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Abstract Based on the uncertain nonlinear kinematic
model of the differential-driving mobile robots, an
adaptive sliding mode control method is used to design
a controller for trajectory tracking of the differential-
driving mobile robots with unknown parameter varia-
tions and external disturbances. The total uncertainties
of the robot are estimated online by an improved lin-
ear extended state observer (ESO) with the error com-
pensating term. The adaptive sliding mode controller
with the switching gain is adjustable real-time online is
developed by selecting the appropriate PID-type slid-
ing surface. The convergence of the tracking errors
for wheeled mobile robots is proved by the Lyapunov
stability theory. Moreover, the simulation and real
experiment results all show that the effectiveness and
superiority of the proposed the adaptive sliding mode
control method, in comparison with the traditional slid-
ing model control and backstepping control method.

Keywords Adaptive sliding model control ·
Extended state observer · Trajectory tracking ·
Wheeled mobile robot

M. Cui (B) · W. Liu · H. Liu · H. Jiang · Z. Wang
College of Physical and Electronic Engineering, Nanyang
Normal University, Nanyang 473061, China
e-mail: cuiminyue@sina.com

M. Cui · W. Liu · H. Liu · H. Jiang · Z. Wang
Oil equipment intelligent control engineering laboratory of
Henan province, Henan, Nanyang 473061, China

1 Introduction

The wheeled mobile robot (WMR) is a kind of electro-
mechanical device, which is suited for working in the
complex environment. The WMRs have highly auto-
matic programming, organizing and adapting ability. In
the past decades, the WMRs have been applied in scien-
tific research, national defense, industrial production,
logistics industry and the other areas. Furthermore, tra-
jectory tracking control is the key to implement the
autonomous movement of the WMR. However, since
the WMR is the nonlinear system with multivariate,
strong coupling, and time-varying parameters, it is
difficult to obtain good tracking control performance
[1–3].

In order to further improve the tracking control
performance of the WMR, the nonlinear trajectory-
tracking control methods are adopted for the kine-
matic control include input–output linearization [4],
integrator backstepping approach [5], sliding mode
control (SMC) [6,7], and intelligent control [8–11].
Among them, the sliding mode control system is insen-
sitive to parameter perturbation and external distur-
bance effects, and sliding mode controller is widely
used in nonlinear robot systems with uncertainties
[12]. Yang and Kim [13] proposed the controller
design of the WMR based on polar coordinates. The
SMC can overcome the external disturbance was pro-
posed, but there was an assumption that the bound
of the disturbance was known. The work above,
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however, becomes inapplicable when the parameters
of the mobile robots are not available. In order to
reach a fast convergence and alleviate the control
chattering effect, I/O linearization and a second-order
SMC technique [14] have been proposed to imple-
ment the robust output tracking control of the nonholo-
nomic mobile robot with model uncertainties. In [15],
the robust trajectory-tracking problem for a mobile
robot in the presence of uncertainties has been solved
by means of a SMC law based on the discrete-time
WMR dynamical model. No particular assumptions
are needed except for the bound of the uncertain-
ties. In [16–18] present a time-varying global adap-
tive controller at the torque level that simultaneously
solves both tracking and stabilization for the WMR
with unknown kinematic and dynamic parameters. This
controller is based on Lyapunov’s direct method and
backstepping technique. However, the use of the sign
function and high switch gain in the SMC lead to a
high-frequency chattering which affects control per-
formance due to the discontinuous control when the
system states approach the sliding surface. The high-
frequency chattering usually causes serious problems
for the controller and actuator in practical engineer-
ing.

At present, adaptive control has been applied widely
to solve many engineering problems [19–23]. The
adaptive vehicle skid control [19] is designed for sta-
bility and tracking of a vehicle during slippage of
its wheels without braking. Bobtsov et al. [20] illus-
trated a possibility for application of their adaptive
algorithms to control libration angle of satellite. Wu
et al. [21] realized an adaptive robust motion track-
ing control method for controlling an X–Y table driven
by linear motors with a high precision. Ouyang et al.
[22] proposed an adaptive control scheme for trajectory
tracking of robot manipulators in an iterative operation
mode. Li et al. [23–25] proposed an robust adaptive
control scheme for trajectory tracking of robot manip-
ulators in the presence of uncertainties and external
disturbances. Lim and Zhang [26] designed a control
scheme incorporating PID control and robust model
reference adaptive control to realize the levitation con-
trol of Lorentz force-type self-bearing motors. It is
well known that conventional SMC, which can pro-
vide great properties such as insensitivity to para-
meter variations and external disturbance rejection is
a forceful control scheme for nonlinear systems. In
[27], it has been shown that an adaptive controller

can improve the closed-loop system’s performance as
the continuous adaptation. Unfortunately, if only the
adaptive control rule is designed for the WMR with
parameter perturbation and external disturbance, the
closed-loop system has a poor robustness. For this
reason, this study combines both the adaptive con-
trol and the sliding mode control to overcome both
the uncertainties and the disturbances in the whole
WMR system. Since the Jing-qing [28] proposed the
ESO technology, the ESO has been used to estimate
unknown states and disturbance of system. The ESO
has a less dependence on system model, and has a
stronger robustness to the external nonlinear distur-
bance.

