
[3,17,26,35].

2 Rotor system

Modeling of elastic rotors has been developed over
decades to a high degree of sophistication for sim-
ulation, fault detection, and isolation purposes. The
developed models are validated by comparing numer-
ical results with the natural frequencies, mode shapes
and critical speeds acquired from vibration measure-
ments of the rotors. However, sufficient performance
of a rotor model should usually consider the dynam-
ics of complex framework foundation which is directly
connected to the rotor dynamics. This adds more diffi-
culties and complexity to the process of rotor modeling
and restricts the use of models.

The incorporation of breathing behavior into the
dynamics of the rotor represents a significant increase
in complexity as a result of the nonlinear characteristics
of the real transverse fatigue cracks.

During the rotation of the rotor, and mainly as a
result of gravity, a portion of the rotor cross section
remains under compression and a portion under ten-
sion. In case of cracked rotor, the crack section facing
tensile stress opens, while the crack section facing com-
pression closes. Therefore, the crack section opens and
closes according to the angular position of rotation. In
the completely closed position, the rotor behaves as it
was uncracked.

Crack breathing is accompanied by periodical
changes in the stiffness of the rotor. At certain angular
position, when the crack is completely closed, the rotor
has almost the stiffness of faultless rotor. Similarly, at
certain angular position, when the crack is completely
open, a significant decrease in local stiffness exists;
however, the reduction in global stiffness of the rotor
depends on the depth and location of the crack.

Many approaches have been developed for model-
ing cracks in rotors, and the subsequent reduction in
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Fig. 1 Crack breathing, static deflection, and corresponding
steering function (ref. to [9])

stiffness. The developed models should accurately rep-
resent the rotor system; however, the required accuracy
depends on the intended use of the model. On the other
hand, the complexity of the breathing crack mecha-
nism leads to necessary approximations and assump-
tions which are required in order to simplify the process
of modeling and use of model.

The earliest, most simple, but often used model, is
the hinge model published in 1976 by Gasch [8]. The
steering function in the model is a step function approx-
imation of the crack in which the crack is represented
as either entirely open or closed. It is assumed in the
model that vibrational amplitudes are small compared
with the static weight deflection, and the axial and tor-
sional vibrations are ignored [9]. In Fig. 1 the ”breath-
ing” of the crack under the weight influence when the
shaft is slowly turned, and the model steering function
f (t) are shown.

A smooth transition between the open and closed
positions was introduced by the sinusoidally varying
model presented by Mayes [20]. The model uses a steer-
ing function in the form f (t) = (1 + cos Ωt)/2 as a
better approximation of the breathing behavior. The use
of Mayes model is more significant for deeper cracks,
although the rotor stiffness is not directly connected to
the depth of the crack.

Considering the crack-related vibrations, more com-
plicated breathing model was introduced by Jun et al.
[15]. The presented model expressed the equation of
motion with the response-dependent stiffness in a sim-
ple rotor. The model used the fracture mechanics to esti-
mate the cross-coupling stiffness, as well as the direct

stiffness. The crack openness was determined through
the response solved by the governing equation, and the
response-dependent stiffness was calculated by numer-
ically integrating over only the open crack area [16].

In order to implement more realistic rotor models,
the finite element method has been used in connec-
tion with the previously mentioned models by many
researchers.

The previously mentioned models were applied and
compared by Penny and Friswell [24] in order to inves-
tigate the influence of the crack model on the response
of a general rotor model. According to their results, the
three crack models examined had relatively small effect
on the predicted steady-state 1X response, but they did
have some influence on the predicted whirl orbit and
the steady-state 2X response. However, in any crack
identification scheme, these differences are not likely
to have a significant effect, and simple models are more
readily used [18].

The example system used in this contribution uses
an application-oriented modeled rotor based on a finite
element model of a length of 4.2 m and a radius of
0.14 m. The rotor is supported by two bearings, which
are modeled with a simple bearing supporting damping
(total damping coefficient d = 9e3 Ns/m and stiffness k
= 3e7 N/m). While the four sensors at the bearing posi-
tions allow measurement of the rotor’s displacement,
the displacements and velocities of the beam nodes in
the x and y plane are measured directly during oper-
ation. This measurement scenario is the typical one
in practice and different to those used in the previous
publications [30]. The discretized model of the rotor
(Fig. 2), has eight nodes, seven elements and 32 elastic
degrees of freedom (each node has four degrees of free-
dom, translation, and rotation in the x and y planes).
The vector equation of motion arises to

Mq̈(t) + (D + ΩG)q̈(t) + Kq(t) = Fw, y = Crq,

(1)

SensorSensor Crack position

Unbalance
Bearing L Bearing R

Fig. 2 Discretized rotor model
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where M represents the mass matrix, D the damping
matrix (including bearing damping), G the gyroscopic
matrix, K the stiffness matrix (including bearing stiff-
ness), f the input matrix, q the displacement vector, y
the measured nodes, Cr the output matrix (correspond-
ing to sensor nodes), Ω denotes the rotational speed,
and w the input vector (unbalance forces and crack
forces).

