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Abstract In this paper, we study the hybrid projective
synchronization problem for a class of fractional-order
memristor-based neural networks with time delays.
First, we address the basic ideas of fractional-order
memristor-based neural networks (FMNNs) with hub
structure and time delays. After that we derive the
response system can be synchronized from the corre-
sponding drive system, that is, the response system can
be synchronized with the projection of the drive sys-
tem generated through a design scaling matrix which is
known as hybrid projective synchronization. By apply-
ing the Filippovs solutions, differential inclusion the-
ory, stability theorem of linear fractional-order systems
withmultiple time delays and employing suitable linear
feedback control law, some new sufficient conditions
are derived to guaranteeing the projective synchroniza-
tion of addressed FMNNs with hub structure and time
delays. The analysis in this paper is based on the theory
of fractional-order differential equations with discon-
tinuous right-hand sides. Finally, a numerical example
is presented to show the usefulness of our theoretical
results.
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1 Introduction

In recent years, the dynamical analysis of memristor-
based neural networks is one of the hot field of research
due to their prominent applications have been predicted
worldwide in various fields such as new high-speed
low-power processors, filters, new biological models
for associative memory, booting free computers and so
on [1,2]. Moreover, in [3], the author have been estab-
lished the mathematical proof of the missing relation
between the circuit variables charge (q) and flux (Φ).
It is known as the fourth basic two-terminal passive cir-
cuit element in the circuit theory and named asMemris-
tor (short for memory resistor). Memristor has unique
circuit properties, and it behaves differently when com-
pared with the other circuit elements such as resistors,
capacitors and inductors in the circuit theory. In [4,5],
the authors in HP labs have been created the first work-
ing model of a memristor. The major advantage of the
memristor is that the value of resistance would depend
on the magnitude and polarity of the voltage applied
in it and also have the potential ability to remember
the most recent resistance when the applied voltage
is turned off. Based on these features, the behavior of
the memristor is more and more noticeable, such that
many researchers, scientists are paid their attention and
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increasing interest to analysis the properties ofmemris-
tors. Some of the researchers have been introduced the
memristor in the integrated circuit design of neural net-
works, that is, in the circuit the resistor element has been
replaced by memristors then the new network is called
as memristor-based neural networks. Recently, several
authors have been extensively investigated the proper-
ties of memristor-based neural networks and proposed
some interesting results in the literature [6–18]. In [6–
12], the authors have been extensively investigated the
various stability analysis of memristor-based neural
networks with time-varying delays and provided some
sufficient conditions to ensure the stability of consid-
ered networks. The authors in [6] have been studied
the dynamic behaviors of memristor-based neural net-
works with time-varying delays using local inhibition.
In [14], some sufficient conditions were obtained to
ensure the exponential synchronization of the consid-
ered networks based on drive-response concept, dif-
ferential inclusions theory and Lyapunov functional
method.

Fractional calculus is the generalization of ordinary
differentiation and integration to an arbitrary (non-
integer) order, and it has been originated at the time
of the invention of traditional calculus. Due to lack of
solutionmethods and physical interpretation, fractional
calculus do not attract the researchers for a long time.
Nowadays, fractional calculus is the subject of inter-
est and getting more and more attention in the field
of research because of their promising development in
both theory and applications. Thus, fractional calcu-
lus has played an important role in the modeling of
real-world applications in various fields of science and
engineering [19–21]. Moreover, it has been provided
an excellent tool for the description of memory and
hereditary properties of variousmaterials andprocesses
[22]. That is fractional-order systems provide infinite
memory and more accurate result than the integer-
order systems. Recently, many of the researchers have
focused their interest andmuch attention to analysis the
fractional-order dynamical systems and many impor-
tant results have been reported in the existing literature
[23–25]. Some of the authors introduced the fractional
calculus into neural networks due to their incorporation
of infinite memory. Therefore, it is necessary to inves-
tigate the dynamical analysis of fractional-order neural
networks. As we know that, time delay is an unavoid-
able factor in the practical applications. It follows that,
many authors extensively analysis the fractional-order

neural networks with time delays and some remark-
able results have been proposed in the literature [26–
32]. Moreover, some special networks structures have
been considered to characterizing the dynamic behav-
ior of the scale-free networks and complex recurrent
networks such as hub structure and ring structure. Some
of the nodes have several connections (high-degree)
than other nodes of the networks which is called hub
structure of the networks. These simplified connectiv-
ity structures are studied to gain insight into the mech-
anisms underlying the behavior of complex networks.
In [30], the authors have been widely investigated the
stability analysis of fractional-order Hopfield neural
networks with both ring and hub structure. By using
Laplace transforms, stability theorem for fractional-
order systems, properties of circulant matrices, some
new sufficient conditions were derived for stability of
fractional-order neural networks of Hopfield type with
hub and ring structure in [31].

