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Abstract A compressed air generator hang under
vehicle is simplified as a suspension mass connected to
a vertical spring and two horizontal springs. It is con-
figured generally as a geometrical negative stiffness to
reduce dynamic stiffness. The periodic motion, chaotic
motion and bifurcation of the compressed air generator
model are investigated using the incremental harmonic
balance method in combination with arc length con-
tinuation technique. The stability and bifurcation route
are also distinguished with Floquet theory. The system
exhibits a period doubling bifurcation route to chaos in
different regions of excitation frequency. The stiffness
ratio of the vertical spring and the horizontal spring has
a significant influence on the dynamic response. When
the vertical stiffness is close to the stiffness at horizon-
tal direction, resonance occurs with the emergence of
the chaotic motion. The dynamic response of the vibra-
tion system can be improved by reducing the stiffness
in the horizontal direction to increase the stiffness ratio.
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1 Introduction

Methods of minimizing the vibrations consist of avoid-
ing resonance using vibration isolation mountings, and
dynamic vibration absorbers [1]. Up to now, there are a
number of strategies to control the response of a system
such as passive control, active control, semi-active con-
trol and hybrid control [2–6]. To achieve perfect per-
formance of a target system, the structures or mechan-
ical systems should be designed to suit different types
of loading, such as particularly dynamic and transient
loads, and to obtain high static stiffness resulting in
a small static deflection and a small dynamic stiffness
resulting in a low natural frequency [7,8]. A large num-
ber of papers have been devoted to studying, improving
and testing these relatively simple devices in vibration
suppression and isolation.

Eissa and Sayed [2] analyzed the vibration control
problem of a nonlinear spring–pendulum system sub-
ject to harmonic excitation. An active control via neg-
ative displacements feedback was performed to solve
pendulum vibration problem. Robertson et al. [9] ana-
lyzed a magnetic spring for the purposes of load bear-
ing with low stiffness. Gatti et al. [10] investigated the
dynamic behaviors of a coupled systemwhich includes
a nonlinear hardening system driven harmonically by
a shaker. The shaker is presented as a linear system,
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and the nonlinear part is modeled as Duffing oscil-
lator. Resonant interaction of the system parameters
and coexisting steady states are proved analytically
and numerically. More recently, Hortan et al. [11] have
studied the dynamics of pendulum driven through its
pivot moving in both horizontal and vertical directions.
They derived approximate analytical expressions rep-
resenting the position of the saddle-node bifurcation.
Liu et al. [12] investigated vibration transmissibility
of a passive nonlinear isolator which is constructed
by parallel adding a negative stiffness corrector to a
linear spring. Their research shows that the nonlinear
characteristic, such as softening and hardening stiffness
behaviors, depends on the magnitude of the excitation
level. Subsequently, an experimental rig [13] is set up
to validate their analytical results. Wu et al. [14] pro-
posed a novel magnetic spring with negative stiffness,
which possesses the characteristic of high-static-low-
dynamic stiffness (HSLDS).

Moreover, a novel configuration of passive stiffness
can also comprise a negative stiffness isolator. Le and
Ahn [15,16] designed a vibration isolation structure
to improve the vibration isolation effectiveness of a
vehicle seat under low excitation frequencies. For easy
application, they also give a procedure to minimize the
bending of the frequency response curve and reduce
the dimensionality of the system. Carrella et al. [7,8]
investigated an isolator, which consisted of mechanical
springs providing a positive stiffness, andmagnets in an
attracting configuration providing a negative stiffness.
The isolator can be performed with high-static-low-
dynamic stiffness. Zhou andLiu [17] developed a novel
vibration isolator withHSLDS characteristics. The nat-
ural frequency of the isolator was validated experimen-
tally, and the effectiveness of the isolator for vibration
isolation was tested. Tang and Brennan [18] studied
another type of HSLDS isolator, which is comprised
by a vertical spring and two horizontal springs. Their
work validated the advantage of the HSLDS isolator.

Many works have been devoted to the harmonic
vibration problem of the compressed air generator
[19,20]. In the present work, the nonlinear vibration
characteristic of a compressed air generator, with the
similar negative stiffness of that studied by Tang and
Brennan [18], is investigated. The main motivation of
this work is to investigate the dynamic behavior of a
compressed air generator and to provide a new strategy
to reduce the vibration of it in practice. Our proposed
model is simplified as a suspension mass connected to

a vertical spring and two horizontal springs, and a pen-
dulum is added as an unbalance mass of compressor. In
this paper, the incremental harmonic balance method
(IHBM) in combination with an arc length continua-
tion technique is used to obtain the periodic motion of
the present model subject to external harmonic exci-
tation. The stability of the periodic motion is inves-
tigated with Floquet theory. The performance of the
vibration system with different excitation frequencies
and stiffness ratios is investigated. A numerical inte-
gration is also adopted to validate the results obtained
by IHBM.