The modeling of the shaft cross-crack is realized by
integrating the effects of curvature-dependent changes
applied to the location of the crack. Additionally, crack-
specific parameters [20,30] have to be adapted. This
procedure is used here similar to those introduced in
[30]. The integration of the crack effects results in an
addition to the rotor dynamics description to additional
strongly nonlinear effects. The crack-related flexibili-
ties are primarily influenced by the curvature-induced
opening of the crack at the crack position (here assumed
as known). The integration into a FEM-based descrip-
tion is necessary for applications because for signal-
based approaches output data has to be generated and
for model-based approaches input–output information
beside the model has to be used. Here, the unknown
external effects are interpreted as effects on the right
side of the dynamical equation. In the case of sim-
ulations, these external effects have to be taken into
account for the simulation as well-known effects.

The state-space model is used for both simulations
and the observer design. It is known that the eigenvalues
of a rotor system are speed-dependent. The eigenvalues
are calculated at the rotational speed of 9000 rpm. The
first four forward modes are illustrated in Fig. 3. The
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Fig. 3 The first four rotor eigenmodes (speed of 9000 rpm)

Fig. 4 Vibration amplitude (blue) and crack force (gray) at Lx.
(Color figure online)

amplitudes for each mode are normalized, so that the
maximal amplitudes for each mode are taken as unity.
The two rigid body modes and the first two bending
modes can be clearly identified.

To show the effect of the crack in the shaft dynamics,
simulations are performed with and without crack. The
system is excited by an unbalance U = 0.12 Kg m act-
ing to node 6 of the rotor; the weight force is taken into
account in the form of static forces in the y-direction.
Using the location of the crack at the node 4, the
rotor crack is modeled using a relative compliance of
hr = 0.001. In Fig. 4, an example of the system to be
considered is shown, and it can be stated that the crack
affects only a small noticeable change in the oscillation
amplitude, but not in phase.

The technical challenge for monitoring is similar
for all procedures. The change of the rotor dynamics
due to the occurrence of the shaft cross-crack through
the available (indirect) measurements of the bearing
shaft movements has to be identified with respect to
fault detection. The signal characteristics or in the
sense of a diagnostic task, the identification of the
mapping between the detected change and the related
causal cause, should be used in the way that the fault
should be assigned to the geometrical position of the
irregularity.

3 PI-observer (model-based) approach

As mentioned in the section of brief review (Sect. 1.2),
crack detection based on model-based approaches has
been studied in the last years by many groups.
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An early concept of crack detection based on the
theory of disturbance observer, later denoted as PI-
observer [31], is introduced by Söffker et al. [30],
later optimized for practical use, and successfully used
for several years [19,31]. Here, based on the nominal
behavior of the system, the fault effects caused by the
crack are interpreted as unknown external effects act-
ing to the nominal behavior of the rotor. For this task,
measurements of displacements and/or velocities of the
vibrating dynamic system are necessary, together with
further information such as the mechanical model of
the rotor and the characteristics of the typical behavior
of the crack.

Theoretical considerations are realized, showing the
ability of the method, especially for reconstructing
related forces understood as disturbance forces caused
by the crack. The introduced method shows that it
is possible to detect a crack inside the rotor only
using bearing measurements, also if only small stiff-
ness changes occur.

The basic idea of the methods of analytical redun-
dancy applied to fault detection involves the use of ana-
lytical relationships for example in the form of deferen-
tial or deference equation systems. The accepted rela-
tionships are understood as mathematical equivalent
to the real physical system in which the input–output
relationships are mapped into an appropriate form. This
may include the modeled (assumed) fault behavior (or
related descriptions).