In the field of science and engineering, many appli-
cations are strongly depend on the dynamic behav-
iors of the designed networks. Therefore, the study of
dynamic behaviors of both integer-order and fractional-
order neural networks is very important. In [34], the
authors have been discussed the problem of boundary
stabilization of a nonlinear viscoelastic equation with
interior time-varying delay and nonlinear dissipative
boundary feedback and obtained the global existence of
weak solutions and asymptotic behavior of the energy
by using the Faedo–Galerkin method and the perturbed
energy method. By using variable norm technique and
modified Lyapunov functional approach, some suffi-
cient conditions were derived to ensure exponential
stability of heat flowwith boundary time-varying delay
effect in [35]. On the other hand, in [36], the authors
have been established the synchronization problem of
chaotic systems and extensively investigated. In the
existing literature, a number of synchronization prob-
lems have been exposed and investigated, such as
complete synchronization, anti-phase synchronization,
projective synchronization and robust synchronization
[36–41]. Many control techniques have been used to
show the synchronization of considered systems such
as linear feedback control, adaptive control, sliding
mode control, active control, etc. Recently, the analysis
of synchronization problem of fractional-order neural
networks have received much attention in the area of
nonlinear science and it has been applied many fields
such as image processing, secure communication and
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ecological system. Projective synchronization was first
initiated in [42], and it has been providing faster com-
munication with its proportional feature. This feature
can be used to extend binary digital to M-nary digital
communication for achieving fast communication in
[43]. Thus, the study of projective synchronization is a
very important concept in both theoretical and applica-
tion point of view. Recently, several important results
have been derived for projective synchronization in
the literature [44–50]. The conditions for the global
Mittag–Leffler stability and synchronization have been
obtained by using Lyapunovmethod for thememristor-
based fractional-order neural networks in [49]. In [44],
the authors extensively studied the problemofmodified
projective synchronization of time-delayed fractional-
order chaotic systems. Some new sufficient conditions
were obtained to realize projective synchronization of
fractional-order neural networks with open loop con-
trol and adaptive control in [45].

To the best of our knowledge, there are few results
established for projective synchronizationof fractional-
order memristor-based neural networks. In [16], the
authors extensively studied the synchronization prob-
lem for memristor-based neural networks with time-
varying delays via adaptive controller and feedback
controller technique. Projective synchronization of
fractional-order memristor-based neural networks has
been investigated in [50]. In [17], the authors have
been discussed about weak, modified and function pro-
jective synchronization for chaotic memristive neural
networks with time delays. By using the generalized
Halanay inequality and state feedback control tech-
nique, some new sufficient conditions were established
to ensure the weak, modified and function projective
synchronization of the considered networks.Motivated
by the above discussion, the problem of hybrid pro-
jective synchronization of fractional-order memristor-
based neural networks with hub structure and time
delays is extensively investigated in this paper. Some
new sufficient conditions are obtained to guarantee the
hybrid projective synchronization of fractional-order
memristor-based neural networks with hub structure
and timedelays byusingFilippovs solution, differential
inclusion theory, stability theorem of linear fractional-
order systems with multiple time delays and linear
feedback control technique. The addressed fractional-
order memristor-based neural networks system with
hub structure and time delays is solved by numerically
using a predictor–corrector scheme [51].

This paper organized as follows. In Sect. 2, some
basic definitions of fractional calculus and descrip-
tions of derive and response systems are presented.
Some new sufficient conditions for hybrid projective
synchronization of fractional-order memristor-based
neural networks with hub structure and time delays are
obtained in Sect. 3. In Sect. 4, a numerical example is
provided to show the effectiveness of our main results.
The conclusion of this paper is provided in Sect. 5.

2 Preliminaries

In this section, we provide some basic definitions of
fractional calculus and the description of derive and
response system. Throughout this paper, we use the
Caputo fractional-order derivative.

Definition 1 [19] The fractional integral of order α for
a function h is defined as

I αh(t) = 1

Γ (α)

∫ t

0
(t − τ)α−1h(τ )dτ, (1)

where t ≥ 0 and α > 0, Γ (·) is the gamma function
defined as Γ (α) = ∫ ∞

0 tα−1e−tdt.

Definition 2 [19] The Caputo fractional derivative of
order α for a function h(t) is

C D
α
t h(t) = 1

Γ (n − α)

∫ t

0

h(n)(τ )

(t − τ)α−n+1 dτ, (2)

where t > 0 and n is a positive integer such that n−1 <

α < n ∈ Z+.

Definition 3 [30] TheLaplace transformof theCaputo
fractional-order derivative is

L{C Dα
t h(t); s} = sαH(s) −

n−1∑
k=0

sα−k−1h(k)(0),

where n − 1 < α ≤ n, H(s) is the Laplace transform
of h(t) and hk(0) = 0, k = 1, 2, . . . , n, are the initial
conditions.

In this paper, we consider a fractional-order
memristor-based neural networks with time delays as
drive system is described by the following equations:

123



422 G. Velmurugan, R. Rakkiyappan

C D
α
t ui (t) = − aiui (t) +

n∑
j=1

βi j (u j (t)) f j (u j (t))

+
n∑
j=1

γi j (u j (t)) f j (u j (t − τ)), (3)

for i = 1, 2, . . . , n, where 0 < α < 1, n corresponds
to the number of units in the network. ui (t) is the state
vector of the i th neuron. ai > 0 is the self-feedback
connection weight matrix. f j (u j (t)) and f j (u j (t−τ))

denotes the nonlinear activation functions without and
with time delay. τ denote the constant time delay of the
network. βi j (u j (t)) and γi j (u j (t)) are the memristor-
based connection weight matrices without and with
delay, respectively, which are defined as follows

βi j (u j (t)) =
{

β∗
i j , |u j (t)| > Tj ,

β∗∗
i j , |u j (t)| < Tj ,

and

γi j (u j (t)) =
{

γ ∗
i j , |u j (t)| > Tj ,

γ ∗∗
i j , |u j (t)| < Tj ,

(4)

for i, j = 1, 2, . . . , n,where the switching jumps Tj >

0, β∗
i j , β∗∗

i j , γ ∗
i j and γ ∗∗

i j are all constants.
The initial conditions associated with system (3) are

of the form

ui (s) = φi (s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (5)

where φi (s) = (φ1(s), φ2(s), . . . , φn(s))T ∈ C([−τ,

0],Rn).

