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Abstract This work proposes a three-wave method
with a perturbation parameter to obtain exact multi-
soliton solutions of nonlinear evolution equation. The
(2+ 1)-dimensional KdV equation is used as an exam-
ple to illustrate the effectiveness of the suggested
method. Using this method, new multi-soliton solu-
tions are given. Specially, spatiotemporal dynamics
of breather two-soliton and multi-soliton including
deformation between bright and dark multi-soliton
each other, and deflection with different directions and
angles are investigated and exhibited to (2+ 1)D KdV
equation. Some new nonlinear phenomena are revealed
under the small perturbation of parameter.
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1 Introduction

Since the soliton concept was introduced by Zabusky
and Kruskal in 1965 [1], a great number of integrable
systems have been discovered in the natural and applied
sciences [2–11]. Integrable systems exhibit richness
and variety of exact solutions such as soliton solutions,
periodic solutions, rational solutions and complexiton
solutions (see, e.g., [12,13]).

In recent years, abundant localized structures, like
dromions, lumps, ring soliton and oscillated dromion,
breathers solution, fractal-dromion and fractal-lump
soliton structures [14], were revealed. Besides the usual
localized structures, some new localized excitations
like peakons, compactons, folded solitary waves and
foldon structureswere foundby choosing some types of
lower-dimensional appropriate functions [15–28]. The
interaction properties of peakon–peakon, dromion–
dromion and foldon–foldon interactions have also
investigated [16,17]. However, within our knowledge,
studying the spatiotemporal deformation of multi-
soliton such as breather two-soliton and three-soliton
under the small perturbation of parameter is still open.
Motivated by this reason, we investigate the (2+1)D
KdV equation

ut − uxxx + 3(uv)x = 0, (1)

ux = vy, (2)

Equation (1)was derived byBoiti et al. using the idea of
the weak Lax pair. The Painlevé property of it has been
proved byDorizzi et al. And Lie algebraic structure and
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the infinite-dimensional symmetries have been studied.
Some special forms of solitary wave solutions are also
reported [26–44].

2 Three-wave method with a perturbation
parameter

Multi-wave solutions are important because they reveal
the interactions between the inner waves and the var-
ious frequency and velocity components. The whole
multi-wave solution, for instance, may sometimes be
converted into a single soliton of very high energy that
propagates over large regions of space without dispers-
ing, and an extremely destructive wave is therefore pro-
duced of which the tsunami is a good example. Since
all double-wave solutions can be found by using the
exp-function method proposed by Fu and Dai [18], we
propose anmodification of the three-solitonmethod [6]
in this paper (called the three-wave method) for finding
coupled wave solutions. Consider a high-dimensional
nonlinear evolution equation in the general form

F(u, ut , ux , uy, uz, uxx ...) = 0 (3)

where u = u(x, y, z, t) and F is a polynomial of u and
its derivatives, t represents time variable, and x, y, z
represent spatial variables. The three-wave method
operates as follows:

Step 1: By Painleve analysis , a transformation

u = T (u0, f ) (4)

is made for some new and unknown function f .
Step 2: Convert Eq. (3) into Hirota bilinear form:

G(u0, Dt , Dx , Dy, Dz ...) f · f = 0 (5)

where the operator D is the Hirota bilinear operator
defined in [2]. The perturbation parameter u0 plays an
important role to the resulting solution, where the spa-
tiotemporal feature in multi-wave propagation includ-
ing nature of soliton, direction even the shape will
change as u0 makes a small perturbation.

Step 3: Traditionally, we take the following Ansátz
to obtain the three-soliton solution

f = 1 + eξ1 + eξ2 + eξ3 + a12e
ξ1+ξ2 + a13e

ξ1+ξ3

+ a23e
ξ2+ξ3 + a123e

ξ1+ξ2+ξ3 (6)

cc where

ξi = ai x + bi y + ci z + di t, i = 1, 2, 3 (7)

Here, a12, a13, a23 and a123 are real constants to be
determined. Equation (6) can be rewritten as

f = e
η1
2 (e−η1 + e−η2 + e−η3 + e−η4+a12e

η4+a13e
η3

+ a23e
η2 + a123e

η1) (8)

where

η1 = ξ1 + ξ2 + ξ3

2
, η2 = ξ1 − ξ2 − ξ3

2
(9)

η3 = −ξ1 + ξ2 − ξ3

2
, η4 = −ξ1 − ξ2 + ξ3

2
(10)

Thus, this three-soliton Ansátz contains four wave
variables η1, η2, η3 and η4. Here, we treat it in a differ-
entway.We factor out the e

η1
2 and decrease the numbers

of wave variables to three terms. On the other hand,
we set some parameters in a complex way. At last,
the above analysis allows us to construct the follow-
ing assumptions:

f = δ1 cosh ξ1 + δ1 cos(ξ2) + δ2 cosh(ξ3), (11)

or

f = δ1 cosh ξ1 + δ1 cos(ξ2) + δ2 sinh(ξ3), (12)

where δ j , j = 1, 2, 3 are constants. In fact, from
Eqs. (9) or (10), it is easily seen that it only con-
tains three wave variables. As a result, we call this
method “three-wave method.” it is obvious that three-
wave method is the reduction and modification of the
traditional three-soliton method.