The system equation of motion (Eq. 1) mentioned in
Sect. 2 can be transformed into more general descrip-
tion of state-space model as

ẋ = Ax + Bu + N f (x, u, t)

y = Cx .
(2)

Here x denotes the 2n-dimentional state vector (con-
sisting of displacement and velocity variables), A is the
2n × 2n system matrix, B represents the input matrix,
C the output matrix, y is the vector of measurements,
and u is the 2n-dimentional vector of known control
inputs and/or excitation functions. The vector function
f (x, t) describes the nonlinearities, unknown inputs,
and unmodeled dynamics of the system. The matrix N
is the corresponding input matrix of the nonlinearities
into the linear dynamical system. It is assumed that the
system parameters A, B, C , and N , as well as the input
and output time signals u and y, are known. The task

is to reconstruct the unknown nonlinearities f (x, t),
(here the external disturbance forces of the crack) by
applying proportional integral observer (PIO) [31]. The
basic idea of the PIO is to enhance the well-known
Luenberger observer for specific additional degrees of
freedom. These degrees of freedom are used to estimate
the unknown inputs and are realized as the integral of
the estimation error realize the observer dynamics.

To describe approximately the time behavior of the
nonlinearities, the state-space vector is extended by a
fictitious disturbance vector v(t) including dynamical
behavior

f ≈ Hv,

v̇ ≈ Fv,
(3)

which leads to the extended system[
ẋ
v̇

]
=

[
A NH
0 F

] [
x
v

]
+

[
B
0

]
u

y = [
C 0

] [
x
v

]
.

(4)

Here the matrix N couples the fictitious approximation
Hv of the unknown inputs n to the states where they
appear. The signal characteristics of these inputs are
approximated by a linear dynamical system with the
system matrix F .

An extended observer could be constructed for the
system mentioned in Eq. 4 in order to estimate the
approximation of the disturbances v as v̂. The task of
the observer design, with suitably chosen large observer
gains and assuming the observability of A by C , is to
realize the estimation of at least the displacement vari-
ables at the crack location, and typically of all mod-
eled nodal displacements, and of the additional effects
known as acting to the system.

From the structure of the PI-observer illustrated in
Fig. 5, the dynamics of the PI-observed system are
described by

˙̂x = Ax̂ + L3v̂ + Bu + L1(y − ŷ),

v̂ = L2(y − ŷ),
(5)

and transformed in a matrix form as

[ ˙̂x
˙̂v
]

=
[
A − L1C L3

−L2C 0

]
︸ ︷︷ ︸

Ae

[
x̂
v̂

]
+

[
B
0

]
u +

[
L1

L2

]
y. (6)
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Fig. 5 Structure of PI-observer [31]

For the estimation of crack disturbances, it is neces-
sary to emphasize the estimation residual as

[
ė
˙̂f

]
= Ae

[
e
f̂

]
−

[
N
0

]
f (7)

where the estimation error e(t) is introduced as

e(t) = x̂(t) − x(t). (8)

The analysis of the estimation residual can be used
for the detection of faults and related localization. It is
shown in [19,31] that suitable observer design in com-
bination with large gains lead to acceptable estimation
also in case of wrong approximation used in Eq. 3.

3.1 Implementation, simulation, results, and
discussion

As an example the observer-based calculation of the
behavior of the additional flexibility as additional
inverse stiffness based on measurements taken from
the rotor displacement at bearing position is consid-
ered. This type of fault acts as multiplicative error.
The simultaneously realized estimation of the fictitious
crack force as well as the related displacement at the
location of the crack, the diagnostic indicator ’relative

Fig. 6 Comparison of simulated and estimated vibration (left)
as well as crack force (right)

Fig. 7 Comparison of simulated and estimated vibration (left)
as well as crack force (right) with sensor noise

stiffness loss,’ can be determined as a causal indica-
tor [30] showing the dynamical behavior effect of the
crack at the location of the crack. Clearly, the rotation-
induced ’breathing’ of the crack can be shown (Fig. 8).
The observer-based results, based on the PI-observer
method, are shown in Figs. 6, 7, 8, and 9. The vari-
ables can sometimes be estimated very accurately, as
shown in Fig. 6. In Figs. 6 and 7, the time behavior of
the estimation of the node displacement has been used
to reconstruct the crack-induced effect from the vibra-
tional behavior. Applying simulated noise (to simulate
a real application example), a partly strong influence
on the reconstructed curves is observed (Fig. 9).
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Fig. 8 Reconstructed relative compliance

Fig. 9 Reconstructed relative compliance considering additive
sensor noise

4 Data-driven (signal-based) approach

Easy-to-apply (no model is needed), signal-based
detection concepts represent an usual technique for
vibration monitoring systems in practice. The main
advantage of this widely used field of techniques is
the easy applicability. The main disadvantage is that
the conclusion from measurable changes to the phys-
ical reason (diagnostic statements) assumes detailed
and specific knowledge or assumptions about the phys-
ical behavior of the fault. On the other hand, modern
machine learning methods are used to generate features
representing different states of the rotor related to the

existence of faults/changes like due to the dynamical
effects resulting from ’breathing’ cracks.

