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Abstract This paper investigates the potential for sta-
bilizing an inverted pendulumwithout electric devices,
using gravitational potential energy. We propose a
wheeled mechanism on a slope, specifically, a wheeled
double pendulum, whose second pendulum transforms
gravity force into braking force that acts on the wheel.
In this paper, we derive steady-state equations of this
system and conduct nonlinear analysis to obtain para-
meter conditions under which the standing position
of the first pendulum becomes asymptotically stable.
In this asymptotically stable condition, the proposed
mechanismdescends the slope in a stable standing posi-
tion, while dissipating gravitational potential energy
via the brake mechanism. By numerically continuing
the stability limits in the parameter space, we find that
the stable parameter region is simply connected. This
implies that the proposed mechanism can be robust
against errors in parameter setting.
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1 Introduction

Electric and electronic control devices are indispens-
able for a variety of modern technologies. However,
these technologies typically become useless during
massive power outages such as those caused by nat-
ural or other disasters. In this paper, we consider a
non-electrified alternative control method to stabilize
an inverted pendulumusing gravitational potential. Our
proposed mechanism is a wheeled inverted pendulum
that descends a slope. The brakemechanism of our pro-
posedmechanism transforms gravity force into friction
force between the pendulum and the wheel. This fric-
tion produces a restoring force by which the pendulum
is asymptotically stabilized in a standing position.

Approaches similar to ours can be found in the field
of passive dynamic walking, pioneered byMcGeer [1],
in which two-legged mechanisms are designed to sta-
bly walk down a slope that consume only gravitational
potential energy. Extensive studies have been reported
on the passive dynamic walking, including experimen-
tal development of passive walkers [1–3] and nonlinear
analyses of passive dynamic walking based on simpli-
fied models [4–6]. Early insights into the use of such
passivity can also be found in the study of passive
gravity-gradient attitude stabilization [7–10], wherein
the alignment of one axis of a satellite along the earth’s
local vertical direction was achieved without the use of
active control elements.

On the other hand, the wheeled inverted pendulum
has attracted significant attention in the fields of con-
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trol engineering and robotics. Because of the appli-
cations of wheeled inverted pendulums in personal
mobility devices, including the Segway� [11], meth-
ods for controlling wheeled inverted pendulums have
been developed via approaches such as partial feed-
back linearization [12], inclined surface control [13],
sliding-mode velocity control [14], neuro-fuzzy-based
control [15], and robust control based on a quasi-linear
parameter-varying model [16]. Not surprisingly, these
studies implied the use of electric devices.

In this paper, we merge concepts from passive
dynamic walking and studies of the wheeled inverted
pendulum to derive our new mechanical design for the
non-electrified stabilization of a wheeled inverted pen-
dulum. As stated above, we propose a wheeled double
pendulum mechanism, whose second pendulum trans-
forms gravity force into braking force that acts on the
wheel. To investigate the dynamic stabilities of this
newly proposed mechanism, we start with deriving a
nonlinear analytical model of the mechanism to exam-
ine the stabilities of its steady states. Three types of
critical points arise in the analytical model. These crit-
ical points are analytically characterized and numeri-
cally continued in the parameter space to obtain stabil-
ity limits for the steady-standing motions. It is found
that the stability of the proposed mechanism is limited
by Hopf bifurcation and vanishing external resistance
on the wheel.

2 Wheeled inverted pendulum with friction control

We propose a wheeled inverted pendulum with fric-
tion control, as shown in Fig. 1, that comprises (1) a

Fig. 1 Friction-controlledwheeled inverted pendulum (FCWIP)

wheel placed on a slope without slipping, (2) a dou-
ble pendulum suspended on the wheel axis, and (3)
a friction control mechanism that generates a braking
force on the wheel proportional to the angle between
the first and second pendulums. Hereinafter, we refer
to this model as a friction-controlled wheeled inverted
pendulum (FCWIP).

Configuration of the FCWIP can be described by
a three-dimensional generalized coordinate: (T denotes
transpose)

θ = (θ1, θ2, θ3)
T , (1)

where θ1 is the rotational angle of the wheel, θ2 is the
absolute slant angle of the first pendulum, and θ3 is the
relative angle of the second pendulum from the first
pendulum. In addition, we consider the corresponding
generalized force:

T = (T1, T2, T3)
T , (2)

where Ti is a torque acting on θi .

2.1 Wheeled double pendulum

Unless the friction control mechanism (or T ) is speci-
fied, the FCWIP in Fig. 1 is simply a wheeled double
pendulum whose Lagrangian is given by

L := T −U : (3)

T := 1

2
θ̇21 (Q1r+ I1)+ 1

2
θ̇22 {−2Q3l cos(θ3)+Q2+ I2}

+ 1

2
θ̇23 (Q3wG + I3) + θ̇2θ̇3Q3 {wG − l cos(θ3)}

+ θ̇1θ̇2 {−Q3r cos(α− θ2 − θ3)+Q4r cos(α− θ2)}
− θ̇1θ̇3Q3r cos(α − θ2 − θ3), (4)

U := −g {Q3 cos(θ2+θ3) − Q4 cos(θ2)+θ1Q1 sin(α)} ,

(5)

with

Q1 = (m1 + m2 + m3)r,

Q2 = m2l
2
G + m3(w

2
G + l2),

Q3 = m3wG, Q4 = m2lG + m3l, (6)

where the physical parameters are listed in Table 1.

