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Abstract For a three-dimensional autonomous four-
wing chaotic attractor, this paper rigorously verifies its
chaotic properties by using topological horseshoe the-
ory and numerical calculations. Firstly, an appropriate
Poincaré section of the chaotic attractor is selected by
numerical analysis. Accordingly, a certain first return
Poincaré map is defined in the Poincaré section. There-
after, by utilizing numerical calculations and topolog-
ical horseshoe theory, a one-dimensional tensile topo-
logical horseshoe in the Poincaré section is discovered,
which revealed that the four-wing attractor has a pos-
itive topological entropy, and verifies the existence of
chaos in this four-wing attractor. Finally, by using a
FPGA chip, the four-wing chaotic attractor was phys-
ically implemented, which is more suitable for engi-
neering applications.
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1 Introduction

Since Lorenz discovered the first chaotic attractor [1],
a series of significant progressive findings have been
made on chaos research, such as chaos control [2,3],
chaos generation [4–6], chaos coefficients optimiza-
tion [7], and chaotic encryption [8–10]. In recent years,
by means of numerical calculations and bifurcation
analysis, a series of new chaotic systems have been
generated, for example, the new chaotic system based
on Chen [11], the multi-wing [12,13] and multi-scroll
chaotic attractors [14–16], the hyper-chaotic system
[17–20], the fractional-order chaotic system [21,22],
and so on. Due to the great application prospect, the
studies on chaotic circuits have beenwidely concerned,
and the analog chaotic circuits [23], integrated chaotic
circuit [24,25], and FPGA chaotic circuit [26,27] have
been realized constantly.

So far, the rigorous proof of chaotic characteristics
is still a difficult problem. Due to the calculation error,
the numerical evidences of chaotic characteristics are
insufficient to demonstrate the chaotic characteristics
such as Lyapunov exponents and bifurcation diagrams.
The topological horseshoe theory is a useful tool which
can solve this problem [28–30]. Nonetheless, the topo-
logical horseshoe lemma [31–33] provided a practical
computer-assisted proof method for rigorous verifica-
tion of the existence of chaos, which has evolved from
the Smale horseshoe map [34] and topological horse-
shoe theory proposed by Kennedy [35]. Some typical
chaotic systems have been rigorously verified by uti-
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(a) (b)

Fig. 1 Four-wing chaotic attractor with a = 4, b = 6, c = 10, d = 5, k = 1,
a projection on x − y plane, b projection on x − z plane

lizing this method. For example, Jia et al. proved the
chaos existence of the Lü system [36]; Ma et al. [37]
proved the existence of chaos of a financial system ;
and Li et al. [38] founded a 3D topological horseshoe
in a memristive system.

For a four-wing chaotic attractor, this paper rigor-
ously verified its chaotic properties from view of math-
ematics. This paper is organized as follows. In Sect. 1, a
brief overviewongeneration andproperties verification
of chaos is given. In Sect. 2, the three-dimensional four-
wing chaotic attractor is introduced briefly. In Sect. 3,
a one-dimensional tensile topological horseshoe in the
Poincaré section is discovered by utilizing the topolog-
ical horseshoe lemma, which verifies the existence of
chaos in the four-wing attractor. This four-wing chaotic
attractor is physically implemented based on an FPGA
chip in Sect. 4. In the end, the research work is sum-
marized in Sect. 5.

2 The four-wing chaotic attractor

Recently, a new three-dimensional four-wing chaotic
attractor was proposed [39], which can be described as
follows:

⎧
⎨

⎩

ẋ = ax − byz,
ẏ = −cy + xz,
ż = kx − dz + xy.

(1)

The numerical analysis shows that the dynamic behav-
iors of this system are chaotic with wide parameter a, k
ranges. For example, when a = 4, b = 6, c = 10, d =
5, k = 1, the Lyapunov exponents of the system (1) are
λ1 = 1.038, λ2 = 0, λ3 = −12.045; the correspond-
ing chaotic attractors are shown in Fig. 1.

The chaotic characteristics of the system (1) were
analyzed by utilizing a numerical bifurcation diagram
and Lyapunov exponent spectrum [39]. To rigorously
verify the existence of chaos byutilizing the topological
horseshoe theory, the Poincaré section, which reflects
the global structure of the attractor, should be seriously
analyzed. Portions of the Poincaré section of the system
(1) on different planes are depicted in Fig. 2.

As Fig. 2 shows, the dense points form a cer-
tain hierarchical structure, indicating that the attractor
orbits have continuous bifurcation and folding in differ-
ent directions. System (1) displays complex dynamic
behaviors.