The existence and growth of cracks and faults in
vibrating systems like turbomachines can be implic-
itly observed by monitoring of features generated from
measurements of the system. In spite of the easy use
of the measurements, the detection of specific physical
effects behind the change of signal properties is usu-
ally difficult to detect or classify directly, especially in
the early stages of damages. This results mainly from
the weak effects and also from existing disturbances or
other effects affecting the measurements as well as the
vibrations. However, reliable measurements supported
by appropriate information extraction techniques can
also in case of the above-mentioned effects produce
recognizable features and patterns which enable reli-
able allocation of the physical causes, indicating the
existence and size of cracks even in the early stages.

In particular, the diagnosis of failures appears as
a complex task. Recent developments, however, per-
mit the use of filtering techniques in combination with
methods that do not have the limitations of classical
threshold-based methods. Suitable filtering techniques
for fault detection are used such as FFT, Cepstrum,
STFT, or wavelets, which produce sufficiently com-
plex features to define complex characteristics of the
vibrational state [7]. With the help of suitable pattern
recognition and classification methods, the generated
complex features can be learned to classify patterns
in the application, i.e., assign the learned patterns. As
classification methods, the known methods of neural
networks (NN), support vector machine (SVM), and
the fuzzy-based methods can be used. These methods
as supervised learning methods use a problem-specific
data sets and form method-specific patterns that can dif-
ferentiate specified faults and machine health states of
interest. These techniques are in general easy to apply
without the need for complex modeling task neces-
sary for model-based approaches. The main disadvan-
tage is that the conclusion from measurable changes
to the physical reason (diagnostic statements) assumes
knowledge or assumptions about the physical behavior
of the fault.

Suitable machine learning methods are used to gen-
erate features representing related different states of
the rotor connected to the existence of faults/changes
etc. As introduced, one important dynamical effect
results from ’breathing’ cracks, which is an impor-
tant but unusual fault. The feature extraction stage is
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realized to extract suitable features and to exclude the
redundant ones. Additionally, the suitable features are
transformed into a representative form to help to make
the recognition process easier. The transformed fea-
tures are undergone the classification to detect specified
machine health states of interest.

In wavelet analysis [7], signals are compared with
a set of template functions obtained from scaling and
shifting of a mother wavelet function. Wavelet-based
approaches are widely used in classification and recog-
nition tasks as feature extraction tools. The perfor-
mance of the wavelets is proved to be more flexi-
ble than other usual approaches as they lead to time–
frequency analysis with adaptive and suitable time and
frequency resolution concurrently, and therefore with
perfect reconstruction characteristics.

Vibration signals of the rotating machinery are usu-
ally a mixture of periodic and transient components
buried in broadband background noise. For applica-
tions implying noise to be removed from a signal, a
reliable alternative is the discrete wavelet transform
(DWT) which is obtained by a process of a dyadic para-
meter discretization of the continuous wavelet trans-
form (CWT) leading to more efficient computational
effort as well as to a suitable size of generated parame-
ters. These advantages make the DWT more appropri-
ate for real-time applications in comparison with other
approaches.

In general, the system including crack to be moni-
tored should be monitored, so it becomes necessary to
observe and isolate growing cracks. The used routines
should work robustly independent from changing oper-
ating conditions. Operating conditions may change,
also damping effects. In many applications, parame-
ters collected from the starting up of the rotor are used.
It is also plausible that the stationary signals would
provide reliable source of system state information by
excluding the disturbing transient events.

The task of the diagnostic system includes the gen-
eration and related processing of a suitable feature set
which is representative to the different machine states,
and the reliable classification of the classes within the
feature set. The combination of reliable feature extrac-
tion and classification procedures adds enhancement to
the individual capabilities of the two modules (Fig. 10).

The application of SVM classification requires the
selection of suitable kernel function and the parame-
ters which adjust the function of the classifier. The
radial basis function (RBF) kernel is a usual first choice
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extraction Classification System state

Fig. 10 Classification modules
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Fig. 11 Cross-validation and parameter combination for a
coarse grid, and b fine grid

for diversity of applications for many reasons [13].
Using only one parameter (γ ) to be selected, the ker-
nel can handle nonlinear cases more effectively, with
fewer numerical difficulties. Additionally, the penalty
parameter (C) of SVM should be assigned. A perfect
separability of the training data is not necessary as it
could be reason for over-fitting which is an indication
to deteriorated generalization of the model. In order to
avoid over-fitting, the method of cross-validation (CV)
is used. The training set is divided into k equal parts.
One part is chosen for testing and the rest for training
the classifier. This is done for all the parts and gives
an average indication of the classification accuracy for
different values of C and γ . A multistage grid search
(Fig. 11) is then helpful in order to find the required
best accuracy.