123



Nonlinear analysis on purely mechanical stabilization 907

Table 1 Mechanical parameters of the wheeled double pendu-
lum

Parameters Values

m1 Mass of wheel 0.1kg

m2 Mass of 1st pendulum 0.2kg

m3 Mass of 2nd pendulum 1kg

I1 Moment of inertia of wheel m1r2/2 kgm2

I2 Moment of inertia of 1st pendulum m2l2/12 kgm2

I3 Moment of inertia of 2nd
pendulum

0.25 kgm2

r Radius of wheel 0.2m

l Length of 1st pendulum 1m

lG Placement of center of gravity of
1st pendulum

l/2

w Length of 2nd pendulum 0.7m

wG Placement of center of gravity of
2nd pendulum

0.6m

g Acceleration of gravity 9.8 m/s2

α Angle of slope 0.1 rad

On substituting L into Lagrange’s equations with
the generalized force T , we obtain the equations of the
motion of the wheeled double pendulum as

M θ̈ = F + T , (7)

with

MT = M, M11 = Q1r + I1,

M12 = −Q3r cos(α − θ2 − θ3) + Q4r cos(α − θ2),

M13 = −Q3r cos(α − θ2 − θ3),

M22 = −2Q3l cos(θ3) + Q2 + I2,

M23 = Q3{wG − l cos(θ3)}, M33 = Q3wG + I3,
(8)

and

F1 =Q3r(θ̇2 + θ̇3)
2 sin(α − θ2 − θ3)

− Q4r θ̇
2
2 sin(α − θ2) + gQ1 sin(α),

F2 = − Q3l θ̇3(2θ̇2 + θ̇3) sin(θ3)

− g {Q3 sin(θ2 + θ3) − Q4 sin(θ2)} ,

F3 =Q3l θ̇
2
2 sin(θ3) − gQ3 sin(θ2 + θ3), (9)

whereMi j represents the (i, j) component of thematrix
M and Fi is the i th component of the vector F.

Fig. 2 Example of the structure of the brake mechanism

2.2 Friction control mechanism

Next, we introduce a friction control mechanism
(FCM) into the wheeled double pendulum by speci-
fying T as follows.

Let z be a displacement of the brake rod outputted
from the cam mechanism, as shown in Fig. 1, and sup-
pose that the cam function z(θ3) is given as a linear
function:

z = z(θ3) := ρ (θ3 − η), ż = ρ θ̇3 (10)

where ρ is a cam ratio and η > 0 is an offset angle.
Accordingly, the follower is expected to follow both
the positive and negative rotation of the cam.

Then, we consider a brake mechanism, as shown
in Fig. 2. In this mechanism, a pad (in light gray) is
bonded on a brake rod (in dark gray) and sandwiched
between the fixed base on the first pendulum and the
brake disk without clearance at z = 0. We refer to the
lower half of the pad as a brake pad and the upper half
as a dummy. The dummy pad has no function in terms
of braking but is assumed to have the same mechanical
property as the brake pad.

Thus, the brake pad touches the brake disk when
z ≥ 0 but is separated from the disk when z < 0.
We assume that the brake rod receives a continuous
reaction force from the pads in the following form:

R = R(z, ż) := − (kbz + cbż)

= − ρ
{
kb(θ3 − η) + cb θ̇3

}
, (11)

where cb and kb are viscoelastic coefficients of the pad.
The reaction force R produces a torque on θ3 as a

generalized force Fθ3 on θ3, given by

Fθ3 = ∂z

∂θ3
R(z, ż) = ρR(z, ż). (12)
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Table 2 Parameters of the FCM

Parameters Values

rb Radius of brake disk 0.18 m

ρ Cam ratio 1/20

kb Spring coefficient of the brake 8 × 104 N/m

cb Viscous coefficient of the brake (2 × 104 Ns/m)

μ Coulomb friction coefficient of
the brake

(0.249)

η Offset of the brake mechanism (2 × 10−4 rad)

c1 Coefficient of quadratic
resistance on the wheel

(5 × 10−4 Nms2)

Parentheses around values denote nominal values

At the same time, we assume that R causes a Coulomb
friction force between the brake pad and the brake disk.
This force can be modeled by a tangential force on the
contact surface as

FR = μR(z, ż) sgn(θ̇1 − θ̇2)χ(z) (13)

where μ is the Coulomb friction coefficient, sgn(·) is
the unit signum function, and χ(·) is the unit step func-
tion representing the separation of the brake pad from
thebrake disk.Wehave the torques Ti on θi (i = 1, 2, 3)
as

⎧
⎪⎨

⎪⎩

T1 = rbFR − c1|θ̇1|θ̇1,
T2 = −rbFR,

T3 = Fθ3 = ρR(z, ż),

(14)

where c1 is the coefficient of the quadratic resistance
including aerodynamic force on the wheel (or θ1).
Table 2 summarizes the parameters of the FCM and
quadratic resistance. Note that the value of the spring
coefficient listed in Table 2 can be obtained approxi-
mately from amedium-carbon steel rod (Young’s mod-
ulus 205GPa) of 5×10−4m diameter and 0.5m length.

Therefore, we derive the dynamic model of the
FCWIP as the wheeled double pendulum in (7) with
the braking torque in (14).

2.3 Numerical examples

Figure 3 shows a numerical solution of the FCWIP
model obtained by solving (2), (7), and (14) from the
trivial initial state θ1(0) = θ2(0) = 0, θ3(0) = η (or
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Fig. 3 Time responses of the FCWIP for the condition listed in
Tables 1 and 2
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Fig. 4 Attraction basin of the stable steady state in Fig. 3

z(0) = 0), and θ̇i (0) = 0 (i = 1, 2, 3). The parame-
ter values are listed in Tables 1 and 2 that are empiri-
cally chosen to achieve a stable standing motion. For
numerical integration, a fourth-order Runge–Kutta–
Gill method is employed with a time step of 10−3.