3 Topological horseshoe analysis and verification

3.1 Topological horseshoe lemma

The topological horseshoe lemma is a useful theoretical
tool which can provide a rigorous computer-assisted
verification method for the existence of chaos. The
topological horseshoe lemma is introduced as below
[16].
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Fig. 2 Poincaré section of
the system (1), a section in
x = 0, b section in y = 0

(a) (b)

Suppose that an f-connected family F exists with
respect to disjointed compact subsets D1, . . . , Dm−1

and Dm . Then a compact invariant set K ⊂ D exists
such that f |K is semi-conjugate to an m-shift map;
therefore, its topological entropy satisfies ent ( f ) ≥
logm. Based on the lemma, the system is chaotic when
m > 1.

The topological horseshoe theoremcannot be applied
in a continuous system directly; however, the Poincaré
section and the Poincaré map bridge the gap between
them. Therefore, we can select an appropriate Poincaré
section and then prove that the corresponding Poincaré
map is semi-conjugate to a 2-shift map, which implies
that topological entropy of the attractor ent( f ) ≥ log2,
and thus the existence of chaos is verified.

3.2 Selected Poincaré section

Considering the section plane,
∏ = {

(x, y, z) ∈ R3 :
x = 0}. As shown in Fig. 3, one wing of the attractor
was selected as the corresponding cross section, � =
|ABCD|, with its four vertices A = [0, 0, 20] , B =
[0, 20, 20] ,C = [0, 20, 0] , D = [0, 0, 0] and then
choosing a subset P = |EFGH | in �, with four
vertices E = [0, 3.4, 6], F = [0, 4.6, 7.3], G =
[0, 5.7, 7.8] , H = [0, 4.5, 6.2]. The subset P is shown
in Fig. 4.

3.3 Definition of a Poincaré map

Definition 1 Define a Poincaré map

τ : P → � (2)

For any point x ∈ P , τ(x) is the first return map point
in the � section of system (1) with the initial condition

Fig. 3 The selected cross section � = |ABCD|

Fig. 4 The subset P = |EFGH |

x . Under the map τ , the image τ(P) is a very thin
hook-like strip which is situated wholly across P .

As shown in Fig. 5, enlarging the neighborhood
region of EF, E ′F ′ (green line) and G ′H ′ (red line)
cross EH in the enlarged view, where the image
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Fig. 5 The image
∣
∣E ′F ′G ′H ′∣∣of the quadrangle |EFGH | under

the map τ , partially enlarged view under the lower right corner

Fig. 6 Two mutually disjointed subsets a (green section) and b
(purple section). (Color figure online)

τ(P) = ∣
∣E ′F ′G ′H ′∣∣, and E ′ = [0, 7.8303, 10.9371],

F ′ = [0, 11.7420, 14.3876], G ′ = [0, 14.0442,
16.7601], H ′ = [0, 5.5276, 8.2568].

3.4 Computer-assisted verification

According to the topological horseshoe lemma, two
mutually disjointed compact subsets shouldbe selected.
After many numerical calculations, subsets a and b of
subset P are chosen. As shown in Fig. 6, subset a =
|E I J H |, where E = [0, 3.4, 6] , I = [0, 3.88, 6.52],
J = [0, 4.86, 6.68], H = [0, 4.5, 6.2], and sub-
set b = |KMNL|, where K = [0, 4, 6.65] , M =
[0, 4.48, 7.17], N = [0, 5.58, 7.64], L = [0, 4.98,
6.84].

Fig. 7 The image
∣
∣E ′ I ′ J ′H ′∣∣ of the quadrangle |E I J H |, par-

tially enlarged view under the lower right corner

Fig. 8 The image
∣
∣K ′M ′N ′L ′∣∣ of the quadrangle |KMNL|,

partially enlarged view under the lower right corner

Then, for the first return, the Poincaré map τ : P →
�, τ(a) = ∣

∣E ′ I ′ J ′H ′∣∣, the image
∣
∣E ′ I ′ J ′H ′∣∣ is a very

thin hook-like strip with EH mapped to E ′H ′ and
I J mapped to I ′ J ′, where I ′ = [0, 2.7768, 4.9288],
J ′ = [0, 3.1307, 5.3694]. Figure 7 shows that E ′H ′
is above the edge EH and I ′ J ′ is below the edge I J .
Furthermore, by enlarging the local region in Fig. 7, we
can find that E ′ I ′ (red line) and J ′H ′(green line) are
wholly situated across the set a.

As shown in Fig. 8,
∣
∣K ′M ′N ′L ′∣∣ depicts the image

of subset b under the Poincaré map τ , τ(b) =∣
∣K ′M ′N ′L ′∣∣, where K ′ = [0, 2.1519, 4.1357] , M ′ =
[0, 9.9891, 12.5830], N ′ = [0, 6.1229, 8.5603], L ′ =
[0, 2.6377, 4.7541]. From enlarged local region in
Fig. 8, it is clear that K ′L ′ is above the edge K L ,
M ′N ′ is below the edge MN , the edges KL and MN
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Fig. 9 Structure model of a
discretized chaotic system,
a general model of
simulation, b substructure
of realization of variable x,
c substructure of realization
of variable y, d substructure
of realization of variable z
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Fig. 10 Chaotic attractors
generated by the FPGA, a
projection on x − y plane, b
projection on x − z plane, c
projection on y − z plane

(a) (b)

(c)

are mapped to opposite side respectively. It suggested
that the image of subset b is positioned wholly across
the set b.