An illustration of the classification module is pre-
sented in Fig. 12. The parameters Copt and γopt repre-
sent the optimal configuration of the classifier parame-
ters and selected for the classification of the test data. In
the case of multi-class SVM, the method used must be
considered together with parameter selection strategy.
As an example, there are two options to implement
the “one-against-one” method considering parameter
selection: First, for any two classes of data, the para-
meter selection is conducted to have the best (C ,γ ). The
second option is that for each (C , γ ), cross-validation
in combination with the “one-against-one” method is
used for estimating the performance of the model. A
sequence of preselected (C , γ ) is tried to select the
best model [5]. Considering the overall accuracy, one
parameter set for each individual decision function may
lead to over-fitting.
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The generation of features using wavelets introduces
diversity of choices according to the wavelet method
and mother wavelet selection, and the level of decom-
position, in addition to the way in which the gener-
ated subcomponents are handled. An illustration of
the different approaches for features generation using
wavelets is presented in Fig. 13.

In order to improve the classification process, the
feature set is manipulated for the following purposes:

• Generation of further features
• Improvement in the existing features
• Combination of features

The information content of the detail and approxima-
tion levels of the DWT represents a possible indicator
of the system states and accordingly a source of new
features. In order to improve the existing features, some
features are subjected to elimination because of the low
content of classification indicators. The elimination of

the coefficients with low classification abilities enables
more focus on the data segments with higher CV accu-
racy. The proposed procedure for this concept is:

1. The best CV for all coefficients is determined.
2. One coefficient is eliminated and the CV is deter-

mined again.
3. In case that the CV accuracy after elimination is

at least the same as before, the CV is assigned as
the new best CV and the coefficient is permanently
eliminated. Otherwise, the coefficient remains in
the feature set.

4. Steps 2 and 3 are implemented for all the coeffi-
cients.

In order to combine features to generate new ones, some
statistical measures are used. The root-mean-square
(RMS), as an example, is used to quantify the wavelet
coefficients generated within the analyzing window, as
a measure of the magnitude of varying quantities.

4.1 Implementation and discussion

The sensor data provided from the considered rotor
consist of four time series of vibration acceleration sig-
nals (Lx, Ly, Rx, and Ry) taken at the two bearing ends
(L and R) of the rotor in two independent coordinates,
horizontal (x) and vertical (y), taken from a stationary
region. A time window of 1 s with a sample rate of 10
kHz is applied. A state set of measurements consists
of 51 measurement signals of the size of 5000 points.
The rotational velocity of the rotor remains constant on
9000 rpm.

To apply the DWT, an analyzing window of a suit-
able length is shifted across the data stream generat-
ing the wavelet parameters at a suitable level of the
wavelet analysis. In this contribution, the SVM method
is used, therefore after a training phase a model for
the classification of test data is developed. The corre-
sponding transformation defines a dependency (map-
ping) between the indicating features and the system
state using a separating hyperplane with a maximum
separation. The main advantage of the SVM is its gener-
alization ability. Here the maximum margin criterion in
the process of selecting the separating hyperplane can
be realized. Another advantage of SVM is its robust-
ness against signal-related outliers using the so-called
penalty parameter, which allows controlling the mis-
classification error.

123



1164 D. Söffker et al.

2400 2500 2600 2700 2800

−15

−10

−5

0

5
x 10

−3

Lx Ly Rx Ry

2400 2500 2600 2700 2800
−4

−3

−2

−1

0

x 10−4

Chaotic

Stationary
noitisoP

Data points

Data points

(a)

(b)

noi ti so P
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The applied dataset is divided into two data subsets.
The first one is a training dataset of four states; no-crack
and three different small sizes of crack (hr = 0.0001,
0.0005, and 0.001). The second data subset includes
one state of comparatively bigger size of crack leading
to chaotic behavior of the rotor. An enlarged example
of the four signals is illustrated in Fig. 14 for stationary
crack-free behavior and hr = 0.022 cracked rotor. The
signals are understood as measurements taken from the
system from those nodes which can be measured. In
general, all signals shown result from simulations of
the cracked and uncracked rotor.

The two data subsets are tested in order to investi-
gate the influence of different artificial disturbances on
the classification ability. Two kinds of disturbances are
used. The signal S(ti ) is disturbed by a random noise
as

SRnd(ti ) = S(ti ) + Random {−10−5...10−5} (9)
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Fig. 15 Signal sample Lx with different types of noise

and by an amplitude-dependent disturbance as

SAmp(ti ) = S(ti )(1 + 0.5Random {0...1}). (10)

The influence of the disturbances on the signal Lx
is enlarged as shown in Fig. 15.