Remark 1 The detailed construction of memristor-
based neural networks from the characteristics of cir-
cuit analysis and memristor physical properties were
shown in [2,6,14,15,17]. Memristor-based neural net-
works is one of the remarkable type of neural networks
model. That is, memristor-based neural networks is the
switching nonlinear systems depending on its state.
Thus, memristor-based neural networks predicts the
undesirable dynamical behaviors. Most of the authors
studied the dynamical behaviors of memristor-based
neural networks see [6–18].

Remark 2 In [33], the authors have been studied
the problem of hybrid projective synchronization of
fractional-order neural networks with time delays. In
this paper, we consider the problem of hybrid pro-

jective synchronization of fractional-order memristor-
based neural networks with time delays and some
sufficient conditions are derived to ensure the hybrid
projective synchronization of considered fractional-
order memristor-based neural networks with time
delays. Moreover, the connection weights βi j (u j (t))
and γi j (u j (t)) of (3) are state dependent and change
their values as β∗

i j , β∗∗
i j

and γ ∗
i j , γ ∗∗

i j
for i, j =

1, 2, . . . , n, respectively, based on the state of each
subsystem. If assume that β∗

i j = β∗∗
i, j and γ ∗

i j = γ ∗∗
i, j

for i, j = 1, 2, . . . , n, then the system (3) is reduced to
the system in [33]. Our results is the extended results
of some existing works in the literature.

Definition 4 [52] Let E ⊆ Rn, x �→ F(x) is called
a set-valued map for E ↪→ Rn , if for each point x
of a set E ⊆ Rn , there corresponds a nonempty set
F(x) ⊆ Rn . A set-valued map F with nonempty val-
ues is said to be upper semi-continuous at x0 ∈ E ⊆
Rn , if for any open set N containing F(x0), there
exists a neighborhood M of x0 such that F(M) ⊆
N . F(x) is said to have a closed (convex, compact)
image if for each x ∈ E, F(x) is closed (convex,
compact).

Definition 5 [53] For differential system dx
dt = f (t,

x),where f (t, x) is discontinuous in x . The set-valued
map of f (t, x) is defined as

F(t, x) = ∩δ>0 ∩μ(N )=0 co[ f (B(x, δ) \ N )], (6)

where B(x, δ) = {y : ‖y− x‖ ≤ δ} is the ball of center
x and radius δ; intersection is taken over all sets N of
measure zero and over all δ > 0; μ(N ) is Lebesgue
measure of set N .

By using the theory of differential inclusion, the
FMNNs (3) can be written as

C D
α
t ui (t) ∈ − aiui (t) +

n∑
j=1

co
{
β
i j

, β̄i j

}
f j (u j (t))

+
n∑
j=1

co
{
γ
i j

, γ̄i j

}
f j (u j (t − τ)), (7)

for i = 1, 2, . . . , n, the set-valued maps defined as
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co
{
β
i j

, β̄i j

}
=

⎧⎪⎨
⎪⎩

β∗
i j , |u j (t)| > Tj ,[

β
i j

, β̄i j
]
, |u j (t)| = Tj ,

β∗∗
i j , |u j (t)| < Tj ,

and

co
{
γ
i j

, γ̄i j

}
=

⎧⎪⎨
⎪⎩

γ ∗
i j , |u j (t)| > Tj ,[

γ
i j

, γ̄i j
]
, |u j (t)| = Tj ,

γ ∗∗
i j , |u j (t)| < Tj ,

where β
i j

= min{β∗
i j , β

∗∗
i j }, β̄i j = max{β∗

i j , β
∗∗
i j }

γ
i j

= min{γ ∗
i j , γ

∗∗
i j } and γ̄i j = max{γ ∗

i j , γ
∗∗
i j }, or

equivalently there exist bi j (t) ∈ co{β
i j

, β̄i j }, ci j (t) ∈
co{γ

i j
, γ̄i j }, such that

C D
α
t ui (t) = − aiui (t) +

n∑
j=1

bi j (t) f j (u j (t))

+
n∑
j=1

ci j (t) f j (u j (t − τ)). (8)

For our convenience, we can rewritten as

C D
α
t ui (t) = − aiui (t) +

n∑
j=1

b∗
i j f j (u j (t))

+
n∑
j=1

c∗
i j f j (u j (t − τ)), i = 1, . . . , n,

(9)

where b∗
i j = supt≥0 ‖bi j (t)‖, c∗

i j = supt≥0 ‖ci j (t)‖.
Equation (9) can be rewritten as in the vector form

as follows

C D
α
t u(t) = −Au(t) + β̂ f (u(t)) + γ̂ f (u(t − τ)),

(10)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn, A =
diag(a1, a2, . . . , an) ∈ Rn×n , β̂ = (b∗

i j )n×n ∈ Rn×n ,
γ̂ = (c∗

i j )n×n ∈ Rn×n , f (u(t)) = ( f1(u1(t)),

f2(u2(t)), . . . , fn(un(t)))T and f (u(t − τ)) = ( f1(u1
(t − τ)), . . . , fn(un(t − τ)))T .