2 System model

The simple schematic model of a compressed air gen-
erator is shown in Fig. 1. In this work, the compressed
air generator is simplified as a suspension mass M .
The unbalanced mass m due to the generator is mod-
eled as one pendulum hangs from the suspension mass
[21]. The unbalanced massm is connected to the mass-
less rod whose length is l2. We define θ as the angle
displacement of the pendulum. Here, one should note
that this angle displacement is very small in practice,
but in our model it is not limited as its amplitude is
determined by the amplitude of the external excitation.
The suspension mass is constrained along the horizon-
tal and vertical directions by two massless rods and
springs with total stiffness kx and ky . Here we assume
that the spring in the Y direction is always kept ver-
tical. The motion of mass M in the X direction will
not affect the deflection of vertical spring. The length

Fig. 1 Schematic model of pendulum model
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of the two rods is both l1. Correspondingly, we define
x and y as the displacement of the suspension mass
along the horizontal and vertical directions, respec-
tively.

Let us first consider the suspension mass M . The
kinetic energy TM yields

TM = 1

2
M

(
ẋ2 + ẏ2

)
(1)

The potential energy becomes

VM = Mgy + 1

2
ky y

2 + 1

2

(
1

2
kx (x − x̃)2

+1

2
kx (x − x̃)2

)
(2)

here the deformation x̃ of spring along horizontal direc-
tion can be obtained as

x̃ = l1 −
√
l21 − y2 (3)

Similarly, the kinetic energy of mass m can be
expressed as

Tm = 1

2
m

[(
ẋ + l2θ̇ cos θ

)2 + (
ẏ + l2θ̇ sin θ

)2]
(4)

The potential energy of mass m becomes

Vm = mgy − mgl2 cos θ (5)

Combining Eqs.(1) and (4), the total kinetic energy
of the system is given by

T = TM + Tm = 1

2
M

(
ẋ2 + ẏ2

)

+1

2
m

[(
ẋ + l2θ̇ cos θ

)2 + (
ẏ + l2θ̇ sin θ

)2]
(6)

The total potential energy of the system becomes

V = VM + Vm = Mgy + 1

2
ky y

2

+1

2
kx

(
x − l1 +

√
l21 − y2

)2

+mgy − mgl2 cos θ (7)

The governing equations are derived byLagrange equa-
tion that is

d

dt

(
∂ (T − V )

∂q̇i

)
− ∂ (T − V )

∂qi
= Qi (8)

Appling the Lagrange equation, we can obtain the gov-
erning equations as

(M + m) ẍ + l2mθ̈ cos θ − l2mθ̇2 sin θ

+ kx

(
x − l1 +

√
l21 − y2

)
= Qx (9)

(M + m) ÿ + l2mθ̈ sin θ + (M + m) g

+ l2mθ̇2 cos θ

+ ky y − kx y
x − l1 +

√
l21 − y2

√
l21 − y2

= Qy (10)

m cos θ ẍ + m sin θ ÿ + l2mθ̈ + mg sin θ = Qθ (11)

There are two kinds of excitation for a compressed air
generator. One is road roughness which can excite the
train bogie. It is generally applied to the base. Another
excitation generateswhen the compressed air generator
works. In present work, a simple excitation is consid-
ered and assuming the external force is only applied on
the suspension mass along vertical direction, namely

Qx = 0, Qy = A0 sin�t, Qθ = 0. (12)

Moreover, the dissipation effects of the vertical and
horizontal dampers being in the forms of viscous damp-
ing, we thus obtain

(M + m) ẍ + l2mθ̈ cos θ − l2mθ̇2 sin θ

+ cx ẋ + kx

(
x − l1 +

√
l21 − y2

)
= 0 (13)

(M + m) ÿ + l2mθ̈ sin θ + (M + m) g

+ l2mθ̇2 cos θ + cy ẏ + ky y

− kx y
x − l1 +

√
l21 − y2

√
l21 − y2

= A sin�t (14)

m cos θ ẍ + m sin θ ÿ + l2mθ̈ + cθ θ̇

+mg sin θ = 0 (15)

here,

cx = 2ζ (M + m) ωx , ωx = √
kx/(M + m),

cy = 2ζ (M + m) ωx , cθ = 2ζml1ω
2
x .