As shown in Fig. 3, the FCWIP model becomes
asymptotically stable under the suitable parameter con-
dition. In this example, the angle of the first pendulum
θ2(t) converges to a small negative value represent-
ing a standing position that is slightly slanted toward
the upside of the slope. Consequently, the angle of the
second pendulum θ3(t) converges to a small positive
value that represents it hanging from the first pendu-
lum to produce the brake force FR in (13). Moreover,
the descent velocity of the wheel θ̇1(t) converges to
9.46 rad/s (6.81 km/h in translational velocity).

Figure 4 shows the sets of initial angles θ2(0), θ3(0)
of the first and second pendulums, respectively. The
other initial values are set as θ1(0) = θ̇i (0) = 0
(i = 1, 2, 3). The area hatched in gray is the set of
initial angles from which the state converges to fallen
positions of the FCWIP model, and the white area sur-
rounded by the hatched area is the set that converges
to the steady-standing state, as shown in Fig. 3. From
Fig. 4, it appears that the set of the initial angles that
belongs to the standing position forms a mostly con-
nected area. Therefore, it can be expected that the pro-
posed FCWIP model exhibits some robustness against
disturbance of the initial angles.
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Considering potential real-life applications of the pro-
posed system, dependencies of the parameters on the
size of the attraction basin that belongs to the stand-
ing position could be a crucial problem. This will be
addressed in a future study.

3 Steady-state analysis

3.1 State-space representation

For a simple expression, we perform a timescale trans-
formation t := qt∗, where q is a timescale and t∗ is
non-dimensional time. Taking a state vector:

x := (
θ1, θ2, θ3 − η, q θ̇1, q θ̇2, q θ̇3

)T
, θ̇i := dθi/dt,

(15)

we transform the dynamicmodel (7) and (14) to a state-
space form:

ẋ = M(x)−1
{
f (x) + τ (x)

}
, ẋ := dx/dt∗, (16)

with

M(x) := diag
(
E3, M(x)

)
, (17)

f (x) :=

⎛

⎜
⎜
⎝

x4
x5
x6

q2F(x)

⎞

⎟
⎟
⎠ , τ (x) :=

⎛

⎜
⎜
⎝

0
0
0

q2T (x)

⎞

⎟
⎟
⎠ , (18)

whereM(x), F(x), andT (x) are thematrix andvectors
in the dynamic model (7) and (14) via (15), and E3 is
a 3 × 3 identity matrix.

We choose q := (kbρ2)−1/2 to normalize the spring
coefficient kb and introduce non-dimensional parame-
ters listed in Table 3. In this case, the components of
the vectors in (18) are obtained as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q2F1 = −Q3r(x5 + x6)2 sin(η + x2 + x3 − α)

+ Q4r x25 sin(x2 − α) + g∗Q1 sin(α),

q2F2 = − Q3lx6(2x5 + x6) sin(η + x3)

−g∗ {Q3 sin(η + x2 + x3) − Q4 sin(x2)} ,

q2F3 = Q3lx25 sin(η+x3) − g∗Q3 sin(η+x2+x3),

(19)

Table 3 Non-dimensional parameters

Parameters Values Definition

q Timescale 200−1/2 (kbρ2)−1/2

k∗
b Spring coefficient 1 (q2ρ2)kb

g∗ Acceleration of gravity 4.9 × 10−2 (q2)g

μ∗ Coulomb friction coefficient (0.8964) (rbρ−1)μ

c∗
b Viscous coefficient (3.536) (qρ2)cb

The values are transformed from the original parameters in
Tables 1 and 2. Parentheses around values denote nominal values

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q2T1 = −μ∗sgn(x4 − x5)χ(x3)
{
x3 + c∗

bx6
}

− c1|x4|x4,
q2T2 = μ∗sgn(x4 − x5)χ(x3)

{
x3 + c∗

bx6
}
,

q2T3 = − {
x3 + c∗

bx6
}
.

(20)

3.2 Assumption of steady state

In view of the numerical example presented in Fig. 3,
we consider a steady state x∗ of the FCWIPmodel (16)
that satisfies

ẋ = ẋ∗ := (ω, 0, 0, 0, 0, 0)T , ω > 0 (constant).

(21)

The steady state x∗ mentioned above describes the rota-
tion of the wheel down the slope with a constant angu-
lar velocity x∗

4 = ω > 0, while the first and second
pendulum maintain certain steady angles x∗

2 and x∗
3 ,

respectively, with x∗
5 = x∗

6 = 0. The angles x∗
2 and x∗

3
are assumed to satisfy the following conditions:

(A) x∗
2 < 0: the first pendulum reaches a standing
position (slightly) slanted to the upside of the
slope.

(B) x∗
3 > 0 (or z∗ > 0): due to (A), the second pendu-
lum hangs from the first pendulum (due to gravity
and while maintaining x∗

2 < 0) to produce the
brake force FR in (13).

These conditions are required to stabilize the first pen-
dulum in a standing position. Because, they guarantee
existence of the braking force FR caused by a negative
clearance between the brake pad and disk, x∗

3 > 0 (or
z∗ > 0), and that is mechanically caused by x∗

2 < 0.
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Otherwise, the braking force vanishes, and the FCWIP
becomes nothing more than an uncontrolled wheeled
double pendulum that can never be stabilized around
the standing position.

In addition, note that the FCWIP model, in absence
of the floor model of the slope, can theoretically have
another stable steady state, a static equilibrium where
the second pendulum is hanging down at rest at x∗

2 =
π + ε2 and x∗

3 = ε3 for small ε2, ε3 > 0.

