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Abstract Based on the state-dependent Riccati equa-
tion (SDRE) technique, in this paper, a suboptimal pin-
ning control scheme is proposed to synchronize lin-
early coupled complex networks. The Lyapunov direct
method is used to analyze the stability of the closed-
loop control system, where it leads to a LMI crite-
rion for pinning synchronization. It is shown that the
time interval for synchronizationof the proposedSDRE
controllers is faster comparing with the results in the
latest literatures. It is also shown that the minimum
required coupling weights for the network synchro-
nization in a finite desired time is decreased when
some specified nodes in the network are pinned with
the SDRE controllers. Based on the proposed crite-
rion for pinned nodes selection, the network perfor-
mances for different topological structures are inves-
tigated and the results are compared. The results indi-
cate that the couplingweights for network synchroniza-
tion in finite desired time in random Erdos Reiny net-
works areminimumwhen the pinned nodes are selected
based on the minimum matching theorem. In small-
world and scale-free networks, the minimum required
coupling weight for network synchronization in finite
desired time decreases when the highest degree nodes
are pinned.
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1 Introduction

The performance of the synchronized motion in com-
plex networks has a key role in complex network
dynamical behavior [1]. Tuning the couplingweights in
a typical complex network can change the error states
minimization and final settling time in synchronized
motion. It is shown that high coupling weights are
needed for the desired performance in synchronized
motions. There are several methods to enhance syn-
chronizability of complex networks such as adding
or removing some components, changing the link
rewiring or tuning theweights [2]. However, the perfor-
mance of the synchronized motion has not been inves-
tigated in these methods. In real networks, it is not log-
ical and practically impossible to change the network
topology or the coupling weights to improve the per-
formance of the synchronized motion. An applicable
method for global synchronization and its performance
improvement is the pinning control. There are two chal-
lenging problems in the pinning control methods. The
first is the quantity and the types of pinned nodes and
the second is the controller scheme method. To answer
the first problem, several recent researches have been
done based on various controllability meters [3–7]. To
answer the second problem, several pinning control
schemes are proposed to synchronize the complex net-
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works. Pinning control with error states feedback con-
trollers [8,9], adaptive controllers [10,11] and impul-
sive controllers [12] are among the recent researches.
A self-feedback forcing current in some neurons gen-
erating a local closed-loop system has also been inves-
tigated recently [13]. However, in these recent articles,
none of the main performance characteristics includ-
ing error state minimization, control effort limitation
and settling time have been investigated and analyzed.
This paper aims to apply state-dependent Riccati equa-
tion (SDRE) approach as a pinning control scheme to
complex networks for global synchronization and its
performance improvement. The method of SDRE has
recently been used for control problems involving non-
linear systems [14–16]. This theory is motivated by the
fact that, for a linear system, linear quadratic regula-
tor (LQR) approach can be effectively used to obtain
control laws.

In this paper, we aim to find relations between com-
plex network structure properties and controlled system
performance. Also we aim to find relations between
the minimum required coupling weights for network
synchronization in finite desired time and controllers
parameters. Another target in this paper is the perfor-
mance analysis of the networks with different topologi-
cal structures (Erdos Reiny networks [17], small-world
networks [18] and scale-free networks [19]), while the
SDRE controllers and several pinned nodes selection
criteria are used.

This paper is organized as follows: In the second sec-
tion, some basic definition, preliminaries, assumption
and lemmas are outlined. Also error dynamic equa-
tion is introduced. In Sect. 3, the SDRE controllers for
pinning control scheme are given. The stability analy-
sis and finding synchronization criteria are also pre-
sented in this section. An illustrating example is shown
in Sect. 4. The pinning control performance analysis for
several networkmodels and pinned nodes selection cri-
teria are followed in Sect. 5. This section also includes
the comparisonbetween the proposed resultswith some
recent literatures. The final section is the conclusion.