Letting

x = l1X, y = l1Y, τ = ωωx t, (16)
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Eqs. (9)–(11) can be written in dimensionless forms

ω2 Ẍ + λm1ω
2θ̈ cos θ − λm1ω

2θ̇2 sin θ

+ 2ζω Ẋ +
(
X − 1 +

√
1 − Y 2

)
= 0 (17)

ω2Ÿ + m1λω2θ̈ sin θ + m1λω2θ̇2 cos θ + 2ζωẎ

+ (κ − 1) Y − Y
X − 1√
1 − Y 2

= f0 + f1 sin t (18)

ω2 cos θ Ẍ + ω2 sin θ Ÿ + λω2θ̈ + 2ζωθ̇

− f0 sin θ = 0 (19)

Here, m1 = m/(M + m), λ = l2/l1, κ = ky/kx , f0 =
−g/l1ω2

x , f1 = A/(M + m) l1ω2
x , ω = �/ωx . Noted

that, without loss of generality, the symbol t is still used
for indicating time, and Ẋ and Ẍ are derivatives with
respect to time t . Equations (17)–(19) can be written in
a matrix form as

ω2Mq̈ + ωCq̇ + Kq + NF (q, q̇) = F (20)

here,

q = [q1, q2, q3]
T = [X,Y, θ ]T (21)

M =
⎡
⎣

1 0 λm1 cos θ

0 1 λm1 sin θ

cos θ sin θ λ

⎤
⎦ , (22)

C =
⎡
⎣
2ζ 0 0
0 2ζ 0
0 0 2ζ

⎤
⎦ , (23)

K =
⎡
⎣
1 0 0
0 κ − 1 0
0 0 0

⎤
⎦ (24)

Fnonl =
⎡
⎢⎣

−λm1ω
2θ̇2 sin θ + √

1 − Y 2 − 1
m1λω2θ̇2 cos θ − Y X−1√

1−Y 2

− f0 sin θ

⎤
⎥⎦ (25)

F =
⎡
⎣

0
f0 + f1 sin t

0

⎤
⎦ (26)

As indicated inEqs. (17–19), the stiffness ratio κ and
f0 have a significant effect on the rigidity of the pendu-
lummodel, which may shift the natural frequency with
coupling of the nonlinear stiffness function. For exam-
ple, in Eq. (18), the nondimensional restoring force due
to coupling spring is given by

G (Y ) = (κ − 1) Y − Y
X − 1√
1 − Y 2

. (27)

In static analysis, X can be set as a constant parame-
ter. Then, the nondimensional stiffness in the vertical
direction can be obtained as

dG (Y )

dY
= (κ − 1) − X − 1√

1 − Y 2

−Y 2 X − 1(
1 − Y 2

)√
1 − Y 2

= κ − X + O
(
Y 2

)
(28)

Then, the linearized natural frequency is
√

κ − X ,
which is coupled with horizontal displacement. The
rest is nonlinear andnegative stiffness configuredby the
linear spring [22]. Here, one should note that the total
pendulum system is not as simple as above description.
The dynamic stiffness and norm natural frequency will
remarkably shift from

√
κ − X . To hand this isolation,

it is necessary to explore the nonlinear characteristics
of the overall system and determine their stabilities to
optimize the system parameters. Hence, in the follow-
ing subsection, the nonlinear characteristic of the pen-
dulum model relative to stiffness κ and f0 are investi-
gated theoretically.

3 IHBM and continuation

In this section, the IHBM is formulated to solve
Eq. (20). However, the effective mass matrixM is not a
constant which is related to the position of pendulum.
It is convenient to transform the dynamic model into
the following form:

ω2q̈+ωM−1Cq̇+M−1Kq+M−1Fnonl (q, q̇)=M−1F

(29)

As mentioned in Ref. [23], the first step of the IHBM is
a Newton–Raphson procedure. Let q j0 and ω0 denote
a state of vibration, and the neighboring state can be
expressed by adding the corresponding increments to
them as follows

q j = q j0 + 
q j , ω = ω0 + 
ω, j = 1, 2, 3,

(30)

or in matrix form

q (t) = q0 (t) + 
q (t) , ω = ω0 + 
ω (31)
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Substituting Eqs. (30) or (31) into Eq. (20) and neglect-
ing the higher-order incremental terms, one obtains the
following linearized incremental equation