3.3 Steady-state equation

The steady-state equation is given by

ẋ∗ = M(x∗)−1
{
f (x∗) + τ (x∗)

}
, (22)

where the derivative ẋ∗ is the constant vector already
defined in (21) and x∗ is an unknown vector repre-
senting the steady state. Multiplying both the sides by
M(x∗), we obtain

f (x∗) + τ (x∗) = M(x∗)ẋ∗

= diag
(
E3, M(x∗)

)
ẋ∗ = ẋ∗ (23)

where the last equality is due to the zero components
of ẋ∗ := (ω, 0, 0, 0, 0, 0). Therefore, the steady-state
condition is obtained as follows:

x∗
4 = ω, x∗

5 = x∗
6 = 0, (24)

0 = q2F1 + q2T1 = g∗Q1 sin(α) − c1ω
2 − μ∗x∗

3 ,

(25)

0 = q2F2 + q2T2 = −g∗ {
Q3 sin(η + x∗

2 + x∗
3 )

− Q4 sin(x
∗
2 )

} + μ∗x∗
3 , (26)

0 = q2F3 + q2T3 = −g∗Q3 sin(η + x∗
2 + x∗

3 ) − x∗
3 ,

(27)

where |x∗
4 |x∗

4 = ω2 and sgn(x∗
4 − x∗

5 )χ(x∗
3 ) = 1 are

substituted according to the assumption: x∗
4 − x∗

5 =
x∗
4 = ω > 0 and x∗

3 > 0 in Sect. 3.2.
Note that the Eqs. (25), (26), and (27) represent the

balance of the torque from the brake force and the
gravity force at about θ1, θ2, and θ3, respectively. In
particular, (25) can also be derived from the balance
of the energy supply from the gravitational potential

and the energy consumption via Coulomb friction and
quadratic resistance.

The steady-state equations in (24), (25), (26), and
(27) can be reduced to the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
5 = x∗

6 = 0,

c1(x
∗
4 )

2 = g∗Q1 sin(α) − μ∗x∗
3 > 0,

sin(x∗
2 ) = − (1 + μ∗)x∗

3

g∗Q4
,

sin(x∗
2 + x∗

3 + η) = − x∗
3

g∗Q3
.

(28)

Thus, we have derived the steady-state equations of
the FCWIP model with three unknowns x∗

2 , x
∗
3 , and x∗

4
(= ω). Note that the angle of the wheel in the steady
state x∗

1 (t) ∝ ωt never appears explicitly in these
steady-state equations.

It is clear from (28) that under the given mechanical
structure and environment, the non-trivial components
of steady state (x∗

2 , x
∗
3 , x

∗
4 ) depend on three parame-

ters, namely μ∗, η, and c1. More precisely, x∗
2 and x∗

3
can be solved independently of x∗

4 , and they depend
on the non-dimensional friction μ∗ and the offset η of
the FCM. After that, x∗

4 is obtained as a function of x∗
3

depending on c1.

3.4 Jacobian matrix at steady state

We consider a variation δx of x around x∗ as x :=
x∗ + δx and substitute it into the state-space model
(16) as M(x∗ + δx){ẋ∗ + δ ẋ} = ( f + τ )(x∗ + δx).

The i th component of the left side can be written by
the Einstein notation as

Li = Mi j (x∗ + δx)
{
ẋ∗
j + δ ẋ j

}

=
{
Mi j (x∗) + ∂Mi j

∂xk
δxk

}{
ẋ∗
j + δ ẋ j

}

+ O(δx, δ ẋ j )
2

= Mi j (x∗)ẋ∗
j + Mi j (x∗)δ ẋ j

+ ∂Mi j

∂xk
δxk ẋ

∗
j + O(δx, δ ẋ)2. (29)

Due to the structures of M = diag(E3, M) and ẋ∗ =
(ω, 0, 0, 0, 0, 0)T , we have
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∂Mi j

∂xk
δxk ẋ

∗
j = 0 =

{
0 · δxkω ( j = 1)
∂Mi j
∂xk

δxk · 0 ( j > 1)
(30)

for all i and j . Therefore, neglecting the second- and
higher-order term of δx and δ ẋ, we arrive at a variation
equation of (16) as

δ ẋ = M(x∗)−1
{
D f (x∗)+Dτ (x∗)

}
δx =: J (x∗)δx,

(31)

where D f (x∗) denotes the Jacobian matrix of f (x)

around x∗, and J (x∗) provides a closed-loop state
matrix whose eigenvalues represent the stabilities of
the FCWIPmodel. The components of J (x∗) are given
by

D f (x∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 g∗Q4C∗

1 − g∗Q3C∗
2 −g∗Q3C∗

2 0 0 0
0 −g∗Q3C∗

2 −g∗Q3C∗
2 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(32)

where C∗
1 := cos(x∗

2 ), C
∗
2 := cos(x∗

2 + x∗
3 + η), and

Dτ (x∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −μ∗ −2c1x∗

4 0 −c∗
bμ

∗
0 0 μ∗ 0 0 c∗

bμ
∗

0 0 −1 0 0 −c∗
b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (33)

To obtain (32) and (33), |x4|x4 = x24 and sgn(x4
− x5)χ(x3) = 1 are assumed, because x3(t) > 0,
x4(t) > 0, and x4(t) − x5(t) > 0 hold for xi (t) =
x∗
i + δxi (t), |δxi (t)| � 1 (i = 1, . . . , 6).
The results in (32) and (33) imply that the stability

of the FCWIP model depends on the non-dimensional
viscous coefficient c∗

b in addition to the parameters μ∗,
η, and c1 that determine the steady states (x∗

2 , x
∗
3 , x

∗
4 ).