Accordingly, we propose control strategy which
combines both the adaptive control and the sliding
mode control to apply trajectory tracking control for the
WMR with unknown parameter variations and exter-
nal disturbances. More specifically, the main contri-
bution of our work is follows. Firstly, the nonlinear
kinematic model of the WMR with uncertainties is
established at the kinematic level, and the certainties
and the uncertainties in kinematic model are sepa-
rated by the Taylor expansion. Secondly, a modified
linear extended state observer with the error compen-
sation term is presented to estimate total unknown
uncertainty online. The adaptive sliding model con-
troller with switching gain which is adjustable real-time
online is developed by selecting the appropriate PID-
type sliding surface. Moreover, stability and con-
vergence are analyzed rigorously and effectively by
Lyapunov stability theory. Finally, simulation and
experiment results are all provided to verify the per-
formance of the proposed adaptive trajectory-tracking
controller.

The remaining part of the paper is organized as fol-
lows. The trajectory-tracking model of wheeled mobile
robot will be presented in Sect. 2, followed by the
design of a robust adaptive sliding mode controller
with disturbance observer in Sect. 3. In Sect. 4, the
proposed WMR control system stability is analyzed
based on Lyapunov stability theory. In Sect. 5, the
designed controller is implemented in numerical sim-
ulations and real experiments, and the performance of
the designed controller in this paper is compared to that
of the conventional SMC with disturbance observer and
the backstepping control method. Section 6 concludes
the paper.
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2 Kinematic model of wheeled mobile robots

We consider the differential wheeled mobile robot with
two independent driving wheels. Trajectory-tracking
schematic of mobile robot is shown as Fig. 1. The two
front wheels are driven independently by two direct-
current servo motors respectively. The two rear wheels
are omnidirectional wheels, which only play the role
of supporting car body, without guiding role.

Assumption 1 The mobile robots are subject to a ‘pure
rolling without slipping’.

Assumption 2 There is a superposition both center of
mass and rotating geometric center of the WMR.

As can be seen from Fig. 1, at time t , we suppose that
the geometric center O of the WMR is rotating around
the instantaneous center A along the dotted circle. Ra

is the turning radius around the instantaneous rotation
center A at time t , L is the distance between two driving
wheels; v1 and v2 are linear velocities of left and right
wheels, respectively.

The velocity of the middle of the two driving wheels
is given by

vc = v1 + v2

2
(1)

If u1 and u2 denote direct-current servo motor armature
voltage of left and right driving wheels of the mobile
robot, respectively, Tm is direct-current motor load time
constant, kd denotes the back-EMF constant of direct-
current motor, r is radius of the driving wheels, n is
the transmission ratio of the reducing gear, and driving
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Fig. 1 Wheeled mobile robot trajectory-tracking scheme

gain of the mobile robot is denoted by ks , which can be
obtained as [29]

ks = 2πrkd
60n

(2)

According to the characteristics of direct-current servo
motor, the following transfer functions are obtained as
[29]

{
V1(s) = ks

1+Tms
U1(s)

V2(s) = ks
1+Tms

U2(s)
(3)

where V1(s), V2(s), U1(s) and U2(s) denote the
Laplace transform of v1, v2, u1 and u2 respectively.

When there is the deviation in tracking path of the
robot, it is necessary to add or subtract a correction
control voltage �u to the driving motors, respectively,
then u1 and u2 can be rewritten as

{
u1 = uc + �u
u2 = uc − �u

(4)

where uc is the voltage reference of direct-current
motor, which can actuate robot to keep moving at the
speed of vc forward. Accordingly, the linear velocities
of the left and right wheels can be written as

{
v1 = vc + �v

v2 = vc − �v
(5)

where �v is the linear velocity variation of the driving
wheels.

In Fig. 1, θ is the heading angle of the robot, the
point P is the reference point, d is the central position
shift (the distance from geometrical center O to the
point P), φ is the tangential angle at tangential point
P . In a very short time interval of �t , �θ and �d are
variations of θ and d, respectively, from the geometric
relationships in the Fig. 1, �θ and �d are obtained as

{
�θ = (v2−v1)�t

Ra

�d = (v1+v2)�t
2 sin θ

(6)

As �t → 0, differential equations can be obtained as

{
θ̇ = v2−v1

Ra
= − 2

Ra
�v

ḋ = (v1+v2)
2 sin θ = vc sin θ

(7)
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where Ra is the turning radius of the robot.

Remark 1 Ra can be determined by the images of the
navigation camera installed in the front of the robot
body.