The cross-validation (CV) is used as a measure for
the quality of classification, if no test dataset is avail-
able. The application of scanning window is adjusted to
generate 51 measurements for each crack state in order
to have sufficient CV estimation for the classification
ability.

The four crack states are considered as four classes
for training. The classification results are summarized
in Table 1. The best classification ability (100 %) is
achieved by the vertical measurements (y) in case of
random noise (Rnd.). The CV of the measurements in
the right side of the rotor (Rx and Ry) is generally better,
in which are the levels 5 and 6 give the best scale level
of the DWT. These two levels are generally better also
in case of amplitude-dependent disturbance (Amp.), in
which the horizontal measurements (x) perform better.

Furthermore, the three crack states are combined
in one class as cracked rotor. By not considering the
differences between the crack sizes, the focus is put
on size-independent classification. The classification
results are summarized in Table 2. The same previ-
ous number of measurements is considered, thus 51
measurements for the class “no-crack” and 153 mea-
surements for the class “crack,” accordingly, the worst
CV accuracy is 75 %. The results are coinciding with
those presented in Table 1. In addition to the approx-
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Table 1 CV results for classification of four crack classes with different noises (%)

Feature Lx Rnd. Lx Amp. Ly Rnd. Ly Amp. Rx Rnd. Rx Amp. Ry Rnd. Ry Amp.

RMS 25 25.9 29.9 24 40.2 62.7 64.2 29.9

Detail 1 36.3 36.2 29.9 53.9 25 50 28.9 37.7

Detail 2 33.3 25 27.9 42.1 35.2 50.9 30.8 38.7

Detail 3 30.8 38.7 37.7 35.7 25.9 43.1 35.2 40.1

Detail 4 28.4 71.1 32.3 33.3 49 72.5 60.2 32.8

Detail 5 44.1 77.4 47.5 30.8 70 89.2 83.3 46

Detail 6 37.2 63.7 50 32.3 75.9 89.7 87.7 44.1

Detail 7 25.9 25.9 27.4 26.4 35.2 37.2 37.2 29.9

Detail 8 31.3 44.6 32.8 34.8 33.8 52.4 32.8 25

Detail 9 29.9 36.2 25 35.2 34.8 50 27.9 31.8

Detail 10 29.9 37.7 33.3 26.9 34.8 36.2 32.8 33.3

Approx. 32.8 27.9 100 93.6 28.4 35.7 100 88.7

All feat. 36.2 55.4 58.8 65.6 57.8 79.4 82.8 54.9

Table 2 CV results for classification of two crack classes with different noises (%)

Feature Lx Rnd. Lx Amp. Ly Rnd. Ly Amp. Rx Rnd. Rx Amp. Ry Rnd. Ry Amp.

RMS 75 75 75 75 75 75 75 75

Detail 1 75 75 75 75 75 75.4 75 75

Detail 2 75 75 75 75 75 75 75 75

Detail 3 75 75 75 75 75 75 75 75

Detail 4 75 75 75 75 79.4 81.3 82.3 75.9

Detail 5 75 79.9 75 75 76.9 88.7 81.3 75

Detail 6 75 75 75 75 78.9 91.6 86.2 75

Detail 7 75 75 75 75 76.9 75 75.9 75

Detail 8 75 75 75 75 75 75 75 75

Detail 9 75 75 75 75 75 75 75 75

Detail 10 75 75 75 75 75 75 75 75

Approx. 75 75 100 95.1 75 75 100 88.7

All feat. 75 75.9 75.9 75.4 75 79.4 81.8 75

imation level of the vertical measurements (y), the
detail levels 4–6 are best candidates for classifica-
tion. As a conclusion, the classification between the
states no-crack and small-sized crack is considered
reliable.

Additionally, a larger size of crack (hr = 0.022)
leading to chaotic behavior of the rotor is generated
by 51 measurements in order to investigate classifica-
tion ability against a state of no-crack. As a result, and
considering all the features together, a CV accuracy of
100 % is achieved independent of the state of the dis-
turbance. In order to investigate the robustness of the

classification, the classifier is trained by the four classes
mentioned in Table 1 and tested by the bigger sized
crack mentioned above. Individual features and mini-
mum CV accuracy of 70% are considered. The alloca-
tion of the 51 test measurements into the four classes
is introduced in Table 3. With the exception of Rx and
one Ry measurements with random noise, all the other
individual features classify the test measurements as
cracked. This is an indication of reliable parameters for
classification. Inconsistently, the test measurements in
the table are most frequently classified as 0.0005 class
crack.
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Table 3 Classification of the chaotic crack state in four crack classes