In summary, we have found that under a given
mechanical structure and environment,

– the steady angles (x∗
2 , x

∗
3 ) depend on (μ∗, η),

– the steady descent velocity x∗
4 depends on (μ∗, η,

c1), and
– the stability depends on (μ∗, η, c1, c∗

b).

3.5 Eigenvalue equation

It can be proved that rank [J (x∗)] = 5 < 6 = dim x,
which follows from the assumption of the uniform
motion ẋ1(t) = ω. Thus, the characteristic equation
of J (x∗) is given in the following form:

det
(
J (x∗) − λE6

) = λ h(λ) = 0, (34)

h(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5, (35)

where det(·) denotes a determinant and E6 is a 6 × 6
identity matrix. For simplicity, we refer to h(λ) = 0 as
an eigenvalue equation of the FCWIP model.

Therefore, the steady state x∗ becomes stable if the
maximal real part of the eigenvalues is negative, that is

Λ := Re λmax < 0, λmax := arg max
λ

Re (λ), (36)

where λi (i = 1, . . . , 5) are the roots of h(λ) = 0.

4 Critical points of steady state

As mentioned in Sect. 3.4, the stabilities of the steady
state x∗ depend on μ∗, η, c1, and c∗

b . Here, we provide
somenumerical examples of that dependency.Thus, the
parameter values are set to those listed in Tables 1, 2,
and 3 by default unless otherwise noted.

4.1 Dependency on μ∗ and η

We first examine the dependency on the non-dimen-
sional frictionμ∗ and the offset η, which determine the
steady angles x∗

2 and x∗
3 via (28).

Figure 5 shows the maximal real part of the eigen-
value Λ and the non-trivial components x∗

i (i =
2, 3, 4) of the steady state x∗ as functions of the non-
dimensional friction μ∗. Λ and x∗

i are obtained from
numerical solutions of (28) by Newton’s method and
(36), respectively. The solid line in the top graph rep-
resents Λ, and the solid and dotted lines in the bottom
graph represent stable and unstable x∗

i , respectively.
The values of x∗

i (i = 2, 3) are scaled to share a com-
mon vertical axis.

It is clear from Fig. 5 that three types of critical
points P0, P1, and P2 appear, which are denoted as
open circles, filled circles, and a triangle, respectively.
P0 gives an infimum infμ∗(x∗

4 ) = 0 of the descent
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velocity x∗
4 > 0, P1 gives a stability boundary, and P2

gives a folded (non-smooth) minimum of Λ(μ∗).
To characterize these points, Fig. 6 plots the root loci

of h(λ) = 0 in (35) along the steady states x∗ in Fig. 5.
It can be numerically proven that under the considered
condition, the eigenvalue equation h(λ) = 0 has three
real roots and a pair of complex conjugate roots as

λ0 = s0, λ1± = s1 ± jΩ, λ2 = s2, λ3 = s3,

s0, s1 � s2, s3 < 0, (37)

where si , Ω are real numbers and j := √−1. Among
the five roots, only the first three roots λ0, λ1+, and λ1−
affect the stability change, and only these three roots
appear in the range of Fig. 6.

On the basis of the root loci obtained inFig. 6,we can
characterize the critical points in terms of eigenvalue
types as follows:

– (P0): P0 is a point such that λmax = 0.
– (P1): P1 is a Hopf bifurcation point, for which the
loci cross the imaginary axis at λmax = ± jΩ ,
where Ω is an angular frequency of a limit cycle.

– (P2): P2 is a point such that maximal real root s0
and the real part of the complex conjugate roots s1
coincide, at which point they switch roles to pro-
duce the maximal real part.

Physically speaking, P0 and P1 provide stability lim-
its, and P2 maximizes the total stability or minimizes
the time constant of the FCWIP model. The descent

-2
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x 6
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(b)

Fig. 7 Limit cycle for μ∗ = 1.01 (just after Hopf bifurcation)

velocity vanishes (x∗
4 = 0) at P0 in this case, and a self-

excited oscillation (limit cycle) emerges forΛ(μ∗) > 0
near P1.

Figure 7a shows the limit cycle forμ∗ = 1.01 imme-
diately after the Hopf bifurcation point P1. Under this
condition, the FCWIP model descends the slope in a
standing position while the angles of the pendulums
oscillate slightly and periodically. As this limit cycle is
stable, P1 is identified as a Hopf bifurcation point. In
general, a limit cycle occurs because of the temporal
presence of negative resistance (i.e., negative energy
consumption per unit time). In our problem, this is
given by the braking torque T2 in (20) multiplied by
the friction velocity (x4 − x5), specifically as

D = T2 · (x4 − x5)

= q−2μ∗sgn(x4 − x5)χ(x3)(x3 + c∗
bx6) · (x4−x5)

= q−2μ∗|x4 − x5|χ(x3)(x3 + c∗
bx6)

=: Cχ(x3)(x3 + c∗
bx6) (C > 0), (38)

where sgn(x)x = |x | is applied.Asχ(x3) is a step func-
tion, D < 0 occurs when x3 ≥ 0 and x3 + c∗

bx6 < 0.
This implies that whenD < 0, the brake pad (see Fig. 2
recalling z = ρx3, ż = (ρ/q)x6) will be released with
a velocity less than x6 < −x3/c∗

b ≤ 0 while the pad
is still pressed against the disk (x3 ≥ 0). Figure 7b
shows the energy consumption D along the limit cycle
as a function of x3, which numerically confirms the
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Fig. 8 Maximal real part of eigenvalue Λ and steady states x∗
i

for μ∗ = 0.97 as functions of a the offset η, b the quadratic
resistance c1, and c the viscous coefficient c∗

b

presence of D < 0. During this negative energy con-
sumption, the cycle comes across the deadband border
x3 = z = 0. At this point, the step function χ(x3)
jumps from 1 to 0. This causes the D to jump from a
negative to a positive value, similar to x6.