Applying Laplace transformation for Eqs. (4) and
(5), the first equation is subtracted by the second equa-
tion in (3), the following equation is obtained as

�V (s) = V1(s) − V2(s)

2
= ks

1 + Tms
�U (s) (8)

where �V (s) and �U (s) are Laplace transforms of
�v and �u respectively. From (9), if Laplace inverse
transformation is used, the following differential equa-
tion can be obtained as

�v̇(t) = − 1

Tm
�v(t) + ks

Tm
�u(t) (9)

If vectors x = [
x1 x2 x3

]T = [
d θ �v

]T
and u =

[�u] are defined, and the system input is selected as
y = θ = x2, from Eqs. (7) and (9), the following
equations can be obtained as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = vc sin x2

ẋ2 = − 2x3
Ra

ẋ3 = − 1
Tm

x3 + ks
Tm

u
y = x2

(10)

3 Design of tracking controller

3.1 Modeling of mobile robot with uncertainty

In practical engineering, there are always some uncer-
tainties because of the existence of reduction gear
clearance, motor parameters variation caused by some
conditions such as temperature, material abrasion
and wheels are worn in robot system, that all will
cause a direct-current servo motor transmission torque
changes. Therefore, in the control system design, it
is necessary to consider the harmful effect caused by
driving gain of motor and transmission structure ks and
time constant Tm change. If �Tm and �ks are uncer-
tainties of Tm and ks , from Eq. (10), a more general
state equation are obtained as following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = vc sin x2

ẋ2 = − 2x3
Ra

ẋ3 = − 1
Tm+�Tm

x3 + ks+�ks
Tm+�Tm

u + w

y = x2

(11)

where �Tm and �ks are uncertainties of ks and Tm ,
respectively, w is unknown external disturbance of
robot system.

Assumption 3 External disturbance w and parameter
variations �Tm and �ks are unknown but bounded.

Remark 2 in Assumption 3, �Tm and �ks are uncer-
tainties of Tm and ks , respectively, caused by some
adverse factors such as the gear clearance of the
reducer, ambient temperature, material wear, and the
change of the friction coefficient. Therefore, in the
design of the robotic controller, the damage caused by
the uncertainties of the parameters Tm and ks must be
considered.

Now we consider the following function:

1

x + �x
= 1

x
· 1

1 + �x/x
(12)

where the function 1/(1 + �x/x) can be regarded as a
function of �x/x . If a first-order Taylor expansion has
been used at point of zero, the first two of the first-order
Taylor expansion are selected, the following equation
is obtained as

1

x + �x
≈ 1

x

(
1 − �x

x

)
(13)

According to Eq. (13), the state Eq. (11) can be rewrit-
ten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = vc sin x2

ẋ2 = − 2x3
Ra

ẋ3 = − 1
Tm

x3 + �Tm
T 2
m
x3

+ ks
Tm

u +
(

�ks
Tm+�Tm

− �Tmks
T 2
m

)
u + w

y = x2

(14)

If the total system uncertainties caused by parameter
variations and external disturbances are defined as

D = �Tm
T 2
m

x3 +
(

�ks
Tm + �Tm

− �Tmks
T 2
m

)
u + w
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The Eq. (14) can be rewritten as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = vc sin x2

ẋ2 = − 2x3
Ra

ẋ3 = − 1
Tm

x3 + ks
Tm

u + D
y = x2

(15)

3.2 Design of observer

In Eq. (15), since the total uncertainties D in system
(15) are unknown, it is necessary to estimate uncertain-
ties D by using the ESO. The ESO is a novel observe
algorithm, which is able to estimate the internal and
external disturbance online [29].

If new state variables x∗
1 = x2, x∗

2 = −2x3/Ra are
defined, the second equation and the third equation in
(15) can be rewritten as

⎧⎨
⎩
ẋ∗

1 = x∗
2

ẋ∗
2 = ax∗

2 + bu + D∗
y = x∗

1

(16)

where a = −1/Tm , b = −2ks/RaTm and D∗ =
−2D/Ra . If the total disturbance D∗ in the system (16)
is expanded into a new state x∗

3 , then Eq. (16) can be
expanded into a new linear system

⎧⎪⎪⎨
⎪⎪⎩
ẋ∗

1 = x∗
2

ẋ∗
2 = ax∗

2 + x∗
3 + bu

ẋ∗
3 = Ḋ∗
y = x∗

1

(17)

In order to obtain real-time estimation of disturbance
D∗, based on Eq. (17), an improved three-order linear
ESO with compensation term fc(x̂∗

1 , x̂∗
2 ) is designed as

⎧⎨
⎩

˙̂x∗
1 = x̂∗

2 − β1(x̂∗
1 − x∗

1 )
˙̂x∗
2 = x̂∗

3 − β2(x̂∗
1 − x∗

1 ) + bu + fc(x̂∗
1 , x̂∗

2 )
˙̂x∗
3 = −β3(x̂∗

1 − x∗
1 )

(18)

where x̂∗
1 denotes the estimation of x∗

1 , x̂∗
2 is the esti-

mation of x∗
2 , x̂∗

3 is the estimation of total distur-
bance x∗

3 = D∗ in system (16), which is also denoted
by D̂∗; βi > 0, i = 1, 2, 3 are the observer gain
parameters which can be chosen, compensation term
fc(x̂∗

1 , x̂∗
2 ) = ax∗

2 .

Remark 3 The estimation of the total disturbance D in
system (15) is obtained as D̂ = −D̂∗Ra/2.