System (10) can be linearized as follows

C D
α
t u(t) = −Au(t) + β̂Ru(t) + ū(t − τ), (11)

where R is the Jacobian matrix of f (u(t)) and ū(t −
τ) = (

∑n
j=1 c

∗
1 j p1 j u j (t−τ), . . . ,

∑n
j=1 c

∗
nj pnj u j (t−

τ))T is the linearization vector of γ̂ f (u(t − τ)) at
the equilibrium point. Also, denote β̃ = β̂R and
Θ̃ = (c∗

i j pi j )n×n , then (11) can be rewritten as

C D
α
t u(t) = −Au(t) + β̃u(t) + Θ̃u(t − τ). (12)

In this paper, we consider the drive-response synchro-
nization problem. The corresponding response system
of (3) is described as the following equation:

C D
α
t vi (t) = − aivi (t) +

n∑
j=1

βi j (v j (t)) f j (v j (t))

+
n∑
j=1

γi j (v j (t)) f j (v j (t − τ)) + σi (t),

(13)

for i = 1, 2, . . . , n, where σi (t) = (σ1(t), σ2(t), . . . ,
σn(t))T is the control input to be designed for ensuring
the synchronization of the drive-response system. Sim-
ilarly, the parameters of response system (13) is defined
as

βi j (v j (t)) =
{

β∗
i j , |v j (t)| > Tj ,

β∗∗
i j , |v j (t)| < Tj ,

and

γi j (v j (t)) =
{

γ ∗
i j , |v j (t)| > Tj ,

γ ∗∗
i j , |v j (t)| < Tj ,

(14)

for i, j = 1, 2, . . . , n,where the switching jumps Tj >

0, β∗
i j , β∗∗

i j , γ ∗
i j and γ ∗∗

i j are all constants.
The initial conditions associated with system (13)

are of the form

vi (s) = πi (s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (15)

where πi (s) = (π1(s), π2(s), . . . , πn(s))T ∈ C([−τ,

0],Rn). By using the theory of differential inclusion,
the response system (13) can be written as

C D
α
t vi (t) ∈ − aivi (t) +

n∑
j=1

co{β
i j

, β̄i j } f j (v j (t))

+
n∑
j=1

co{γ
i j

, γ̄i j } f j (v j (t − τ)) + σi (t),

(16)

for i = 1, 2, . . . , n, the set-valued maps defined as
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co
{
β
i j

, β̄i j

}
=

⎧⎪⎨
⎪⎩

β∗
i j , |v j (t)| > Tj ,[

β
i j

, β̄i j
]
, |v j (t)| = Tj ,

β∗∗
i j , |v j (t)| < Tj ,

and

co
{
γ
i j

, γ̄i j

}
=

⎧⎪⎨
⎪⎩

γ ∗
i j , |v j (t)| > Tj ,[

γ
i j

, γ̄i j
]
, |v j (t)| = Tj ,

γ ∗∗
i j , |v j (t)| < Tj ,

where β
i j

= min{β∗
i j , β

∗∗
i j }, β̄i j = max{β∗

i j , β
∗∗
i j }

γ
i j

= min{γ ∗
i j , γ

∗∗
i j } and γ̄i j = max{γ ∗

i j , γ
∗∗
i j }, or

equivalently there exist b̄i j (t) ∈ co{β
i j

, β̄i j }, c̄i j (t) ∈
co{γ

i j
, γ̄i j }, such that

C D
α
t vi (t) = − aivi (t) +

n∑
j=1

b̄i j (t) f j (v j (t))

+
n∑
j=1

c̄i j (t) f j (v j (t − τ)) + σi (t). (17)

For our convenience, we can rewritten as

C D
α
t vi (t) = − aivi (t) +

n∑
j=1

b̄∗
i j f j (v j (t))

+
n∑
j=1

c̄∗
i j f j (v j (t − τ)) + σi (t), (18)

for i = 1, 2, . . . , n,where b̄∗
i j = supt≥0 ‖b̄i j (t)‖, c̄∗

i j =
supt≥0 ‖c̄i j (t)‖. Equation (18) can be rewritten as in the
vector form as follows

C D
α
t v(t) = −Av(t) + β∗ f (v(t)) + γ ∗ f (v(t − τ))

+ σ(t), (19)

where v(t) = (v1(t), v2(t), . . . , vn(t))T ∈ Rn, A =
diag(a1, a2, . . . , an) ∈ Rn×n , β∗ = (b̄∗

i j )n×n ∈ Rn×n ,
γ ∗ = (c̄∗

i j )n×n ∈ Rn×n , σ(t) = (σ1(t), σ2(t), . . . ,

σn(t))T , f (v(t)) = ( f1(v1(t)), f2(v2(t)), . . . , fn
(vn(t)))T and f (v(t−τ)) = ( f1(v1(t−τ)), . . . , fn(vn
(t − τ)))T .

Similar analysis technique of linearization of derive
system, we have the linearization of response system
as follows

C D
α
t v(t) = −Av(t) + β̃∗v(t) + Θ̃∗v(t − τ) + σ(t),

(20)

where β̃∗ = β∗R∗ and Θ̃∗ = (c̄∗
i j p

∗
i j )n×n , R∗

is the Jacobian matrix of f (v(t)) and v̄(t − τ) =
(
∑n

j=1 c̄
∗
1 j p

∗
1 jv j (t −τ), . . . ,

∑n
j=1 c̄

∗
nj p

∗
njv j (t −τ))T

is the linearization vector of γ ∗ f (v(t −τ)) at the equi-
librium point.

Definition 6 If there exists a real scaling matrix B ∈
Rn×n , such that for any two solutions u(t) and v(t)
of drive system (12) and response system (20) with
different initial values denoted by φ(0) and π(0), one
has

lim
t→∞ ‖v(t) − Bu(t)‖ = 0, (21)

then, drive system (12) and response system (20) are
said to be globally hybrid projectively synchronized.

In this paper, we use the linear feedback control to
realize synchronization between the derive system (12)
and response system (20). That is, the controller σ(t)
is assumed as

σ(t) = K (v(t) − Bu(t)), (22)

where K = diag(k1, k2, . . . , kn) ∈ Rn×n is a feedback
gain matrix.