2 Basic definition, preliminaries, assumptions
and SDRE controllers

2.1 Basic definition and preliminaries

In this section, some basic definitions, preliminaries
and required assumptions on nodes and network struc-

ture are presented. A complex network consisting of N
identical linearly diffusive coupled nodes with identi-
cal n dimensional dynamical system in individuals is
described by the following ODE set:

ẋi (t) = fi (xi (t), t) +
N∑

j=1
j �=i

ci j ai jΓ
(
x j (t) − xi (t)

)
,

i = 1, 2, . . . , N (1)

where xi = (xi1, xi2, . . . , xin)T ∈ Rn is the state
vector of i th node, fi : Rn × [0,∞] → Rn is con-
tinuously differentiable vector function that represents
node dynamic. The coupling matrix A = (ai j ) ∈
RN×N represents the topology structure of the net-
work. If node i is connected to node j , then ai j =
1; otherwise, ai j = 0. ci j is the coupling weights
between node i and node j , Γ = (τi j ) ∈ Rn×n is
the inner matrix linking coupled variable. Let some
pairs (i, j), 1 ≤ i, j ≤ N , with τi j �= 0, then the
two coupled nodes are linked through their i th and j th
state variables, respectively. Another form for Eq. (1)
is based on Laplacian matrix. The Laplacian matrix of
the network, L = (li j ) ∈ RN×N , L = D − A, D =
diag {d1, d2, . . . , dn} , di = ∑N

i=1 ai j , for a connected
network is irreduciblewith eigenvalues 0 = λ1 < λ2 ≤
· · · ≤ λN . Here, λ2 > 0 is the algebraic connectivity
index of the network. For directed networks, however,
L is generally asymmetrical, so its eigenvalues are usu-
ally complex values. Therefore, the Eq. (1) is rewritten
in the following form:

ẋi (t) = fi (xi (t), t) +
N∑

j=1

ci j li jΓ x j (t),

i = 1, 2, . . . , N (2)

2.2 Assumptions

The following assumptions are considered in the net-
work topology.

– The dynamics in all nodes are identical.
– The coupling weights in the network are identical.
– The adjacency matrix is taken by generating the
network topology models.

The next assumption is defined for the dynamics of
nodes:

The nonlinear function f (.) is assumed to satisfy the
Lipschitz condition; There exists a constant� such that
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Pinning control for synchronization of nonlinear complex dynamical network 1005

‖ f (u) − f (v)‖ ≤ ‖�u − v‖ holds for any u, v ∈ Rn .
In this paper, we assume that fi (xi (t), t) satisfy the
Lipchitz condition.

Base on above assumptions, Eq. (2) is rewritten in
the following form:

ẋi (t) = f (xi (t), t)+c
N∑

j=1

li jΓ x j (t) i=1, 2, . . . , N

(3)

where, f (.) is a vector function that represents the
identical nodes and c is the identical coupling weight
between the coupled nodes.

2.3 Synchronized motion and error states equations

A network with Eq. (3) is realized globally synchro-
nization if:

lim
t→∞ ‖xi (t) − x j (t)‖ = 0, for i, j = 1, 2, . . . , N

(4)

where, ‖.‖ is the Euclidean norm. Let s(t) ∈ Rn be
either the desired states, equilibrium point, a periodic
orbit (limit cycle) or chaotic orbit, then the problem of
pinning controlled synchronization of network (3) is to
directly control a fraction of nodes in the network to
achieve;

limt→∞ ‖xi (t) − s(t)‖ = 0 i = 1, . . . , N (5)

where the homogeneous stationary state vector s(t) sat-
isfies the following equation:

ṡ(t) = f (s(t), t) (6)

To achieve the goal of the control system, we apply
the pinning control strategy on a small fraction δ (0 <

δ � 1) of the nodes in the network (3). Suppose that
nodes i1, i2,, . . . , ik are not under control and nodes
ik+1, ik+2,, . . . , iN are selected for pinning control.
Then the controlled network is described by:

ẋi (t) = f (xi (t), t) + c
N∑

j=1

li jΓ x j (t),

i = 1, 2, . . . , k

ẋi (t) = f (xi (t), t) + c
N∑

j=1

li jΓ x j (t) + ui ,

i = k + 1, k + 2, . . . , N (7)

The objective is to find some appropriate controllers
ui ∈ Rn such that the solutions of the controlled net-
work (7) synchronize with the solution of (6), in the
sense that Eq. (5) holds. To find the error dynamical
network model, we define the error states as;

ei (t) = xi (t) − s(t) ei (t) ∈ Rn i = 1, 2, . . . , N (8)

Subtracting (7) from (6) yields;

ėi (t) = f (xi (t), t) − f (s(t), t) + c
N∑

j=1

li jΓ e j (t),

i = 1, 2, . . . , k

ėi (t) = f (xi (t), t) − f (s(t), t) + c
N∑

j=1

li jΓ e j (t) + ui ,

i = k + 1, k + 2, . . . , N (9)

2.4 SDRE controllers

Consider a deterministic, infinite horizon nonlinear
optimal regulation (stabilization) problem, such that it
is full state observable, time invariant and affine in the
input, represented as;

ẋ = g(x) + B(x)u(t), x(0) = x0 (10)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector, functions g : Rn → Rn , B : Rn → Rn×m , and
B(x) �= 0 ∀ x . Without loss of generality, the origin
x = 0 is assumed to be an equilibrium point. The min-
imization of the following infinite time performance
index is desired:

J (x0, u(.))

= 1

2

∫ ∞

0

{
xT (t)Q(t)x(t) + uT R(t)u(t)

}
dt. (11)

The state and input weighting matrices are assumed
state dependent such that Q : Rn → Rn and R : Rn →
Rn×m . It is assumed that Q and R are symmetric and
R is positive definite,

Q(x) ≥ 0, R(x) > 0.

Since g (0) = 0 and g(.) ∈ C1 (Rn), the system (10)
is written as;

ẋ = A(x)x + B(x)u(t), x(0) = x0 (12)

where g(x) = A(x)x . In Eq. (12), A(x) ∈ Rn×n and
B(x) ∈ Rn×m are state-dependent coefficient (SDC)
matrices which bring the nonlinear system described
by (10) into a linear-like representation. Thesematrices
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are not unique. However, it is advisable to select them
such that the matrices A(x) and B(x) are controllable.
The state-dependent controllability matrix is;

M(x) =
[
B(x) A(x)B(x) · · · An−1(x)B(x)

]
(13)

In order to control the nonlinear system, the above
matrix must have full rank for the domain for which
the nonlinear system is controlled. Some optimal con-
trol problems need constraints that must be applied on
state variables or the control input. Choice of weight
matrices Q(x) and R(x) plays an important role in sat-
isfying these optimal control problems. Hamiltonian
matrix for the optimal control problem is used to solve
it. The control input is;

u(x) = −R−1(x)BT (x)P(x)x . (14)

which is the state feedback control input with the fol-
lowing feedback gain:

K (x) = −R−1(x)BT (x)P(x) (15)

P(x) is a symmetric state-dependent and positive def-
inite matrix which is given by the solution of algebraic
Riccati equations:

AT (x)P(x) + P(x)A(x)

− P(x)B(x)R−1(x)BT (x)P(x) + Q(x) = 0 (16)

Dynamics of the closed-loop system is obtained accord-
ing to the following equation:

ẋ = (A(x)x − B(x)K (x)) x (17)

3 Pinning control of the complex network
with SDRE controllers

3.1 Extended linearization of the complex network
model and controlled network equations

To use the SDRE method, the Eq. (9) must be rep-
resented in the form of pseudo-linear given by (12).
We use the Jacobin extended linearization for Eq. (9)
[20,21]. To calculate the Jacobin matrix, the following
definition hold:

Fi = f (xi (t), t) − f (s(t), t) = f (ei (t), t) Fi ∈ Rn

Then, the Jacobin matrix is;

Ā(e)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
∂F1
∂e1

]
⎡

⎢⎣
l12 0 0

0
. . . 0

0 0 l12

⎤

⎥⎦ · · ·
⎡

⎢⎣
l1N 0 0

0
. . . 0

0 0 l1N

⎤

⎥⎦

⎡

⎢⎣
l21 0 0

0
. . . 0

0 0 l21

⎤

⎥⎦
[

∂F2
∂e2

]
. . .