The following observer errors are defined as eo1 =
x̂∗

1 − x∗
1 , e2 = x̂∗

o2 − x∗
2 , eo3 = x̂∗

3 − x∗
3 = x̂∗

3 − D∗,

eo = [
eo1 eo2 eo3

]T
. From (17) and (18), the error

dynamic equations of the ESO are obtained as

⎧⎨
⎩
ėo1 = −β1eo1 + eo2

ėo2 = −β2eo1 + aeo2 + eo3

ėo3 = −β3eo1 − Ḋ∗
(19)

Equation (19) can be rewritten as

ėo = Aeo + b̄ Ḋ∗ (20)

where matrix A=
⎡
⎣−β1 1 0

−β2 a 1
−β3 0 0

⎤
⎦, matrix b̄=[

0 0 −1
]T

.

The characteristic polynomial of the matrix A is shown
as

λ(s) = s3 + a2s
2 + a1s + a0 (21)

where

a2 = β1 − a
a1 = β2 − aβ1

a0 = β3

It is obvious that the coefficients ai , i = 0, 1, 2 of the
characteristic polynomial satisfy the following condi-
tions:{
ai > 0, i = 0, 1, 2
a1a2 − a0 = (β1 − a)(β2 − aβ1) − β3 > 0

(22)

The Routh–Hurwitz stability criterion ensures that all
eigenvalues of the system matrix A in Eq. (20) have
negative real parts. Thus, it means the linear observer
error system (20) is asymptotically stable; it is to say

that the observer errors eo = [
eo1 eo2 eo3

]T
converge

consequently to
[

0 0 0
]T

as t → ∞.

Remark 4 If there is no compensation term fc(x̂∗
1 , x̂∗

2 )

= ax∗
2 in Eq. (18), the error dynamic equation of the

ESO is shown as⎧⎨
⎩
ėo1 = −β1eo1 + eo2

ėo2 = −β2eo1 − ax∗
2 + eo3

ėo3 = −β3eo1 − Ḋ
(23)
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From Eq. (23), we know that there is an additional term
ax∗

2 , which leads to an intrinsic estimation error caused
by fc(x̂∗

1 , x̂∗
2 ) = ax∗

2 . However, after the ESO being
compensated by fc(x̂∗

1 , x̂∗
2 ), the ax∗

2 is transformed into
the eliminable error ae2 in Eq. (19). Thereby, the esti-
mation precision of the ESO can be improved markedly
by employing the compensating term fc(x̂∗

1 , x̂∗
2 ).

The parameters of the ESO βi , i = 1, 2, 3 are deter-
mined by bandwidth technology [30]. According to ref-
erence [30], the desired characteristic polynomial of the
ESO is as follow

λo(s) = (s + ωo)
3 = s3 + 3ωos

2 + 3ω2
os + ω3

o (24)

where ωo is the bandwidth of the ESO.
From (21) and (24), the gain parameter of the ESO

can be obtained as

β1 = 3ωo + a
β2 = 3ω2

o + 3aωo + a2

β3 = ω3
o

(25)

So the parameter tuning process of the ESO is greatly
simplified.

3.3 Design of adaptive sliding mode controller

Since the SMC has some remarkable advantages such
as insensitivity to parameter variations, external dis-
turbance rejection and fast dynamic response, SMC
is a forceful control scheme for nonlinear systems.
Thus, it is very suitable to design the trajectory-tracking
controller of mobile robot with uncertainties. Control
objective of trajectory-tracking controller of the robot
is not only to guarantee heading angle θ of the robot
tend to the tangential angle φ of the given reference
trajectory, but also to make the center position shift d
tend to zero. That is to say that mobile robot is able to
track a given trajectory smoothly as far as possible.

If yd = θd denotes the desired value of input y, that
is the tangential angle φ at the reference point P in
Fig. 1, then tracking error is obtained as e = θ − φ =
y − yd = x2 − yd . In order to improve robustness of
the control system, a time-varying PID-type switching
function can be designed as [31]:

s = c1e + ė + c2

∫ t

0
e(t)dt (26)

where c1 and c2 are positive constants. s = 0 can
be obtained reasonably on switching surface. At this
moment, from Eq. (26), the differential equation can
be obtained as c1e+ ė+ c2

∫ t
0 e(t)dt = 0, it is possible

to guarantee e(t) → 0 in a finite time by selecting the
appropriate c1 and c2.

From Eq. (26), the following equation is obtained as

ṡ = c1ė + ë + c2e = c1ė + ÿ − ÿd + c2e

= c1ė + ẍ2 − φ̈ + c2e (27)

where φ is the tangential angle of the given reference
trajectory (See Fig. 1). Substituting Eq. (15) into Eq.
(27) yields

ṡ = c1ė + 2

Ra

(
1

Tm
x3 − ks

Tm
u − D̂

)
− φ̈ + c2e (28)

With the reaching law method the SMC makes the tra-
jectory outside the switching surface reach the switch-
ing surface in a limited time. Meanwhile, in order
to make the SMC have low chattering in the sliding
motion. A modified reaching law is chosen as [32]

ṡ = −ε |s|α sgn(s) − k |s|β s (29)

where k > 0, ε > 0, 0 < α < 1 and 0 < β < 1 are
positive constant, sgn(·) is signum function.