3 Main results

In this section, some new sufficient conditions has been
derived to ensure that system (12) and (20) is projec-
tively synchronized under linear feedback control with
appropriate scaling matrix and gain matrix.

Let us define e(t) = v(t) − Bu(t) be the synchro-
nization errors. From (12) and (20), the error system
can be obtained as

C D
α
t e(t) = −Ae(t) + β̄e(t) + Θ̄e(t − τ) + Ke(t),

(23)

where β̄ = max{β̃, β̃∗} and Θ̄ = max{Θ̃, Θ̃∗}.
The initial conditions associated with error system

(23) is defined as e(s) = δ(s), s ∈ [−τ, 0], where
δ(s) = (δ1(s), δ2(s), . . . , δn(s))T ∈ C([−τ, 0],Rn).

From Definition 3, taking the Laplace transform of
Eq. (23), we have

sαE1(s) − sα−1δ1(0)

= (−a1 + k1 + β̄11)E1(s) + β̄12E2(s) + · · ·
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+ β̄1n En(s) + θ̄11e
−sτ

(
E1(s)+

∫ 0

−τ

e−stδ1(t)dt

)

+ θ̄12e
−sτ

(
E2(s) +

∫ 0

−τ

e−stδ2(t)dt

)

+ · · · + θ̄1ne
−sτ

(
En(s) +

∫ 0

−τ

e−stδn(t)dt

)
,

sαE1(s) − sα−1δ1(0)

= (−a1 + k1 + β̄11 + θ̄11e
−sτ )E1(s)

+ (β̄12 + θ̄12e
−sτ )E2(s) + · · ·

+ (β̄1n + θ̄1ne
−sτ )En(s) + θ̄11e

−sτ
∫ 0

−τ

e−stδ1(t)dt

+ θ̄12e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄1ne
−sτ

∫ 0

−τ

e−stδn(t)dt,

sαE2(s) − sα−1δ2(0)

= (−a2 + k2 + β̄22 + θ̄22e
−sτ )E2(s)

+ (β̄21 + θ̄21e
−sτ )E1(s) + · · ·

+ (β̄2n + θ̄2ne
−sτ )En(s) + θ̄21e

−sτ
∫ 0

−τ

e−stδ1(t)dt

+ θ̄22e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄2ne
−sτ

∫ 0

−τ

e−stδn(t)dt,

· · ·
· · ·

sαEn(s) − sα−1δn(0)

= (−an + kn + β̄nn + θ̄nne
−sτ )En(s)

+ (β̄n1 + θ̄n1e
−sτ )E1(s) + · · ·

+ (β̄n,n−1 + θ̄n,n−1e
−sτ )En−1(s)

+ θ̄n1e
−sτ

∫ 0

−τ

e−stδ1(t)dt

+ θ̄n2e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄nne
−sτ

∫ 0

−τ

e−stδn(t)dt, (24)

where E(s) is the Laplace transform of e(t) with
E(s) = L(e(t)). Moreover, the above equations can
be rewritten as follows

Δ(s) · E(s) = d(s), (25)

where Δ(s) is the characteristic matrix of system
(23) and d(s) is the nonlinear part of system (24),
such as

Δ(s) =

⎛
⎜⎜⎝
sα + c1 − θ̄11e−sτ −β̄12 − θ̄12e−sτ · · ·
−β̄21 − θ̄21e−sτ sα + c2 − θ̄22e−sτ · · ·

· · · · · · · · ·
−β̄n1 − θ̄n1e−sτ −β̄n2 − θ̄n2e−sτ · · ·
−β̄1n − θ̄1ne−sτ

−β̄2n − θ̄2ne−sτ

· · ·
sα + cn − θ̄nne−sτ

⎞
⎟⎟⎠ (26)

with ci = ai − ki − β̄i i , (i = 1, 2, . . . , n) and

d1(s) = sα−1δ1(0) + θ̄11e
−sτ

∫ 0

−τ

e−stδ1(t)dt

+ θ̄12e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄1ne
−sτ

∫ 0

−τ

e−stδn(t)dt,

d2(s) = sα−1δ2(0) + θ̄21e
−sτ

∫ 0

−τ

e−stδ1(t)dt

+ θ̄22e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄2ne
−sτ

∫ 0

−τ

e−stδn(t)dt,

· · ·

dn(s) = sα−1δn(0) + θ̄n1e
−sτ

∫ 0

−τ

e−stδ1(t)dt

+ θ̄n2e
−sτ

∫ 0

−τ

e−stδ2(t)dt + · · ·

+ θ̄nne
−sτ

∫ 0

−τ

e−stδn(t)dt.

Now, we assume that τ = 0, the systems (23) can be
rewritten as

C D
α
t e(t) = (−A + K + β̄ + Θ̄)e(t) = Me(t),

(27)
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where,

M =

⎛
⎜⎜⎝

−a1 + k1 + β̄11 + θ̄11 β̄12 + θ̄12
β̄21 + θ̄21 −a2 + k2 + β̄22 + θ̄22

· · · · · ·
β̄n1 + θ̄n1 β̄n2 + θ̄n2

· · · β̄1n + θ̄1n
· · · β̄2n + θ̄2n
· · · · · ·
· · · −an + kn + β̄nn + θ̄nn

⎞
⎟⎟⎠ . (28)

Assume that A = 0, β̄ = 0 and K = 0 then (23)
reduces to the system in [24] and we have the following
conclusions.

Theorem 1 [24] If all the roots of the characteristic
equation det(Δ(s)) = 0 have negative real parts, then
the zero solution of (23) is Lyapunov asymptotically
stable.