⎡

⎢⎣
l2N 0 0

0
. . . 0

0 0 l2N

⎤

⎥⎦

.

.

.
.
.
.

.

.

.
.
.
.⎡

⎢⎣
lN1 0 0

0
. . . 0

0 0 lN1

⎤

⎥⎦

⎡

⎢⎣
lN2 0 0

0
. . . 0

0 0 lN2

⎤

⎥⎦ . . .
[

∂FN
∂eN

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where, Ā(e) ∈ R(n×N )(n×N ).

The diagonal elements of Jacobin matrix are lin-
earized nodes, and non-diagonal elements are diagonal
matrices with Laplacianmatrix elements. Thus, the lin-
earized network is represented by a (n × N ) (n × N )

matrix.Also the pinnednodes are represented bymatrix
B̄(e). Therefore, the pseudo-linear form of Eq. (12) is
obtained according to the following equation:

ė = Ā(e) + B̄(e)u(t) e, u ∈ R(n×N ),

Ā(e) ∈ R(n×N )(n×N ), B̄(e) ∈ R(n×N )(n×N )

(19)

According to equations represented in Sect. 2.3, equa-
tions of the controlled network with pseudo-linear Eq.
(19) with the SDRE controllers are represented as fol-
lows;

ė = Ā(e) − B̄(e)u(e) (20)

u(e) = −cK (e)e (21)

K (e) = −R−1(e)B̄T (e)P(e) (22)

ĀT (e)P(e) + P(e) Ā(e)

− P(e)B̄(e)R−1 B̄T (e)P(e) + Q(e) = 0 (23)

3.2 Pinning synchronization criterion

The criterion for the stability of synchronized motion
of the pinning controlled complex network with the
proposed SDRE controllers is discussed here. The Lya-
punov direct method is used to analyze the stability of
the closed-loop control system with Eqs. (19–23). In
the next theorem, pinning synchronization criterion is
derived.
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Pinning control for synchronization of nonlinear complex dynamical network 1007

Theorem 1 Let assumptions in 2.2 hold, then the con-
trolled network (9) with controllers in (21) is globally
synchronized if the following criterion holds;

(IN ⊗ ΛΓ ) + c (L ⊗ Γ ) − c (K ⊗ Γ ) < 0 (24)

where ⊗ is the Kronecker product, IN is identical
matrix and K is calculated by the following equation:

K (e) = −R−1(e)B̄T (e)P(e)

P(e) is a symmetric state-dependent and positive def-
inite matrix which is given by the solution of the alge-
braic Riccati equation (23).

Proof Consider the candidate Lyapunov functional:

V (t) = 1

2

N∑

i=1

eTi (t)ei (t) (25)

The derivative of V (t) along the trajectories of (6) is;

V̇ (t) =
N∑

i=1

eTi (t)ėi (t) (26)

Substitution of Eqs. (9) and (21) into (26) gives:

V̇ (t) =
N∑

i=1

eTi (t)

⎡

⎣

⎛

⎝ f (ei (t) , t) + c
N∑

j=1

li jΓ e j (t)

⎞

⎠

⎤

⎦

− c
N∑

i=1

eTi (t)Ki (e)Γ ei (t) (27)

Based on the Lipchitz condition in Sect. 2, Eq. (27)
may be written in the following form:

V̇ (t) ≤ eT (t) [(IN ⊗ �Γ ) + c (L ⊗ Γ )