Remark 5 The modified reaching law combines expo-
nential reaching law and idempotent reaching law,
which can overcome the shortcomings of the two laws
and combine the advantages of them. Thus the perfor-
mance of control system is improved, and chattering is
reduced as possible as it could. Meanwhile, the reach-
ing rate of exponential reaching term can be adjusted
adaptively by additional term −k |s|β s. And so the
reaching rate can be adjusted adaptively according to
the distance between the current state and sliding sur-
face. In order to estimate the domain of attraction of the
modified reaching law (29), the following Lyapunov
function is chosen as

Va = 1

2
s2 (30)

Then

V̇a = sṡ = s(−ε |s|α sgn(s) − k |s|β s)

= −εs |s|α sgn(s) − ks2 |s|β
= −ε |s|α+1 − k |s|β+2 ≤ 0 (31)
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From (31), we know Va is a function of t does not
increase in t ∈ [0,∞), so Va ≤ Va(0) = 1

2 s
2(0),

that is V̇a ≤ 0 is ensured if only s is bounded real
number. The reachability condition is satisfied in the
modified reaching law (29). So domain of attraction of
the modified reaching law (29)can be denoted by the
following set

�(s) =
{
s ∈ R

∣∣∣∣Va ≤ 1

2
s2(0)

}
(32)

where s = c1e+ ė+c2
∫ t

0 e(t)dt is switching function,
s(0) = c1e(0) + ė(0) is the initial value of s.

From Eqs. (28) and (29), sliding mode control law
is obtained as

u = x3

ks
− Tm D̂

ks
+ Tm Ra

2ks
[c1ė + c2e + ε |s|α sgn(s)

+ k |s|β s − φ̈] (33)

In order to eliminate chatter caused by sign function
switch frequently, signum function sgn(s) is replaced
by saturation function sat(s, δ), sliding mode control
law (33) can be rewritten as

u = x3

ks
− Tm D̂

ks
+ Tm Ra

2ks
[c1ė + c2e

+ ε |s|α sat(s, δ) + k |s|β s − φ̈] (34)

where sat(s, δ) is defined as follows

sat(s, δ) =
⎧⎨
⎩

−1 s < −δ

s/δ − δ ≤ s < δ

1 s ≥ δ

where δ is a positive constant.
By adjusting parameters k and ε in the reaching

law (29), the excellent dynamic performance can be
guaranteed in the process of sliding mode reach to the
switching surface, the high-frequency chattering of the
control signal can be markedly reduced also [12]. In
control law (34), the cut-and-try method is often used
to determine switching gain ε in practical engineering.
In order to avoid trouble of adjusting parameter ε man-
ually, to overcome effects of disturbances caused by the
system parameters variations and to enhance robustness
of the closed-loop robot system, the following adaptive
update law of switching gain ε(t) is designed as:

˙̂ε(t) = ρ · sgn(ε̂)

√
c + ∣∣ε̂∣∣[ε̂s |s|α sat(s, δ)

−λx2
1 − vcx1 sin x2] (35)

where ε̂ is estimation of ε, ρ, λ and c are positive con-
stants. The sliding mode control law (34) can be rewrit-
ten as

u = x3

ks
− Tm D̂

ks
+ Tm Ra

2ks
[c1ė + c2e

+ ε̂ |s|α sat(s, δ) + k |s|β s − φ̈] (36)

From above analysis, we can conclude that adaptive
sliding mode control based on the ESO of the mobile
robot can be described by the following close-loop con-
trol system structure, as shown in Fig. 2.

4 Stability analyses of control system

Lemma 1 (Barbalat lemma [27]) If f (x) is uni-
formly continuous and if the limit of the integral
lim
t→∞

∫ t
0 f (x)dx exists and is finite, then lim

t→∞ f (t) = 0.

Theorem 1 Considering the uncertain nonlinear
mobile robot system described by (15). Under sliding
mode control law (36) with switching function (27)and
reaching law (29), if the adaptive update law (35) is
applied to the mobile robot, then the tracking errors
(heading angle error e and the center position shift
x1 = d) converge asymptotically to zero.