Measur. Feature CV Crack size

Disturb. (%) hr = 0.0 hr = 0.0001 hr = 0.0005 hr = 0.001

Lx Amp. Detail 4 71.1 0 0 0 51

Detail 5 77.4 0 0 0 51

Ly Rnd. Approx. 100 0 0 51 0

Ly Amp. Approx. 93.6 0 0 51 0

Rx Rnd. Detail 5 70 19 8 23 1

Detail 6 75.9 4 17 30 0

Rx Amp. Detail 4 72.5 0 0 38 13

Detail 5 89.2 0 0 51 0

Detail 6 89.7 0 7 44 0

Ry Rnd. Detail 5 83.3 0 0 51 0

Detail 6 87.7 0 0 51 0

Approx. 100 1 0 50 0

Ry Amp. Approx. 88.7 0 1 50 0

A signal sample for a period of 4 s of rotor run is con-
sidered, including the stage of starting up, in order to
further investigate the separability of the size of crack
states and the remaining service life. To apply the DWT,
an analyzing window of a suitable length is required.
Here the most appropriate wavelet mother function is
used. Different wavelet mother functions are tested on
the system in different levels and parameters in order
to find the most crack state indicators separating the
states. The root-mean-square (RMS), as a measure of
the magnitude of varying quantities, is used to quan-
tify the wavelet parameters generated within the ana-
lyzing window. The tested wavelet mother functions
include haar, dmey, sym, and db. The best results are
obtained in the decomposition level 6 using the dis-
crete meyer (dmey) wavelet mother function (Fig. 16),
characterized by the highest separability of the crack
indicators and a homogenous applicability independent
of the place of application within the data. It should be
noted that the choice of the mother wavelet as well
as the observed result that using the coefficients from
decomposition level 6 will give the best results, can-
not be generalized. This result is (as usual using these
approaches) obtained by practical comparisons.

The resulting RMS measures and a related moving
average smoothing of the noisy signal Ry are shown
in Fig. 17. The results are presented for four different
crack size levels of the considered rotor. It can be seen
that the separability of the crack levels is not affected
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Fig. 16 Meyer wavelet mother function
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Fig. 17 RMS and smoothing; Ry, dmey, level 6

by the non-stationary startup of the rotor. It can also be
seen, that based on fewer measurements, good results
can be achieved.
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Fig. 18 RMS and smoothing of different combinations for com-
parison. a RMS and smoothing; Ly, dmey, 6; b RMS and smooth-
ing; Ry, haar, 6; c RMS and smoothing; Ry, db4, 6; d RMS and
smoothing; Ry, sym, 6

For comparison, alternative four different results are
shown in Fig. 18. The presented figures result from
the same dataset used in Fig. 17 but using less appro-
priate DWT parameters and mother wavelets. In the
results presented in Fig. 18a, b, the high level of fluc-
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Fig. 19 Effect of damping; Ry, dmey, 6

tuation and the non-homogenous solution prevent the
applicability of the solution. The other two wavelet
functions presented in Fig. 18c, d result in RMS range
of cracks 1.82e−6 and 1.83e−6, respectively, whereas
the selected wavelet (Fig. 17) results in higher RMS
range (2.02e−6) which means better separability of
the different crack sizes and accordingly more accurate
results of the crack detection and evaluation system. In
a window of 0.5 s at the end of the data, the effect
of changing the rotor system damping is presented as
minimum in Fig. 19 for the selected wavelet (Fig. 17).

The task of the SVM classification module is to eval-
uate the extracted features which contain the indica-
tors of the system state in order to achieve a statement
about the existence and size of the cracks and faults to
be detected. The fusion function of the SVM classifier
helps to obtain a more reliable complementary sensor
array of the four filtered sensor data provided by the
rotor system.

The required evaluation of the extracted features
can be provided in two ways: binary classification and
multiclass classification. In the binary classification the
classifier is trained using binary training data to clas-
sify two classes; here: cracked and non-cracked rotor.
In this case the required quantification of the crack size
is calculated using the position and distance of the spec-
ified state from the separating hyperplane in the feature
space. In the case of using the multiclass classification,
the training data used to train the classifier are grouped
according to the size of the crack into segments coincid-
ing with the required scale and accuracy of the size of
the cracks. Furthermore, fine-tuning of the results can
be done using the distance of the state from the corre-
sponding separating hyperplane in the feature space.