Theorem 2 [24] Ifα ∈ (0, 1), A = 0, β̄ = 0, K = 0,
all the eigenvalues of M satisfy |arg(λ)| > απ

2 and
the characteristic equation det(Δ(s)) = 0 has no pure
imaginary roots for τ > 0, then the zero solution of
(23) is Lyapunov asymptotically stable.

If α ∈ (0, 1), A �= 0, β̄ �= 0, K �= 0 then Theorem
2 is not valid to investigate the stability of (23). Thus,
we have the following conclusions.

Theorem 3 [30] If α ∈ (0, 1), all the eigenvalues of
M satisfy |arg(λ)| > π

2 and the characteristic equa-
tion det(Δ(s)) = 0 has no pure imaginary roots for
τ > 0, then the zero solution of (23) is Lyapunov
asymptotically stable.

3.1 The FMNNs with hub structure and time delays

It is well known that, hub structures is a common fea-
ture in neural networks, it help us to understand the
mechanism happening within complex recurrent net-
works. Let us consider the FMNNs with hub structure
and time delays

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C Dα
t u1(t) = −a1u1(t)+∑n

j=1 β1 j (u j (t)) f j (u j (t))
+ γ1(u1(t)) f1(u1(t − τ)),

C Dα
t ui (t) = −aiui (t) + βi1(u1(t)) f1(u1(t))

+βi i (ui (t)) fi (ui (t))
+ γ (ui (t)) fi (ui (t − τ)), i = 2, . . . , n,

(29)

where ai > 0. In system (29), the first neuron is the
center of the hub and all the other i − 1 neurons are
connected directly only to the central neuron and to
themselves.

The corresponding response system defined as fol-
lows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C Dα
t v1(t) = −a1v1(t)+∑n

j=1 β1 j (v j (t)) f j (v j (t))
+ γ1(v1(t)) f1(v1(t − τ)) + σ1(t),

C Dα
t vi (t) = −aivi (t) + βi1(v1(t)) f1(v1(t))

+βi i (vi (t)) fi (vi (t))
+ γ (vi (t)) fi (vi (t − τ)) + σi (t),
i = 2, . . . , n.

(30)

The linear forms of Eqs. (29) and (30) are as follows

C D
α
t u(t) = − Au(t) + β̃u(t) + Θ̃u(t − τ). (31)

C D
α
t v(t) = − Av(t) + β̃∗v(t) + Θ̃∗v(t − τ) + σ(t).

(32)

From (31) and (32), the error system can be obtained
as

C D
α
t e(t) = −Ae(t) + β̄e(t) + Θ̄e(t − τ) + Ke(t),

(33)

where A = diag(a1, . . . , an), β̄ =⎛
⎜⎜⎝

β̄11 β̄12 β̄13 · · · β̄1n

β̄21 β̄22 0 · · · 0
· · · · · · · · · · · · · · ·
β̄n1 0 0 · · · β̄nn

⎞
⎟⎟⎠, Θ̄ =

⎛
⎜⎜⎝

θ̄1 0 0 · · · 0
0 θ̄ 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · θ̄

⎞
⎟⎟⎠,

Theorem 4 When α ∈ (0, 1), ā2 − θ̄ > 0, ā1 + ā2 −
θ̄1 − θ̄ > 0, (ā1 − θ̄1)(ā2 − θ̄ ) − χ > 0, where ā1 =
a1−k1−β̄11, ā2 = ai −ki −β̄i i , (i = 2, . . . , n), χ =∑n

i=2(β̄i1β̄1i ).

(i) if χ = 0 and θ̄2 − ā22 sin
2 απ

2 < 0 and θ̄21 −
ā21 sin

2 απ
2 < 0, then the zero solution of (33) is

Lyapunov asymptotically stable;
(ii) if χ �= 0 and θ̄2 − ā22 sin

2 απ
2 < 0, then the zero

solution of (33) is Lyapunov asymptotically stable.

Proof Taking the Laplace transform of Eq. (33) and
using the same method of finding for Δ(s) in (25), we
have
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Δ(s) =

⎛
⎜⎜⎜⎜⎝

sα + ā1 − θ̄1e−sτ −β̄12

−β̄21 sα + ā2 − θ̄e−sτ

−β̄31 0
· · · · · ·

−β̄n1 0

−β̄13 · · · −β̄1n

0 · · · 0
sα + ā2 − θ̄e−sτ · · · 0

· · · · · · · · ·
0 · · · sα + ā2 − θ̄e−sτ

⎞
⎟⎟⎟⎟⎠ .

(34)

It follows that, Δ(s) is n × n matrix (n ≥ 3 in hub
structure). Now we find the det(Δ(s)). It general, the
characteristic equation det(Δ(s)) = 0 satisfies

det(Δ(s)) = (
sα + ā2 − θ̄e−sτ )n−2 (

(sα + ā1 − θ̄1e
−sτ )

× (sα + ā2 − θ̄e−sτ ) − χ
) = 0. (35)

From (35), if χ = 0 then
(
sα + ā2 − θ̄e−sτ

) = 0 or(
sα + ā1 − θ̄1e−sτ

) = 0, where χ = ∑n
i=2 β̄i1β̄1i .

Now,we prove that det(Δ(s)) = 0 has no pure imag-
inary roots for any τ > 0. We will prove that by con-
tradiction.