Proof The Lyapunov candidate function can be defined
as

V = 1

2
s2 + 2

ρ

√
c + ∣∣ε̂∣∣ + 1

2
x2

1 ≥ 0 (37)

The derivative of the Lyapunov function V is given by

V̇ = sṡ +
˙̂εsgn(ε̂)

ρ

√
c + ∣∣ε̂∣∣ + x1 ẋ1 (38)

Substituting (27) into (38) yields

V̇ = s(ẍ2 − φ̈ + c1ė+ c2e)+
˙̂εsgn(ε̂)

ρ

√
c + ∣∣ε̂∣∣ + x1 ẋ1 (39)

Substituting (15), (35) and (36) into (39) yields

V̇ = s[−ks |s|β − ε̂ |s|α sat(s, δ)]
+

˙̂εsgn(ε̂)

ρ

√
c + ∣∣ε̂∣∣ + vcx1 sin x2 = −k |s|β+2 − λx2

1

(40)
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Fig. 2 Adaptive sliding mode control principle diagram of mobile robot

From Eq. (40), we can obtain as

V̇ = −k |s|β+2 − λx2
1 ≤ 0 (41)

The adaptive update law (35) ensures V is negative
semi-definite. With the adaptive law (35) and sliding
mode control law (36), V is a function of t does not
increase, that is

V (s(t), x1(t)) ≤ V (s(0), x1(0)) < ∞,∀t ≥ 0 (42)

From Eqs. (37) and (41), we know that s, x1 and V are
bounded in t ∈ [0,∞), that is, V ∈ L∞, x1 ∈ L∞,
s ∈ L∞.

From Eq. (41), we can obtain

V̇ = −k |s|β+2 − λx2
1 ≤ −k |s|β+2 (43)

From Eq. (43), the following equation can be obtained
as

∫ ∞

0
|s|β+2 dt≤−1

k

∫ ∞

0
V̇ dt= 1

k
(V (0)−V (∞))<∞

(44)

Similarly

∫ ∞

0
x2

1 dt ≤ −1

λ

∫ ∞

0
V̇ dt = 1

λ
(V (0) − V (∞)) < ∞

(45)

Because of s is bounded, from Eqs. (15) and (29), we
know ẋ1 and ṡ are all bounded, thus x1 and s are uni-

formly continuous. Barbalat’s lemma [27] shows that
x1 → 0, |s|β+2 → 0 as t → ∞, thus s → 0 as t → ∞.
As s = 0, the following differentiating equation can be
obtained as

c1e + ė + c2

∫ t

0
e(t)dt = 0 (46)

By taking the derivative of the Eq. (46), the following
differential equation is obtained as

ë + c1ė + c2e = 0 (47)

If the following conditions: c1 > 0, c2 > 0, c2
1 > 4c2

are satisfied, the solution of differential Eq. (47) can be
given as

e(t) = k1 exp
−c1 +

√
c2

1 − 4c2

2
t

+ k2 exp
−c1 −

√
c2

1 − 4c2

2
t (48)

where k1 and k2 are positive constants that are deter-
mined by initial error e(0). From Eq. (48), we know
e(t) → 0 as t → ∞.

Given the above, tracking error x1 = d → 0, e(t) =
θ − φ → 0 as t → ∞. 
�

5 Simulations and experiment

5.1 Simulations

Computer simulation results are given to demonstrate
and compare the effectiveness and superiority of the
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Table 1 The physical parameters of the robot

Parameters Description Nominal value

Tm Load time constant
of DC motor

0.021 s

kd Back-EMF constant
of DC motor

230 (V · s)−1

ks Driver gain of the
mobile robot

0.445 (V · s)−1

r Radius of the wheels 0.125 m

vc Velocity of the
mobile robot

2 m/s

n Transmission ratio of
the reducing gear

29

proposed adaptive sliding mode controller based on the
ESO (ESO+ASMC), conventional sliding mode con-
troller based on the ESO (ESO+SMC), and backstep-
ping control method. ESO+ASMC and ESO+SMC
are described by the Eqs. (18, 35, 36) and Eqs. (18, 33)
respectively, based on Eq. (15), backstepping control
law is designed according to Ref. [27].

To observe and compare the simulation results more
easily, we choose two kinds of reference trajectories for
the simulations: One is a straight-line trajectory, and the
other is a circle one. System parameters of the WMR
are shown in Table 1.

In the simulations, the design parameters are chosen
as (1) parameters of the ESO: bandwidth parameter
ωo = 60; (2) parameters of the ASMC: c1 = 16, c2 =
62, k = 5, ρ = 0.5, α = 0.8, β = 0.085, c = 0.1,
λ = 1, δ = 0.08 and initial estimation of switching
gain ε̂(0) = 0; (3) switching gain of the SMC ε = 5.

In particular, the reasons of choosing δ of the satura-
tion function sat(s, δ) in (36) are follows: the thickness
of the boundary layer δ in saturation function is a very
important parameter which affects the performance of
the sliding mode controller. The affect results are fol-
lows: (1) If the parameter δ is increased, which will
reduce the speed of the system get into a stable state
along the sliding manifold. Under the same conditions,
the steady-state error of the closed-loop system will be
increasing; (2) If value of the parameter δ is reduced,
the change of the control signal will be too frequent,
that leads to inevitable chatter of the control signal.
Meanwhile, the control energy consumption will be
increased, and the control efficiency will be decreased.
From what we have mentioned above, in order to guar-

antee the sliding mode control system has a satisfactory
dynamic performance and steady-state performance,
and to avoid the chatter of the control signal, the cut-
and-try method is often used to determine the thickness
of the boundary layer δ = 0.08.