− c (K ⊗ Γ )] e j (t) (28)

We must have;

(IN ⊗ �Γ ) + c (L ⊗ Γ ) − c (K ⊗ Γ ) < 0 (29)

By substituting Eq. (21) into (30), the following crite-
rion has been established:

(IN ⊗ �Γ ) + c (L ⊗ Γ ) − c
(
−R−1(e)B̄T (e)P(e) ⊗ Γ

)

< 0 (30)

�
Corollary 1 The LMI criterion in (30) is simplified
based on the lemmas in [8] as;

θ IN + c
(
L + R−1(e)B̄T (e)P(e)

)
< 0 (31)

where, θ = λmax

(
Λ+ΛT

2

)
, Then, the coupling weight

inequality c is;

c >
θ

λmax (L) + λmax
(
R−1(e)B̄T (e)P(e)

) (32)

Remark 1 There are several methods to find the stabil-
ity condition of the synchronized motion in a complex
network [2]. But the value of the above LMI criterion is
to present a closed form relation between the network
characteristics and the controller parameters.

LMI criterion (32) plays a key role tofind the optimal
controlled nodes (driver nodes) in the pinning control
by the proposed controllers.Any selection of the pinned
nodes must satisfy the above LMI criterion. Next sec-
tion illustrates an example to verify these results.

4 Illustrating example

In this section, we will take a chaotic Lorenz system
given as nodes of complex dynamical networks to ver-
ify the effectiveness of the proposed scheme. The single
Lorenz system is described as follows:

ẋ(t) = σ (y(t) − x(t))

ẏ(t) = r x(t) − y(t) − x(t)z(t)

ż(t) = x(t)y(t) − γ z(t) (33)

where x, y and z are state variables and σ, r and γ

are system parameters. With the three real parameters,
σ = 10, r = 28, γ = 8/3 the system shows chaotic
behavior. The coupling configuration matrix is chosen
fromnetwork topologymodels. Alsowe selectΓ = I3.
The coupling configuration matrix is shown in Fig. 1:

Initial condition for this example is randomly
selected. Therefore, each node in the network has dif-
ferent trajectories due to the chaotic behavior and inher-
ently the network is not synchronized.

4.1 Analysis of the coupling weight effect
in the open-loop system

The coupling weights play an important role in the
synchronization of the complex network. Generally,
increasing the coupling weights improves the syn-
chronization motion of the complex networks. Some
researches have been done to investigate the effect
of the adaptive coupling weight on the synchronous
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Fig. 1 The network topology and equal adjacency andLaplacian
matrix

behavior in a complex network [8,22,23]. To investi-
gate the coupling weight effects on the synchronized
motion of the complex network, the error states, exi , of
the network in the above example are shown inFig. 2 for
different coupling weights. Similar results are obtained
for eyi , ezi .

Increasing the coupling weight, the error states con-
verge to zero in finite time and itmeans that the network
is synchronized. This conclusion means that a com-
plex Lorenzian network is synchronized in finite time
if there is sufficiently high coupling weight between
nodes. In the next subsection, we show that the net-
work synchronization is achieved in finite desired time
when the coupling weight is low (c = 1) and some
nodes are pinned by the proposed controllers.

4.2 Pinning control scheme on the network with
SDRE controllers

In this subsection, pinning control of the network in
the above example with SDRE controllers is investi-
gated. SDRE parameters are Q = I12 and R = I12.
For this example, θ is equal 37.5284 [22]. Without
loss of generality, we pin node 3 by a single SDRE
controllers. To evaluate c in Eq. (32), λmax(L) +
λmax(R−1(e)B̄T (e)P(e)) is plotted in Fig. 3.

It is shown that the minimum of the eigenvalue is
37.79, therefore the criterion result is c > 37.5284

37.79 >

0.993. We select c = 1 for pinning control of the
network. Figure 4 shows how the synchronization error
changes over time for SDRE controllers that satisfy the
sufficient conditions of Theorem 1.