Suppose that there exists s = ζ i = |ζ |(cos π
2 +

i sin(±π
2 )), that is a pure imaginary root of sα +

ā1 − θ̄1e−sτ = 0, where ζ is a real number. If ζ >

0, s = ζ i = |ζ |(cos π
2 + i sin(π

2 )) and if ζ < 0, s =
ζ i = |ζ |(cos π

2 − i sin(π
2 )). Substituting s = ζ i =

|ζ |(cos π
2 + i sin(±π

2 )) into sα + ā1 − θ̄1e−sτ = 0
which gives

|ζ |α
(
cos

απ

2
+ i sin(±απ

2
)
)

+ ā1

− θ̄1(cos ζ τ − i sin ζ τ) = 0. (36)

From (36), we separate the real and imaginary parts

|ζ |α cos απ

2
+ ā1 = θ̄1 cos ζ τ (37)

and

|ζ |α sin(±απ

2
) = −θ̄1 sin ζ τ. (38)

Squaring and adding Eqs. (37) and (38), one can obtain

|ζ |2α + 2|ζ |α
(
ā1 cos

απ

2

)
+ ā21 − θ̄21 = 0. (39)

Obviously, when 0 < α < 1 and θ̄21 − ā21 sin
2 απ

2 <

0, the above Eq. (39) has no real solutions, i.e.,
det(Δ(s)) = 0 has no pure imaginary roots for any
τ > 0. Similarly, if the sα + ā2 − θ̄e−sτ = 0, we have
θ̄2 − ā22 sin

2 απ
2 < 0. If χ �= 0 then from (35), we have

sα + ā2 − θ̄e−sτ = 0 and (sα + ā1 − θ̄1e−sτ )(sα +
ā2 − θ̄e−sτ ) − χ �= 0. It is clear that, we can obtain
θ̄2 − ā22 sin

2 απ
2 < 0. Therefore, the conditions (i) and

(ii) of Theorem 4 is easily obtained from the above.
Further, we prove that all the eigenvalues ofM sat-

isfy |arg(λ)| > π
2 . The coefficient matrixM of system

(33) satisfies

M =

⎛
⎜⎜⎝

−ā1 + θ̄1 β̄12 β̄13 · · · β̄1n

β̄21 −ā2 + θ̄ 0 · · · 0
· · · · · · · · · · · · · · ·
β̄n1 0 0 · · · −ā2 + θ̄

⎞
⎟⎟⎠ .

By choose ā2 − θ̄ > 0, ā1 + ā2 − θ̄1 − θ̄ > 0, (ā1 −
θ̄1)(ā2 − θ̄ ) − χ > 0, one can see that the eigenvalues
of M have negative real parts, i.e., all the eigenvalues
of M satisfy |arg(λ)| > π

2 . Therefore, the proof of
Theorem 4 is completed. 
�
Remark 3 The study of dynamical analysis of some
high-degree distribution networks such as scale-free
networks, complex networks is generally more com-
plicated. In such network, some of the nodes have
high connections than the other nodes of the network
which is named as hubs of the network. The exis-
tence of hub structure is a common feature, playing an
important role in defining the connectivity of the con-
sidered networks and also characterizing the dynamic
behaviors of such networks. Hence, the analysis of
hub structure of the network is necessary and impor-
tant in the network community. Recently, the authors
have been studied the dynamics of fractional-order
neural networks with hub structure and ring structure
in [30–32]. In this paper, we study the hybrid pro-
jective synchronization of fractional-order memristor-
based neural networks with hub structure and time
delays.

Remark 4 The projection rate of response system with
the corresponding derive system is depending on the
scaling matrix. Moreover, the projective synchroniza-
tion is the generalized synchronization of complete
synchronization and anti-phase synchronization. In
particular, if the scaling matrix B = I or B = −I , the
hybrid projective synchronization of fractional-order
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Fig. 1 First, the chaotic attractors of the FMNNs (40) and
FMNNs (41). Second, the error convergence of hybrid projective
synchronization between FMNNs (40) and FMNNs (41). Third

and fourth are the state trajectories of FMNNs (40) and FMNNs
(41) with α = 0.9, K = diag(−90,−90,−92.3,−92.3),
τ = 0.15 and scaling matrix B = diag(1, 1, 1, 1)

memristor-based neural networks with hub structure
and time delays is reduced into complete synchroniza-
tion or anti-phase synchronization of fractional-order
memristor-based neural networks with hub structure
and time delays, respectively.

Remark 5 In [44], the authors were studied the hybrid
projective synchronization of time-delayed fractional-
order chaotic systems. By using the stability theo-
rem of linear fractional-order system with multiple
time delays and a nonlinear controller to ensure the
hybrid projective synchronization of considered sys-
tems. In [17], some novel conditions to ensure the
weak, modified, function projective synchronization of
chaotic memristive neural networks with time delays

have been obtained by using the generalized Halanay
inequality and a state feedback controller. The prob-
lem of projective synchronization of fractional-order
memristor-based neural networkswas investigated, and
by using fractional-order differential inequality and
adaptive controller, some new sufficient conditions
have been derived to guarantee the projective synchro-
nization of addressed networks in [50]. The problem of
hybrid projective synchronization of fractional-order
memristor-based neural networks with hub structure
and time delays has not investigated in the literature. In
this paper, the authors discussed the hybrid projective
synchronization of fractional-order memristor-based
neural networks with hub structure and time delays by
using the stability theorem of linear fractional-order
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Fig. 2 First, the chaotic attractors of the FMNNs (40) and
FMNNs (41). Second, the error convergence of hybrid projective
synchronization between FMNNs (40) and FMNNs (41). Third

and fourth are the state trajectories of FMNNs (40) and FMNNs
(41) with α = 0.9, K = diag(−90,−90,−92.3,−92.3),
τ = 0.15 and scaling matrix B = diag(−1,−1,−1,−1)

system with multiple time delays and a linear feedback
controller.

4 Numerical example

In this section, a numerical example is given to show
the effectiveness and feasibility of our main results.
The Adams–Bashforth–Moulton predictor–corrector
scheme [51] is used for obtain numerical solutions of
FMNNs with hub structure and time delays.