5.1.1 The straight-line trajectory tracking

The equation of the straight-line trajectory is given as{
x = t
y = t

where t ≥ 0is simulation time. The initial posture of
the reference trajectory is set at[
xr (0) yr (0) θr (0)

]T = [
0 0 π/4

]T

The actual initial posture of the mobile robot is[
x(0) y(0) θ(0)

]T = [− 2 −2 π/4
]T

The initial state is[
�v(0) d(0) θ(0)

]T = [
0 0 0

]T

The initial value of switching gain estimation is ε̂(0) =
0.
(1) The straight-line trajectory tracking without
parameters variations and disturbances

In this case, there are no uncertainties and distur-
bances. Evidently, both of the two architectures have a
nice tracking ability, as shown in Fig. 3, and this also
proves that no matter what architectures we use, these
three controllers can trace the desired straight-line tra-
jectory. However, at the beginning of simulation, the
SMC and the backstepping controller has the bigger
tracking errors than the ASMC, and the error conver-
gence speed of the ASMC is faster than the other two
controllers.
(2) The straight-line trajectory tracking with para-
meter variations and disturbances

In this conditions, at 25 s, the parameter variations
and external disturbances D(t) are fed in

D(t) = sin 2π t + n(t)

where n(t) is the Gaussian white noise. Its amplitude
lies in [−1, 1]. We suppose the initial states of the dis-
turbance observer are all zeros.

The assumption for the uncertainties in the robot’s
parameters variations and external disturbances, results
of trajectory tracking are revealed as Fig. 4. At the
beginning of simulation, SMC and the backstepping
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Fig. 3 The straight-line trajectory tracking without parameters variations and disturbances. a Straight-line trajectory tracking. b Tracking
error θ − φ. c Central position shift d. d Switching gain ε of ASMC. e Control input u
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Fig. 4 The straight-line trajectory tracking with parameters variations and disturbances. a Straight-line trajectory tracking. b Tracking
error θ − φ. c Central position shift d. d Switching gain ε of ASMC. e Control input u
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controller has the bigger tracking errors than the
ASMC. At 25s, the total unknown disturbances are fed
in, where a disturbance is introduced with a magnitude
bounded by 2, obviously, the track errors of the SMC
and backstepping controller have oscillated drastically,
but the efficacy of the ASMC is still maintained.

5.1.2 The circle trajectory tracking

The equation of the circle trajectory is given as{
x = 2 cos t
y = 2 sin t

where t ≥ 0 is simulation time. The initial posture of
the reference trajectory is set at[
xr (0) yr (0) θr (0)

]T = [
2 0 π/2

]T

The actual initial posture of the WMR is[
x(0) y(0) θ(0)

]T = [−1 0 π/4
]T

[
�v(0) d(0) θ(0)

]T = [
0 3 π/4

]T

The initial value of switching gain estimation is ε̂(0) =
0.
(1) The circle trajectory tracking without parame-
ters variations and disturbances

In order to further verify the effectiveness and supe-
riority of the proposed control strategy under the envi-
ronment of different reference trajectory, the control
system parameters of the mobile robot are all the same
as in the previous simulations. In this case, there are no
uncertainties and disturbances. In this situation, both of
these three architectures have a similar tracking abil-
ity, but at the beginning of 7–8 s, as shown in Fig. 5,
the backstepping and SMC methods have the bigger
angle error and the central position shift error than the
ASMC.
(2) The circle trajectory tracking with parameters
variations and disturbances

The parameter variations and the external distur-
bances which generated at 25 s are the same as in the
preceding simulation. The uncertainty influences on the
backstepping control and the SMC are bigger than the
ASMC. In Fig. 6b, c tracking error θ − φ and central
position shift d of the ASMC could converge to zeros
more quickly than backstepping controller and SMC.
In the simulation results, we illustrate that the ASMC
is robust enough to resist the parameter variations and
the external disturbances.

Figure 7 show the real total disturbance and total dis-
turbance estimations by using the ESO, respectively, in
two kinds of reference trajectories in ASMC. Compar-
ing disturbance estimation with real disturbance, it is
obvious that disturbance estimation is rather accurate
and smoother except for a light oscillation as total dis-
turbances are fed in circle trajectory tracking.
(3) Control effect comparison on performance index
H∞

In order to further the quantitative analysis of the
control effect of the closed-loop robot system, the con-
troller performs with a performance index such as H∞
is employed, the calculation formula is shown as fol-
lows

‖G‖∞ = sup

{ ‖z‖2

‖w‖2
, w ∈ H2, ‖w‖2 = 0

}
where w and z are input and output signals of the con-
trolled closed-loop system. The norm ‖z‖2 and ‖w‖2
are calculated as follows

‖z‖2
2 =

∫ ∞

0
zT(t)z(t)dt =

∫ ∞

0
θ2(t)dt,

‖w‖2
2 =

∫ ∞

0
wT(t)w(t)dt =

∫ ∞

0
θ2
d (t)dt

In following case: the circle trajectory tracking with
parameters variations and disturbances. From Fig. 2,
we know θd(t) and θ(t) are input and output signals
of the controlled robotic system, the control effect
comparison of three control methods (ESO+ASMC,
ESO+SMC and backstepping) on performance index
H∞ are shown as Table 2.