Fig. 2 Error states exi of uncontrolled network. a c = 1, b c = 4

Fig. 3 λmax(L) + λmax
(
R−1 (e) B̄T (e) P (e)

)
versus time

Results in Fig. 4 show that if we pin some specified
nodes in network by SDRE controllers, the network is
synchronized in finite desired timewith lower coupling
weight. This means the performance of the network in
synchronization is improved.
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Pinning control for synchronization of nonlinear complex dynamical network 1009

Fig. 4 Error states exi , eyi , ezi for c = 1 and pin node 3 with
SDRE controller

4.3 Comparison between the SDRE and P action
controllers

In this subsection, to figure out the ability of the pro-
posed SDRE controllers in pinning control scheme, we
compare the performance of the synchronized motion
between P action and SDRE controllers in pinning con-

trol scheme. Results for pinning control with P action
can be found in [8]. The P action controllers are;

ui (t) = −cdiΓ ei (t) ∈ Rn i = 1, 2, 3, . . . , k

Let us apply the pinning control with P action to the
network. The criterion of the synchronized motion for
P action is,

c >
θ

|λmax(L − D)| (34)

By selecting node 3 to pin by this controllers, the min-
imum coupling weight to synchronize the network is
c > 37.5284

11.1261 > 3.3730. Figure 5 shows how the syn-
chronization error changes over time for pinning con-
trol with P action to satisfy the sufficient conditions of
Eq. (34).

To compare the performance of the pinning control
scheme with two proposed controllers, error states are
shown in Fig. 6 for equal coupling weight, c = 1 and
pin node 3 with P action controller.

Figures 4 and 6 show that the settling time for syn-
chronization with the P action is about 20 s, while it
reduces to 14 s with SDRE controllers. To complete
the comparison between the two proposed controllers,
the control efforts are shown in Fig. 7 for SDRE con-
trollers and in Fig. 8 for P action controllers.

These figures show that, the control efforts in SDRE
controllers are lower than P action controllers when
the node 3 is pinned and the coupling weight is c =
1. That means the pinning control with the proposed
SDRE controllers has better performance on both finite
settling time and control effort.

In the next section, the effect of the pining node
selection methods on the performance of synchronized
motion is investigated.

5 Analysis of the SDRE pinning control
performance for two pinned nodes selection
methods

In this section, SDRE pinning control performance for
several pinned nodes selection method is investigated.
First, the network topology is generated by three con-
ventional models (Erdos Reiny, small world and scale
free). Some recent works to select the driver nodes
in complex networks include: centrality-based meth-
ods [24], maximum matching method [4], gramian-
based method [7] and optimal pinning controllabil-
ity method [25]. In this paper, the two approaches
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Fig. 5 Error states exi , eyi , ezi for c = 3.3730 and pin node 3
with P action controllers

of centrality-based and maximum matching methods
have been selected for each network. For each selected
method, the minimum coupling weight that is required
to synchronize the network at the desired finite time is
calculated. The procedure is as follows:

GivenNode dynamics, network topology, pinned nodes
selection method, desired finite time, SDRE con-
troller’s parameters.

Fig. 6 Error states exi , eyi , ezi for c = 1 and pin node 3 with P
action controller

FindMinimum couplingweight to synchronize the net-
work for given data.

5.1 Illustrating example

In this example, a Lorenzian network with 10 nodes
is selected. Desired finite time to synchronization is
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Fig. 7 Control efforts ux , uy, uz for c = 1 and pin node 3 with
P action controller

ts = 14 s. SDRE controllers parameters are Q =
I10 and R = I10. Results for Erdos Reiny net-
work are shown in Table 1. Results for small-world
and scale-free networks are shown in Tables 2 and
3.