The training result of the multiclass classification of
the previously mentioned rotor implementation is given
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in a two-dimensional view in Fig. 20. The class board-
ers of the crack size classes can be clearly detected. It
can also be seen that the data resembles one-directional
trajectory in the direction of the increasing crack size.

The decision function of the binary classification of
the rotor implementation is presented in Fig. 21. The
decision boarder in the figure represents the separat-
ing hyperplane between the two classes of the training
data; cracked and non-cracked rotor. The four train-
ing datasets of the four different crack sizes which are
mentioned in Fig. 20 are recognized in Fig. 21 as dif-
ferent distances from the decision boarder. In case of
more data samples available representing all the crack
sizes in between, the decision function would resem-
ble a one-directional trajectory in the direction of the
increasing crack size. In this case, the size of the crack
can be defined implicitly by using the distance from the
decision boarder.

For remaining life prognostic purposes, the decision
function can be undergone an extrapolation process to
reach a pretrained crack safety limit, as shown in [25].

The previous discussion indicates that the binary
classification may be more suitable for the crack
size quantization. This is concluded from the one-
directional trajectory of the decision function in the

direction of the increasing crack size. This conclusion
is supported by the fact that the SVM classification is
originally and more efficiently a binary classification
[1].

5 General discussion of the approaches to be
compared

Many publications have been published presenting the
successful applications of many methods representing
the two mentioned approaches of monitoring system
design. Indeed, it is quite difficult to estimate how suc-
cessful an approach is, compared to the other for many
reasons. In the literature, the successful implemented
algorithms have generally been limited to faults which
are basic in comparison. Very few publications have
dealt with realistic behaviors of faults and cracks which
might appear even simultaneously. Additionally, most
of the published systems have been implemented and
validated on laboratory structures which could essen-
tially differ from the real world industrial systems. The
lack of benchmark measurements and assessment cri-
teria for the systems make it even harder to compare.
However, some general inferences can be concluded
from the study of both approaches.

The main advantage of model-based approaches is
that the usually available, very detailed, and physical-
oriented understanding of the fault and crack effects
acting to the system is preserved and can be used by
the approach to compensate measurements. The typi-
cal and known interpretation problem of signal-based
approaches is avoided using problem-related indicators
like the introduced stiffness change in rotating coordi-
nates, showing a measurement-based reconstruction of
the physical breathing of the cracked rotor. The intro-
duced approaches allow also the implicit definition of
the crack depth, if the measurements are noise free. One
of the drawbacks of this kind of approaches is the neces-
sity of fault models, as well as the assumed hypotheses
about the location of the fault or the crack. In general,
the success of all methods of analytical redundancy is
essentially defined by the quality of the model. Mod-
eling faults inevitably lead to errors which could lead
with the possibly existing real effects from the rotor
dynamics to the fact that corresponding faults cannot
be distinguished in principal. Indeed, a successful rotor
modeling should consider the dynamics of the related
foundation which is much more complicated.
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Modern signal-based approaches, on the other hand,
are based on robust machine learning and feature
extraction techniques, making the detection more reli-
able and robust even for small cracks. The used methods
are more robust against disturbances and noises. This
advantage makes them more suitable for realistic con-
ditions in the industry. Additionally, the simplicity of
the signal-based techniques makes them more appro-
priate for real-time systems.

Considering the targets of the detection systems,
more reliable fault localization could be achieved by
model-based systems, although multiple fault local-
ization requires the establishment of multiple model
system with locations hypothesis. On the other hand,
fault severity estimation could be more effective using
modern feature extraction and classification techniques
adopted by signal-based systems.

The field of sensor and decision fusion is one pos-
sible method to combine the two main approaches [2].
Another alternative is to use a model-based system to
recognize the changing service conditions and opera-
tion setpoint, in order to adjust the adaptable feature
extraction and classification in the concurrent signal-
based system.

6 Short summary and conclusion

The two main approaches used for crack detection
and prediction in rotating machinery: model-based and
signal-based approaches, are investigated by one typi-
cal example. Several strength and weak points are dis-
cussed and compared for the two approaches using two
representative applicable methods, in order to achieve
a comparative overview of the available techniques.

Beside an observer-based solution predicting crack
depth related information, a new signal-based/data-
driven approach is introduced to improve the detection
problem with respect to noise.

The PI-observer-based method is considered as
modern model-based technique, to give indication
about possibilities and limitations of such kind of
methods. A novel signal-based approach is introduced,
based on SVM and wavelets as modern machine learn-
ing techniques.

Modern machine learning techniques are found
more robust against disturbances and noises, whereas
the model-based techniques are more adaptable with

load changes of the system and more able to be con-
nected with system physics and modeling parameters.
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