ω2
0
q̈ + C̃
q̇ + K̃
q = R1 − R2
ω (32)

here the subscript 0 of []0 means that the function
locates at q0 (t) , q̇0 (t) , q̈0 (t), and

C̃ =
[
∂ωM−1Cq̇

∂q̇

]

0
+

[
∂M−1Fnonl (q, q̇)

∂q̇

]

0
(33)

K̃ =
[
∂M−1Kq

∂q

]

0
+

[
∂ωM−1Cq̇

∂q

]

0

+
[
∂M−1Fnonl (q, q̇)

∂q

]

0
−

[
∂M−1F

∂q

]

0
(34)

R1 = M−1 (q0)F −
[
ω2
0q̈0 + ω0M−1 (q0)Cq̇0

+M−1 (q0)Kq0 + M−1 (q0) Fnonl (q0, q̇0)
]
,

R2 = 2ω0q̈0 +
[
∂M−1Kq

∂ω

]

0

+
[
∂ωM−1Cq̇

∂ω

]

0
+

[
∂M−1Fnonl (q, q̇)

∂ω

]

0
.

(35)

The second step of IHBM is the harmonic balance pro-
cedure. Letting

q j0 (t) =
nc∑
k=1

a jk cos (k − 1) t +
ns∑
k=1

b jk sin kt

= CsA j ,


q j0 (t) =
nc∑
k=1


a jk cos (k − 1) t +
ns∑
k=1


b jk sin kt

= Cs
A j (36)

where

Cs = [1, cos t, . . . , cos (nc − 1) t, sin t, , . . . , sin nst] ,

A j = [
a j1, a j2, . . . , a jnc , b j1, b j2, . . . , b jns

]T
,


A j = [

a j1,
a j2, · · · ,
a jnc ,
b j1,
b j2,

. . . ,
b jns

]T
. (37)

Therefore, the vectors of the unknowns and their incre-
ments can be expressed as

q0 = SA,
q = S
A,

A = [A1,A2, . . . ,Am]
T ,


A = [
A1,
A2, . . . ,
Am]
T ,

S = diag [Cs,Cs, . . . ,Cs]

(38)

Then, substituting Eq. (38) into Eq. (32) and applying
the Galerkin procedure for one cycle, one can obtain
the following set of linear equations in terms of 
A
and 
ω:

Kmc
A = R̄ − R̄mc
ω (39)

where

Kmc =
∫ 2π

0
ST

(
ω2
0S

′′ + C̃S′ + K̃S
)
dτ,

R̄ =
∫ 2π

0
STR1dτ, R̄mc =

∫ 2π

0
STR2dτ

(40)

In Eq. (39), the number of the incremental unknowns
is greater than the number of equations available due to
the existence of
ω. In this paper, frequency ω is spec-
ified as a control increment, and then 
ω = 0, while
other increments are solved from Eq. (39). The initial
values are setting to zeros in the first iteration process.
The Newton–Raphson iteration is repeated until the
norm of the corrected vector R̄ is acceptably small
(10−5). Then, the periodic solution is obtained. It is
worth mentioning that the analytical expressions of the
matrices and the vector in Eq. (40) are not available due
to the existence of nonlinear restoring force. Numeri-
cal integration for the nonlinear parts is processed, the
numerical integration error is controlled and this strat-
egy is validated in our analysis by comparing with the
exact results with Runge–Kutta method.

In addition, in the nonlinear problem, it cannot be
avoided that the unstable dynamic response or unsta-
ble periodic solution such as snapback phenomena
[24–26] or jump phenomena [27,28] in gear dynam-
ics. A common way is to introduce the continua-
tion method, which can overcome this problem and
is adopted by many researchers to solve the nonlinear
problem recently, such as Grolet and Thouverez [29],
Dou and Jensen [30]. Ritto-Corrêa and Camotim [25]
reviewed several established continuation methods and
discussed their implementation issues. In the present
work, a modified Crisfield’s method proposed in [25]
is used to solve Eq. (39).