From Table 2, it is clear that the ASMC based
on ESO control algorithm has the minimal value
for performance index on H∞, which implies the
ASMC+ESO control algorithm has a better tracking
control effect than the other two control algorithms.

5.2 Real experiment

In order to demonstrate the effectiveness, superiority
and applicability of the proposed method, a real-time
control system is implemented for the mobile robot. In
the experiment, a mobile robot with one vision naviga-
tion system fixed on the top moves along the marking
line. Figure 8 shows the picture of the robot which
is used in the experiment. It has the same structure
as Fig. 8, with two driving wheels and two passive
wheels. The diameter of the robot is 50 cm and the
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Fig. 5 The circle trajectory tracking without parameter variations and disturbances. a Circle trajectory tracking. b Tracking error θ −φ.
c Central position shift d. d Switching gain ε of ASMC. e Control input u
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Fig. 6 The circle trajectory tracking with parameters variations and disturbances. a Circle trajectory tracking. b Tracking error θ − φ.
c Central position shift d. d Switching gain ε of ASMC. e Control input u
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Fig. 7 Disturbances observation of the extended state observer for ASMC. a The straight-line trajectory tracking. b The circle trajectory
tracking

Table 2 Control effect comparison on performance index H∞
Control law ESO+SMC ESO+ASMC Backstepping

Performance
index H∞

1.824 1.243 2.263

radius of driving wheel is 12.5 cm. The driving wheels
are driven by motors with the maximum permissible
speed of 3900n/min. The motor and the driving wheel
are connected by a reduction gears box. For convenient
for comparing, the control parameters are all same as
the simulations.

The control board of the mobile robot consists of
the main controller and motor controller. The main
controller of the robot is dsPIC30F6014, which is run-
ning at 32 MHz. It is used to communicate with host
computer and motor controller. It receives the voltage
instruction from the host computer and calculates the
voltage distribution on the right and left motors, respec-
tively, and then sends the data through SPI communica-
tion to the auxiliary motor controller, dsPIC4012. The
motor controller generates PWM signal with different
duty cycles according to the voltage instruction.

Figure 9 shows the whole schematic diagram of
the trajectory-tracking system for the mobile robot.
Because of the complexity of the calculation process,
the adaptive sliding mode controller is carried out in the
main computer running at the frequency of 1.86 MHz.
The software for implementing the algorithm is devel-
oped in Visual C++6.0. After the path has been set

Fig. 8 Mobile robot used in the experiment

up, the sliding mode controller generates the real volt-
age instruction. The dsPIC controller can generate the
PWM signal to control the velocity of the mobile robot
so that the mobile robot moves according to the instruc-
tion. The vision navigation system evaluates the posture
of the robot and feedback the information to the host
computer until the posture error is minimized.

In order to validate the applicability of the proposed
control scheme, the mobile robot was required to track
reference trajectories. The real position of the mobile
robot is feedback to the mobile robot every 0.5 s by
camera navigation system.
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In order to prove the superiority of the proposed
adaptive sliding mode controller based on ESO (ESO
+ASMC), the traditional sliding mode controller based
on ESO (ESO+SMC), the backstepping control method
are implemented for the desired trajectory of a straight
line. The robot started tracking with initial errors d =
0 cm and θ = 0 rad. At 25 s, the following external
disturbance is fed in

|D(t − 25)| = |randon(t − 25)| ≤ 2

where a disturbance is introduced with a magnitude
bounded by 2. The experimental results are shown as
Fig. 10. From Fig. 10, we can see that the tracking errors
of the proposed ASMC algorithm is smaller than the
traditional sliding mode controller (ESO+SMC) and
the backstepping algorithm. The mobile robot eventu-
ally approaches the reference trajectory with asymp-

totic stability within 1.5 s to 0.3 % error bound by the
proposed adaptive sliding mode controller. While the
traditional sliding mode controller takes 9.5 s to be
within 0.3 % of the desired trajectory and the backstep-
ping controller takes 12.5 s to be within 0.3 % of the
desired trajectory in the same conditions. Two factors
demonstrate the superiority of the proposed adaptive
sliding mode controller.

6 Conclusion

In this paper, an improved linear ESO has been adopted
to estimate unknown parameter variations and external
disturbances online. An adaptive sliding model con-
troller that switching gain is adaptively adjustable is
designed to use for a controller for trajectory track-
ing of the differential-driving mobile robots with para-
meter variations and external disturbances. The actual
trajectory of mobile robot is able to converge asymptot-
ically to the desired trajectory by the designed tracking
controller. The convergence of the tracking errors of
wheeled mobile robots is proved by the Lyapunov sta-
bility theory. Moreover, the simulation and real exper-
iment results all show that the proposed the ASMC
method greatly compensates the effects of parameter
perturbation and external disturbances and improves
the system tracking accuracy and robustness, in com-
parison with traditional sliding model control law and
backstepping control law.
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Fig. 10 Experimental results for the straight-line tracking errors with initial error (0 m, 0 rad). a Tracking error of θ . b Tracking error
of d
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