In Erdos Reiny networks, the minimum coupling
weight to synchronize the network in desired finite time
is minimum when maximum matching theory is used

Fig. 8 Control efforts ux , uy, uz for c = 1 and pin node 3 with
SDRE action controller

Table 1 Minimum coupling weight to synchronize Erdos Reiny
network with N = 10, P = 0.5 (connection probability) for
ts = 14 s

Pinned nodes selection criteria Minimum coupling weight

No pinning control c = 8.5

Centrality method c = 3

Maximum matching method c = 2.2
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Table 2 Minimum coupling weight to synchronize small-world
network with N = 10, P = 0.5 (rewiring probability) [25] for
ts = 14 s

Pinned nodes selection criteria Minimum coupling weight

No pinning control c = 8.5

Centrality method c = 1.2

Maximum matching method c = 3

Table 3 Minimum coupling weight to synchronize scale-free
network with N = 10, B = 0, m = 0.5 [25] for ts = 14 s

Pinned nodes selection criteria Minimum coupling weight

No pinning control c = 8.5

Centrality method c = 0.7

Maximum matching method c = 1.8

to identify pinned nodes. In small-world and scale-free
networks, the minimum coupling weight to synchro-
nize the network in desired finite time is minimum
when nodes with high-degree centrality criterion are
used to identify pinned nodes.

6 Conclusion

In this paper, the pinning control scheme is proposed to
synchronize linearly coupled complex networkwhere a
suboptimal control is used based on the state-dependent
Riccati equation (SDRE). The stability analysis of the
controlled network leads to a LMI criterion for pinning
synchronization. The performance of the controlled
network in the synchronized motion has been investi-
gated for several network topology models and several
pinned node selection methods. It is shown that the
minimum required coupling weight for network syn-
chronization in finite desired time is decreased when
some special nodes in the network are pinned with
SDRE controllers. Also it is shown that the duration for
the synchronization and control efforts of the proposed
SDRE controllers is lower comparing with the latest
results in P action controllers. The performance analy-
sis of the networks with different topological structures
has been investigated while the pinned nodes selection
criteria are used. Results shows that in random Erdos
Reiny networks, the couplingweight isminimumwhen
we select pinned nodes based on the maximum match-
ing theorem. In small-world and scale-free network if

we pin the highest degree nodes, theminimum required
coupling weight for network synchronization in finite
desired time is decreased. More investigation on the
self-feedback forcing current [13] may leads to new
designs in complex dynamical networks.
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Appendix

Complete proof of Theorem 1
Consider the Lyapunov functional candidate:

V (t) = 1

2

N∑

i=1

eTi (t)ei (t) (35)

The derivative of V (t) along the trajectories of (6) is;

V̇ (t) =
N∑

i=1

eTi (t)ėi (t) (36)

Substitution of Eqs. (9) and (21) into (36) in expanded
form forK , gives:

V̇ (t) =
N∑

i=1

eTi (t)

⎡

⎣

⎛

⎝ f (ei (t), t) + c
N∑

j=1

li jΓ e j (t)

⎞

⎠

⎤

⎦

− c
N∑

i=1

eTi (t)Ki (e) Γ ei (t) (37)

where, Ki ∈ Rn×n is a matrix whose elements are
calculated by Eq. (22) and link to e j (t) with linking
coupled variable Γ . Ki equal to unpinned nodes is zero
matrix.

Based on the Lipchitz condition in Sect. 2 and Kro-
necker product algebra, Eq. (37) may be rewritten as
following form:

V̇ (t) ≤ eT (t)
[
(IN ⊗ �Γ )

+ c(L ⊗ Γ ) − c(K ⊗ Γ )
]
e j (t) (38)

We must have;

(IN ⊗ �Γ ) + c (L ⊗ Γ ) − c (K ⊗ Γ ) < 0 (39)

By substituting Eq. (21) into (30), the following crite-
rion has been established:

(IN ⊗ �Γ ) + c (L ⊗ Γ )

− c
(
−R−1(e)B̄T (e)P(e) ⊗ Γ

)
< 0 (40)
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