4 Stability of periodic solution

Once the periodic solution is determined, its stability
can be investigated by using the Floquet theory [31].
It is the same as Eq. (31), we can obtain the perturbed
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equation from Eq. (32) by letting R1 = 0,R2 = 0 and

ω = 0, and in the form

ω2
0
q̈ + C̃
q̇ + K̃
q = 0 (41)

This equation is a linear ordinary differential equation
with periodic coefficients in C̃ and K̃. Theoretically,
the stability of the periodic solution q0 corresponds to
the stability of the solution of Eq. (41).

Eq. (41) can be rewritten as

Ż = Q (t)Z (42)

where

Z = [

q,
q̇

]T
, Q =

[
0 I

−K̃/ω2
0 −C̃/ω2

0

]
, (43)

0 is a null matrix, and I is a unit matrix. Since each
component ofq0 is a periodic function of t with a period
T = 2π/ω, each element of −K̃/ω2

0 and −C̃/ω2
0 is

also periodic function with the same period T , namely
Q (t + T ) = Q (t). Directly, there is a fundamental
matrix solution Y which satisfies the matrix equation

Ẏ = Q (t)Y, (44)

and it is same for

Y (t + T ) = PY (t) , (45)

where P is called the monodromy or Floquet transition
matrix. Its eigenvalues are called the Floquet multi-
pliers. If any of the Floquet multipliers has a module
greater than one, then the solution is unstable; other-
wise, it is stable. Some of the most commonly used
algorithms are discussed and compared by Peletan in
Ref. [32]. In this paper, the monodromy matrix is cal-
culated by ‘2n-pass’ numerical integration.

5 Numerical simulation and discussion

5.1 Nonlinear characteristic with low stiffness

In the low stiffness case, the stiffness ratio κ is 1.5 and
others are f0 = −0.1, f1 = 0.1, ζ = 0.05,m1 = 0.09
and λ = 1. The external excitation frequency ω is
set as the control parameter. The harmonic component

Fig. 2 Response diagram for the low stiffness case κ = 1.5:
a rms at X direction versus ω, b rms in the Y direction versus ω,
c rms of pendulum rotation displacement θ and d corresponding
maximum Lyapunov exponents

number nc = 3 and ns = 2 is selected. The dynamic
response diagrams, root mean square (rms), versus the
excitation frequency ω are shown in Fig. 2a–c. In these
figures, the solid line ‘-’ denotes the IHBM solutions,
and two different color lines are for two continuation
curves with different initial values. The numerical inte-
grated solutions denoted by cycle ’o’ are also super-
posed in the figures. It is shown that the IHBM solu-
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Periodic solution and bifurcation 947

Fig. 3 Phase portrait at a
ω = 1.1 and b ω = 1.25

tionmatches the numerical solution perfectly except for
these in the shaded regions. The maximum Lyapunov
exponent is calculated for these system parameters as
shown in Fig. 2d. It can be observed that the maximum
error between IHBM and numerical solutions appears
within the chaotic region because the maximum Lya-
punov exponents crossed the zeros axis on the positive
side. In addition, the peaks of the dynamic response in
the X direction and rotation displacement of pendulum
are almost the same and around 1. However, the peak
of the dynamic response in the Y direction is located at√

κ = √
1.5 ≈ 1.2, whichmatches the analytical result

as calculated in Eq. (28). The occurrence of chaotic
motion could be recognized as the result of a resonance
in the Y direction. In the chaotic region, the pendulum
is not suitable for the assumption of a small amplitude
vibration, as shown in Fig. 3. In these figures, the phase
portrait for ω = 1.1 and ω = 1.25 corresponding to
periodic and chaotic motion is listed. It is observed that
the pendulum will rotate circularly and deteriorate sta-
bility of the overall system. A detailed control strategy
will be discussed in Sect. 5.2.

In detail, we will focus our interest in the excitation
region from 1.1 to 1.5, and the analytical solution cal-
culated by IHBM and continuation is shown in Fig. 4.
In this figure, there exists a period double bifurcation
at point ‘a’, where one of the Floquet multipliers cor-
responding to point ‘a’ leaves the unit circle in the −1
direction. With the increase in the excitation frequency
of the system, the period 1 motion bifurcates into a
period 2 motion. Subsequently, a series of period dou-
ble bifurcation occurs around point ‘b’ and the sys-
tem comes into chaotic motion. For further increase