Example 1 Consider the following fractional-order
memristor-based neural networks with hub structure
and time delays as derive system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C Dα
t u1(t) = −a1u1(t)+∑4

j=1 β1 j (u j (t)) f j (u j (t))
+ γ1(u1(t)) f1(u1(t − τ)),

C Dα
t ui (t) = −aiui (t) + βi1(u1(t)) f1(u1(t))

+βi i (ui (t)) fi (ui (t))
+ γ (ui (t)) fi (ui (t−τ)), i = 2, . . . , 4,

(40)

where α = 0.9, τ = 0.15, f (u(t)) = tanh u(t), a1 =
3, a2 = 2, a3 = 2, a4 = 2,

β11(u1(t)) =
{
1.8, |u1(t)| > 1,
1.5, |u1(t)| < 1,

β22(u2(t)) =
{
2.5, |u2(t)| > 1,
2.7, |u2(t)| < 1,

123



430 G. Velmurugan, R. Rakkiyappan

−8
−6

−4
−2

0
2

−2
−1

0
1

2
−1

−0.5

0

0.5

1

u1(t), v1(t)u2(t), v2(t)

u 3(t)
, v

3(t)

0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

1

2

t

e 1(t)
,e

2(t)
,e

3(t)
,e

4(t)

0 5 10 15 20 25
−8

−6

−4

−2

0

2

t

u 1(t)
, v

1(t)

0 5 10 15 20 25
−2

−1

0

1

2

t

u 2(t)
, v

2(t)

0 5 10 15 20 25
−0.5

0

0.5

1

t

u 3(t)
, v

3(t)

0 5 10 15 20 25
−2

−1

0

1

2

t

u 4(t)
, v

4(t)

Fig. 3 First, the chaotic attractors of the FMNNs (40) and
FMNNs (41). Second, the error convergence of hybrid projective
synchronization between FMNNs (40) and FMNNs (41). Third

and fourth are the state trajectories of FMNNs (40) and FMNNs
(41) with α = 0.9, K = diag(−90,−90,−92.3,−92.3),
τ = 0.15 and scaling matrix B = diag(2, 2, 2, 2)

β33(u3(t)) =
{

5, |u3(t)| > 1,
4.5, |u3(t)| < 1,

β44(u4(t)) =
{
4.5, |u4(t)| > 1,
5, |u4(t)| < 1,

β12(u2(t)) =
{
1.8, |u2(t)| > 1,
2, |u2(t)| < 1,

β21(u1(t)) =
{

5, |u1(t)| > 1,
4.5, |u1(t)| < 1,

β13(u3(t)) =
{

5, |u3(t)| > 1,
4.5, |u3(t)| < 1,

β31(u1(t)) =
{−1.5, |u1(t)| > 1,

−1, |u1(t)| < 1,

β14(u4(t)) =
{

1, |u4(t)| > 1,
0.5, |u4(t)| < 1,

β41(u1(t)) =
{ −5, |u1(t)| > 1,

−5.5, |u1(t)| < 1,

γ1(u1(t)) =
{ −8, |u1(t)| > 1,

−8.5, |u1(t)| < 1,

γ (u2(t)) =
{ −5, |u2(t)| > 1,

−5.5, |u2(t)| < 1,

γ (u3(t)) =
{ −5, |u3(t)| > 1,

−5.5, |u3(t)| < 1,

γ (u4(t)) =
{ −5, |u4(t)| > 1,

−5.5, |u4(t)| < 1,
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The corresponding response system defined as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C Dα
t v1(t) = −a1v1(t)+∑4

j=1 β1 j (v j (t)) f j (v j (t))
+ γ1(v1(t)) f1(v1(t − τ)) + σ1(t),

C Dα
t vi (t) = −aivi (t) + βi1(v1(t)) f1(v1(t))

+βi i (vi (t)) fi (vi (t))
+ γ (vi (t)) fi (vi (t − τ)) + σi (t),
i = 2, . . . , 4.

(41)

Consider the same parameter values of (40). The
condition (i) of Theorem 4 is satisfied for given para-
meter values. Thus, hybrid projective synchroniza-
tion between drive system (40) and response sys-
tem (41) can be achieved with the initial condi-
tions φ(0) = (0.5,−0.2,−0.3, 0.1)T and π(0) =
(0.1,−0.2,−0.5, 0.3)T and the linear feedback con-
trol gain K = diag(−90,−90,−92.3,−92.3). The
chaotic behavior of the derive FMNNs system (40)
and the response FMNNs system (41), the convergence
behavior of the error state and the state trajectories of
derive system (40) and response system (41) are shown
in Figs. 1, 2 and 3 respectively, with the scaling matrix
B = diag(1, 1, 1, 1), B = diag(−1,−1,−1,−1) and
B = diag(2, 2, 2, 2).

5 Conclusion

In this paper, the problem of hybrid projective synchro-
nization of fractional-order memristor-based neural
networks hub structure and time delays have been dis-
cussed successfully. Some new sufficient conditions
for projective synchronization of addressed fractional-
order memristor-based neural networks hub structure
and time delays have been obtained based on the frame-
work of Filippovs solutions, differential inclusion the-
ory, stability theorem of linear fractional-order sys-
tems and linear feedback control technique. Moreover,
a scaling matrix is assumed to be B = I (B = −I )
where I is the identity matrix; then, the projective syn-
chronization becomes complete synchronization (anti-
synchronization) of the considered FMNNs with hub
structure and time delays. Finally, a numerical example
is given to demonstrate the synchronization effects of
considered systems which depending on the different
values of scaling matrix.
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