Figure 8a shows the result as functions of the offset
η for μ∗ = 0.97. In this case, a Hopf bifurcation point
P1 does not appear in the plotted range η > 0. Outside
this range, x∗

2 and x∗
3 vanish at η = 0 and violate the

physical assumptions x∗
2 < 0 and x∗

3 > 0 for η < 0.

4.2 Dependency on c1 and c∗
b

Figure 8b shows the results as functions of the quadratic
resistance c1. It is clear that all the critical points P0,
P1, and P2 appear, although x∗

2 and x
∗
3 become constant

here because c1 only affects x∗
4 , as already discussed in

(28).

However, the physical results of P0 are different.
That is, P0 (or λmax = 0) on Λ(μ∗) in Fig. 5 cor-
responds to the descent velocity at rest x∗

4 = 0. In
contrast, P0 on Λ(c1) in Fig. 8b corresponds to the
infinite descent velocity x∗

4 → ∞ (c1 → 0). This can
be explained by the second equation in (28), which is
hyperbolic with respect to c1 and x∗

4 :

c1(x
∗
4 )

2 = g∗Q1 sin(α) − μ∗x∗
3 =: C̄ > 0. (39)

This equation exhibits the following features:

– The right side of (39) (e.g., C̄) is expected to be
constant because x∗

3 is determined independently
of (39).

– The left side c1(x∗
4 )

2 vanishes at P0 (or λmax = 0),
as will be discussed in Sect. 5.1.1.

The second feature c1(x∗
4 )

2 = 0 holds when c1 = 0
and/or x∗

4 = 0. The latter condition x∗
4 = 0 directly

explains P0 in Fig. 5 for a constant c1 > 0. On the other
hand, P0 in Fig. 8b can be explained by the limit c1 → 0
that causes x∗

4 =
√
C̄/c1 → ∞ for the constant C̄ .

In addition, these different P0 can also be explained
physically. That is, the condition c1(x∗

4 )
2 = 0 results in

vanishing of the quadratic resistance force c1|x∗
4 |x∗

4 =
0. This can be caused by the mechanism at rest x∗

4 = 0
as well as by the absence of the effect of the quadratic
resistance c1 = 0.

Figure 8c plots the result for the non-dimensional
viscous coefficient c∗

b of the FCM. It is found that only
the Hopf bifurcation point P1 appears. Moreover, it
appears that x∗

i (i = 1, 2, 3) are all constant because
the steady-state equation in (28) is independent of c∗

b ,
which only affects the components of the Jacobian
matrix as ∓c∗

bμ
∗ and −c∗

b in (33).

5 Stability limits

Finally, we numerically continue the critical points in
two-parameter planes to characterize the stability limits
of the FCWIP model.

5.1 Conditions of the critical points

5.1.1 Zero quadratic resistance

The condition of P0 (or λmax = 0) is mathematically
equivalent to a5 = 0 in the eigenvalue Eq. (35). It
follows that
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0 = a5 = detM−1 · 2c1x∗
4g

∗

×
{

− C∗
1Q4 − C∗

2Q3
{
C∗
1g

∗Q4 − (1 + μ∗)
} }

⇐⇒ 0=c1x
∗
4

{
C∗
1Q4+C∗

2Q3
{
C∗
1g

∗Q4−(1+μ∗)
} }

⇐� c1x
∗
4 = 0

⇐⇒ c1 = 0 or x∗
4 = 0 ⇐⇒ c1(x

∗
4 )

2 = 0.
(40)

Therefore, it ismathematically shown that the sufficient
condition for P0 (or λmax = 0) is given by the zero
quadratic resistance c1(x∗

4 )
2 = 0.

As discussed in Sect. 4.2, the condition P0 (or
c1(x∗

4 )
2 = 0) causes two distinct descent velocities:

x∗
4 = 0 for c1 > 0 and x∗

4 = ∞ for c1 = 0. There-
fore, we denote them as P0

0 and P∞
0 , respectively, in

the following sections.
The condition of P0

0 is given by (39) with c1(x∗
4 )

2

= 0, from which we can eliminate x∗
2 and x∗

3 to obtain

Φ0 := η + arcsin

(
Q1 sin α

Q3μ∗

)
+ g∗Q1 sin α

μ∗

− arcsin

(
Q1(1 + μ∗) sin α

Q4μ∗

)
= 0. (41)

On the other hand, P∞
0 is simply given by c1 = 0.

Because the condition (41) does not contain x∗
2 and x

∗
3 ,

the zero quadratic resistance points P0
0 and P∞

0 are
determined independently of the pendulum angles x∗

2
and x∗

3 .

5.1.2 Hopf bifurcation

The condition P1 (or λmax = ± jΩ) for a Hopf bifur-
cation point is given by Re h( jΩ) = Im h( jΩ) = 0.
On eliminating Ω from them, we obtain

Φ1 := a5
{
a4(−a1a2a3 + a23 + a21a4)

+( − a2a3 + a1(a
2
2 − 2a4)

)
a5 + a25

}
= 0

(42)

for the Hopf bifurcation point. It is implied from (42)
that P1 coincides with P0

0 (or P∞
0 ) because a5 = 0 for

P0
0 (or P∞

0 ) leads to Φ1 = 0.
Note that, rigorously speaking, the above condition

provides only a necessary condition of a Hopf bifur-
cation point; however, it leads to satisfactory results in
the present analysis.