Based on the above analysis, it is obvious that the
images τ(a) and τ(b) are wholly situated across P;
so, the following conclusion can be obtained. For each
connection ξ between subset a and subset b in set P ,the
images τ(ξ ∩ a) and τ(ξ ∩ b) also wholly cross the set
P . In other words, the images τ(ξ ∩ a) and τ(ξ ∩ b)
are still connections between subset a and subset b in
set P . On the basis of Definition 1, an f -connected
family of the first return Poincaré map exists. Accord-
ing to the topological horseshoe lemma, the map τ is
semi-conjugate to an m-shift map; here m = 2; hence
the topological entropy ent ( f ) ≥ log 2 > 0, which
implies that the system (1) has a positive topological
entropy with a = 4, b = 6, c = 10, d = 5, k = 1. The
existence of chaos in system (1) was verified.

4 FPGA implementation

Currently, studies on chaotic circuit realization based
on the analog devices have attained some achieve-

ments. However, due to the factor of parameter drift,
signal regeneration in an analog circuit is sensitive to
the device error, which suggests that an analog chaotic
circuit is difficult to practically apply in secure com-
munications. On the contrary, the chaotic signal is easy
to be regenerated in a digital circuit, and the signal
precision is controllable. The digital chaotic circuit is
more suitable for application in the field of information
encryption.

Due to the high logic density, versatility, and other
features, the FPGA chip has been widely used. In this
section, a digital chaotic circuit is designed and imple-
mented by utilizing the FPGA chip. Firstly, according
to Eq. (3), the continuous system (1) is discretized by
using the Euler method. Based on Nyquist sampling
criteria, sampling frequency should be at least twice
of input signal frequency. The discrete chaotic system
should follow this rule. By using the pwelch estimate
method [40,41], the cutoff frequency of system (1) is
about 18.6 Hz, and sampling rate should be 37.2 Hz at
least to assure the chaotic behavior. Tokeep the smooth-
ness of chaotic trajectories, we fix the sample rate to
1000 Hz in this section.
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For the convenience of programming design, the
coordinate translation of a discrete chaotic system (3)
is executed, which does not change the dynamic behav-
iors of system (1).

The discretized chaotic system is shown as Eq. (3).

⎧
⎨

⎩

x(k + 1) = x(k) + �t[ax(k) − by(k)z(k)],
y(k + 1) = y(k) + �t[−cy(k) + x(k)z(k)],
z(k + 1) = z(k) + �t[kx(k) − dz(k) + x(k)y(k)],

(3)

where the parameters a = 4, b = 6, c = 10, d =
5, k = 1,�t = 0.001.

As shown in Fig. 9, the structure model of Eq. (3) is
built by using the System Generator Module.

Subsequently, the discretized model (3) is trans-
formed into VHDL language which is convenient for
being compiled anddownloaded in an ISEdevelopment
environment. Then the four-wing chaotic attractor is
implemented by using the VIRTEX-II FPGA develop-
ment board.

For the convenience of the analog oscilloscope
observation, the output digital signals of the FPGA
are converted into analog signals by using a DAC900
chip. The D/A chip can meet the precision requirement
of chaotic signal conversion. The clock frequency of
the D/A chip and the FPGA chip is synchronization in
20MHz. The four-wing chaotic attractors generated by
the FPGA are illustrated in Fig. 10.

The above experimental results show that the chaotic
attractors generated by the FPGA are consistent with
the numerical simulations on each phase plane, which
verifies the accuracy and validity of the FPGA imple-
mentation method. Compared with the analog circuit,
the chaotic signal generated by theFPGAchip has obvi-
ous advantages in stability, reproducibility, and accu-
racy. Furthermore, this method is easy to modify and
extend, is also suitable for higher-dimensional chaotic
systems, and has good versatility.

5 Conclusion

In this paper, a certain three-dimensional four-wing
chaotic attractor is comprehensively studied, and its
chaotic properties were rigorously verified through the
integrated use of the topological horseshoe theory and
numerical calculations. The key of thismethod is defin-
ing a first return Poincaré map in a selected Poincaré

section,which takesmany numerical calculations. Sub-
sequently, a one-dimensional tensile topological horse-
shoe is discovered,which verifies the existence of chaos
in the four-wing attractor. This method is more con-
venient and practical than the traditional mathematics
proof method. In addition, a digital circuit is designed
to realize the four-wing chaotic attractor by using the
FPGA chip, which provides technical support for the
engineering applications of chaos.
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