Fig. 4 Bifurcation diagram with IHBM and continuation, the
solid line indicating stable motion and the dashed line indicating
unstable motion

in the excitation frequency, the transit chaotic motion
will degenerate into period 1 motion and a new period
double bifurcation route into chaos, denoted by ‘c’ as
shown in Fig. 4, is detected. Then, the remaining con-
tinuation curve will lose its stability denoted by dashed
line. By changing the initial value of IHBM, we can
obtain a new continuation curve as shown in Fig. 4.
A quasiperiodic motion region is detected in Fig. 4
denoted by (quasi-p). With the decrease in the excita-
tion frequency, a saddle-node bifurcation occurs where
the Floquet multipliers leave unit circle through −1.
A corresponding numerical bifurcation diagram and
Maximum Lyapunov exponent are shown in Fig. 5.
It can be observed that the saddle-node bifurcation
may be the reason for the degeneration of a chaotic
motion into a periodic motion around point ‘d’. In
the quasi-p region, the maximum Lyapunov exponent
moves around the zeros line, which correspond to qua-
siperiodic motion.
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948 L. Yuanping, C. Siyu

Fig. 5 Bifurcation diagram
and max. Lyapunov
exponent

5.2 Influence of stiffness

In the second case, the stiffness ratio is also set as a con-
trol parameter to evaluate the dynamic response of the
pendulum vibration system based on the IHBM. The
harmonic components for Eq. (36) can be simplified

to be A1 =
√
a212 + b211, A2 =

√
a213 + b212, A jk =√

a21,k+1 + b21,k ( j = 1, 2, 3, k = 1, 2, . . . , Ns) cor-
responding to excitation frequency ω. The other para-
meters are taken as the same as previously. The har-
monic components of the dynamic response about
κ = 1.5 and κ = 2.0 are shown in Fig. 6, respec-
tively. It can be observed that the appearance of the
resonance peaks near ω = 0.5 and ω = 1.0 is induced
by the horizontal spring. In other words, the horizon-
tal spring has a significant influence on the pendulum
system and the vibration response can be isolated or
reduced by optimizing it. In addition, the snap or jump
phenomena is detected when κ = 2.0 around the peak

√
κ ≈ 1.4, which means that this resonance peak is

excited and related with the vertical spring. The chaotic
motion also appears around this region. The response
diagramswith different stiffness ratio,κ = 2, 4, 5 and7,
are shown in Fig. 7. These figures indicate the relation-
ship between the stiffness of the vertical spring and the
resonance peak. Furthermore, when the stiffness ratio
is larger than 3, the chaotic motion will not appear in
the pendulum model. The above results suggest that,
in the low-frequency region, the vibration amplitude
is determined by the spring in the X direction, but the
spring in the vertical direction determines whether the
system presents chaotic motion.

Therefore, to reduce the vibration intensity and
improve the stability of the pendulum system, there
are at least two strategies to be adopted. Firstly, one
can add a firm suspension to increase the stiffness in
the vertical direction. The cost of this method may be
relatively high, and it is suitable in the design phase. In
addition, the vibration will be easily transmitted to the
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Periodic solution and bifurcation 949

Fig. 6 Harmonic component of dynamic response a κ = 1.5
and b κ = 2.0

frame with higher suspension stiffness. On the other
hand, reducing the stiffness in the horizontal direction
can also achieve the purpose of increasing the stiffness
ratio.

6 Conclusions

The nonlinear dynamic characteristic of a suspension
model simplified from a compressed air generator hang
under a vehicle is studied. In the simple model, the sus-
pension mass connected to a vertical spring and two
horizontal springs can be configured as a geometri-
cal negative stiffness isolator. The unbalanced mass is
modeled as a pendulum. IHBM and arc length contin-
uation technique are used to obtain the response dia-
gram of the present model subject to external harmonic
excitation. The stability and bifurcation route are also
distinguishedwith the Floquet theory. The results show
that the periodic response of the vibration model com-
puted by the IHBM matches well with the numerical
integration solutions. The bifurcation points alsomatch
well with the numerical results. The period doubling
bifurcation route to chaos is observed. The stiffness
ratio between the vertical spring and horizontal springs
has a significant influence on the dynamic response.
When the vertical stiffness is close to the stiffness in the

Fig. 7 Response diagram a rms in the X direction versus ω,
b rms in the Y direction versus ω, c rms of pendulum rotation
displacement θ , with different stiffness ratios.

horizontal direction, the resonance will occur with the
emergence of the chaotic motion. Reducing the stiff-
ness in the horizontal direction to increase the stiffness
ratio can improve the dynamic response of the vibra-
tion systembut one cannot remove the horizontal spring
because it will change the negative stiffness configura-
tion.
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