5.1.3 Minimal time constant

We numerically detect the condition of P2 for the min-
imal time constant that satisfies

|s0 − s1| < 10−9 (43)

where s0 is themaximal real eigenvalue and s1 is the real
part of the complex conjugate eigenvalues, as defined
in (37). In numerical calculations, the parameter values
considered are swept to detect a point that satisfies (43),
where the point in the first detection is taken as the point
detected.

Note that we attempted to derive an equation for the
minimal time constant in a closed form of a1, . . . , a5
based on a given form of eigenvalue equation: h(λ) =
(λ − λmax)(λ − λmax − jv)(λ − λmax + jv)(λ2 +
pλ + q), however, the result was very weak to detect
P2 precisely. Therefore, in this paper, we employ the
numerical method mentioned above, although another
approach would be possible for an analytical expres-
sion of P2.

5.2 Numerical continuation of the critical points

Figure 9 plots the sets of the critical points P0
0 , P1, and

P2 on two-parameter planes obtained from the numer-
ical solutions of (41), (42), and (43) under (28). The
results on the (μ∗, η), (μ∗, c1), and (μ∗, c∗

b) planes are
labeled (a), (b), and (c), respectively, in Fig. 9. The
solid line denotes the set of the zero quadratic resis-
tance point P0

0 for x∗
4 = 0, the dotted line denotes the

set of the Hopf bifurcation point P1, and the chained
line denotes the set of the minimal time constant point
P2. The plots of P∞

0 for c1 = 0 do not appear in the
ranges of these plots. The hatched areas represent the
stable regions of the steady state satisfying Λ < 0 in
(36).

It is clearly seen in Fig. 9 that the stable regions
are bounded by P0

0 and P1 and that the minimal time
constant point P2 is sandwiched between them. Note
that in Fig. 9a, the plots are bounded by the assumption
η > 0 and that in Fig. 9b, c, P0

0 lies along the vertical
line atμ∗ = μ̄∗ ≈0.89474. This is because P0

0 is deter-
mined independently of c1 and c∗

b in (41). Moreover,
it appears that the critical points P0

0 , P1, and P2 tend
to coincide as μ∗ increases on the (μ∗, η) plane, as c∗

b
increases and decreases on the (μ∗, c∗

b) plane, and as
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Fig. 9 Continuation of the critical points P0
0 , P1, and P2 on the

two-parameter planes: a for the (μ∗, η) plane, b for the (μ∗, c1)
plane, and c for the (μ∗, c∗

b) plane. The hatched areas represent
asymptotically stable conditions of the steady states

c1 increases on the (μ∗, c1) plane. In contrast, as c1
decreases on the (μ∗, c1) plane, P1 and P2 also tend
to coincide but they approach c1 = 0 or P∞

0 instead
of P0

0 . As discussed in Sect. 5.1.2, the convergence
between P0

0 (or P∞
0 ) and P1 can be explained by (42),

in which the conditionΦ1 = 0 for the Hopf bifurcation
point P1 contains a5 = 0 for the zero quadratic resis-
tance point P0

0 (or P∞
0 ). As shown in Fig. 10, however,

it can be numerically proven that a purely imaginary
eigenvalue λmax = jΩ along P1 does not vanish even
when P1 coincides with P0

0 (or P∞
0 ) in the parameter

planes. Therefore, the Hopf bifurcation point P1 does
not degenerate and double-zero eigenvalues never arise
at that point.

From an engineering viewpoint, the results obtained
above imply that the FCWIP model allows a certain
amount of tolerance in parameter settings because the
stable conditions are obtained as simply connected
finite areas. This suggests the possibility that the pro-
posed mechanism can work even if there are some
manufacturing errors. Furthermore, the stable area on
the (μ∗, η) plane in Fig. 9a forms a monotonically
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Fig. 10 Imaginary part of complex conjugate eigenvalues along
P1 in Fig. 9a
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Fig. 11 Angular velocities of the wheel x∗
4 within the stable

areas on the two-parameter planes: a for the (μ∗, η) plane; b for
the (μ∗, c1) plane; and c for the (μ∗, c∗

b) plane

increasing shape, which implies that the offset η can be
designed to shift the stable range of the friction coeffi-
cient μ∗.

5.3 Numerical evaluation of the descent velocity

In view of engineering applications, the descent veloc-
ity (or angular velocity of the wheel) x∗

4 must be
adjusted to a value suitable for the intended use. Fig-
ure 11 shows the values of x∗

4 mapped into a gray scale
within the stable areas on the parameter planes in Fig. 9.
x∗
4 values are numerically obtained by solving (28).
It is clear from Fig. 11 that x∗

4 tends toward zero
as the parameter conditions approach P0

0 (solid lines),
which is in agreement with the definition of P0

0 . Partic-
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ularly, in Fig. 11b, it is also clarified that x∗
4 is diverging

as the condition approaches P∞
0 or c1 = 0.Moreover, it

appears that x∗
4 changes smoothly and monotonically

with the variations of the parameters. This suggests
that one can adjust the descent velocity x∗

4 by con-
tinuously shifting the parameters. However, it is also
observed in Fig. 11b that a sufficiently large value of
the quadratic resistance c1 is required to stabilize the
mechanism because although a range of μ∗ exists for
small x∗

4 near μ∗ = μ̄∗ ≈ 0.89474, it narrows signifi-
cantly as c1 decreases. In addition, it appears in Fig. 11c
that x∗

4 does not depend on c∗
b , as discussed in the last

paragraph in Sect. 3.4.

6 Conclusion

For a non-electrified method to stabilize a wheeled
inverted pendulum descending a slope, we proposed
the FCWIP mechanism, a wheeled double pendulum,
whose second pendulum transforms gravity force into
brake force acting on the wheel. We conducted steady-
state analysis of the proposed model and obtained the
following results:

– The steady angles (x∗
2 , x

∗
3 ) depend on (μ∗, η).

– The steady descent velocity x∗
4 depends on (μ∗, η,

c1).
– The stability depends on (μ∗, η, c1, c∗

b).

Then, we found three types of critical points in the
steady states, as

– P0: the point for zero quadratic resistance on the
wheel. (P0

0 for x∗
4 = 0 and P∞

0 for x∗
4 = ∞ in

detail)
– P1: the Hopf bifurcation point.
– P2: the point for the minimal time constant.

Finally, we conducted numerical continuations of
these points on the two-parameter planes and evaluated
the descent velocity to obtain the following results:

– The stable conditions are obtained as simply con-
nectedfinite areas on theparameter planes, bounded
by P0

0 and P1.
– The minimal time constant point P2 is sandwiched
between P0

0 and P1.
– The descent velocity x∗

4 changes smoothly and
monotonically with the parameter variations.

The abovementioned results lead to the conclusion
that the parameter selection to design theFCWIPmech-

anism stabilized on a slope will not be highly sensitive,
at least in theory.

In futurework,we plan to develop a physical FCWIP
mechanism. For this purpose, we will introduce stick-
slip effects into the friction term in our model and
investigate the effect on the stabilities. We also plan
to conduct stochastic analysis on the FCWIP model to
consider robustness against random disturbances and
random parameter fluctuations.

Acknowledgments This work was supported in part by grants
from theZERODesign Project ofUtsunomiyaUniversity (a proj-
ect seeking novel engineering designs robust against massive
outages of power, water, logistics, etc.).

References

1. McGeer, T.: Passive dynamic walking. Int. J. Rob. Res. 9(2),
62–82 (1990)

2. Ikemata, Y., Sano, A., Yasuhara, K., Fujimoto, H.: Dynamic
effects of arc feet on the leg motion of passive walker.
In: 2009 IEEE International Conference on Robotics and
Automation, pp. 2755–2760. IEEE (2009)

3. Coleman, M., Ruina, A.: An uncontrolled walking toy that
cannot stand still. Phys.Rev. Lett.80(16), 3658–3661 (1998)

4. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The
simplest walking model: stability, complexity, and scaling.
J. Biomech. Eng. 120(2), 281–288 (1998)

5. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive
gait of a compass-like biped robot symmetry and chaos. Int.
J. Rob. Res. 17(12), 1282–1301 (1998)

6. Hirata, K.: On Internal stabilizing mechanism of passive
dynamic walking. SICE J. Control Measure. Syst. Integr.
4(1), 29–36 (2011)

7. Black, H.D.: A passive system for determining the attitude
of a satellite. AIAA J. 2(7), 1350–1351 (1964)

8. Fischell, R.E.: Passive gravity-gradient stabilization for
earth satellites. Appl. Math. Mech. 7, 13–30 (1964)

9. He, C., Liu, G., Yang, L., Tian, Y.: On the passive stabiliza-
tion of the equilibrium state of Lagrangian systems. Acta
Mech. 134(1–2), 17–26 (1999)

10. Peiffer, K., Savchenko, A.: On passive stabilization in criti-
cal cases. J. Math. Anal. Appl. 244(1), 106–119 (2000)

11. Ulrich, K.T.: Estimating the technology frontier for personal
electric vehicles. Trans. Res. Part C Emerg. Technol. 13(5–
6), 448–462 (2005)

12. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position
control of a wheeled inverted pendulum by partial feedback
linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)

13. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic analysis of a non-
holonomic two-wheeled inverted pendulum robot. J. Intell.
Rob. Syst. 44(1), 25–46 (2006)

14. Huang, J., Zhi-Hong,G.,Matsuno,T., Fukuda,T., Sekiyama,
K.: Sliding-mode velocity control of mobile-wheeled
inverted-pendulumsystems. IEEETrans.Robot.26(4), 750–
758 (2010)

123



Nonlinear analysis on purely mechanical stabilization 917

15. Su, K., Chen, Y., Su, S.: Design of neural-fuzzy-based con-
troller for two autonomously driven wheeled robot. Neuro-
computing 73(13–15), 2478–2488 (2010)

16. Vermeiren, L., Dequidt, A., Guerra, T.M., Rago-Tirmant, H.,
Parent, M.: Modeling, control and experimental verification

on a two-wheeled vehicle with free inclination: an urban
transportation system. Control Eng. Pract. 19(7), 744–756
(2011)

123


	Nonlinear analysis on purely mechanical stabilization  of a wheeled inverted pendulum on a slope
	Abstract
	1 Introduction
	2 Wheeled inverted pendulum with friction control
	2.1 Wheeled double pendulum
	2.2 Friction control mechanism
	2.3 Numerical examples

	3 Steady-state analysis
	3.1 State-space representation
	3.2 Assumption of steady state
	3.3 Steady-state equation
	3.4 Jacobian matrix at steady state
	3.5 Eigenvalue equation

	4 Critical points of steady state
	4.1 Dependency on μast and η
	4.2 Dependency on c1 and cbast

	5 Stability limits
	5.1 Conditions of the critical points
	5.1.1 Zero quadratic resistance
	5.1.2 Hopf bifurcation
	5.1.3 Minimal time constant

	5.2 Numerical continuation of the critical points
	5.3 Numerical evaluation of the descent velocity

	6 Conclusion
	Acknowledgments
	References