Step 4: Substitute Eq. (9) [or Eq. (10)] in Eq. (5)
and collect the coefficients of e jξ1 , sin(ξ2), cos(ξ2),
cosh(ξ3) and sinh(ξ3). Then, equate the coefficients of
these terms to zero and obtain a set of over-determined
algebraic equations in ai , bi , ci and di

Step 5: Solve the set of algebraic equations in Step 4
using Maple and solve for ai , bi , ci and δi , i = 1, 2, 3.

Step 6: Substituting the identified values in Eqs. (4)
and (5). Thus,we candeduce the exactmulti-wave solu-
tions depended on the parameter for Eq. (3).

Step 7:Make a small perturbation of parameter at the
special value to investigate the different spatiotemporal
features of multi-wave.

2.1 Application to (2+1)-dimensional KdV eqution

Using Painlevé analysis, we assume

ccu = u0 + 2(ln f )xy, v = v0 + 2(ln f )xx , (13)
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where both u0 and v0 are parameters. Then, Eqs. (1) and
(2) can be equivalently transformed into the following
bilinear form

(DyDt + DyD
3
x + 3u0D

2
x + 3v0Dx Dy) f · f = 0

(14)

According to the three-wave method with a perturba-
tion parameter in the previous section, we can assume

f (x, y, t) = a1 cosh (ξ1)+a2 cos (ξ2)+a3 cosh (ξ3) ,

ξi = ki x + li y + ci t, (15)

for some constants ai , ki , li , ci (i = 1, 2, 3) to be deter-
mined later. Then, by substituting Eq. (13) in Eq. (12)
and equating all the coefficients of sin(ξi ), cos(ξi ),
sinh(ξi ) and cosh(ξi ) to be zero, we obtain the set of
algebraic equations as follows:

2 l2a1c1 + 2 l2a1k1
3 + 6 v0a1k1l2 = 0,

2 l2a3k3
3 + 6 v0a3k3l2 + 2 l2a3c3 + 2 a3l3c2 = 0,

−2 c2l2a1 + 6 u0a1k1
2 = 0,

2 a3k3
3l3 − 2 c2l2a3 + 2 a3c3l3

+ 6 v0a3k3l3 + 6 u0a3k3
2 = 0,

−2 a3l3a1c1 − 12 u0a1k1a3k3 − 2 a3l3a1k1
3

− 6 a3k3
2l3a1k1 − 6 v0a1k1a3l3 = 0,

2 a3
2l3c3 + 8 a3

2k3
3l3 + 6 u0a1

2k1
2

+ 6 u0a3
2k3

2 − 2 l2c2 + 6 v0a3
2k3l3 = 0,

2 a3c3l3a1+2 a3k3
3l3a1+6 u0a1k1

2a3+6 u0a3k3
2a1

+ 6 v0a3k3l3a1 + 6 a3k3l3a1k1
2 = 0.

By solving the above system with the aid of Maple,
we obtain

c2 =
−3k1k3

√
k23 − k21

2
,

c1 = −3v0k1 − k31, l3 = −2u0
k3

,

a1 =
√
2 a32k32 − k12a32 + k12

k1
,

l2 = −2
√

− (
k12 − k32

)−1
k1u0k3

−1,

c3 = −1

2

(
3 k1

2 − k3
2 + 6 v0

)
k3. (16)

where k1, k3, u0 and v0 are free parameters. Substi-
tuting Eq. (14) in Eq. (11), we can derive the explicit
soluion of (2+1)-dimensional KdV equation:

u = u0 + Ξ

[a1 cosh(ξ1) + cos(ξ2) + a3 cosh(ξ3)]2 ,

(17)

Fig. 1 A spatial structure of u in (15) for parameters l1 =
0, k2 = 0, k1 = 0.25, k3 = 0.5, a3 = 1, t = 2, a u0 = 0.1
and v0 = −0.015, b u0 = −0.1 and v0 = −0.015

where

Ξ = [b1 cosh(ξ1) + b2 cosh(ξ3)] cos(ξ2)
+ b3 cosh(ξ3) cosh(ξ1)

+[b4 sinh(ξ1) − b5 sin(ξ2)] sinh(ξ3)
+ b6 sin(ξ2) sinh(ξ1) + b7.

and the coefficients are determined by

b1 = 2 a1l1k1 − 2 l2k2a1,

b2 = 2 l3k3a3 − 2 l2k2a3,

b3 = 2 a3l3k3a1 + 2 a1l1k1a3,

b4 = −2 a1k1a3l3 − 2 a3k3a1l1,

b5 = 2 a3k3l2 + 2 k2a3l3,

b6 = 2 a1k1l2 + 2 k2a1l1,

b7 = −2 k2l2 + 2 a1
2k1l1 + 2 a3

2l3k3.

We note that Eq. (12) is just the bilinear equation of
Eqs. (1) and (2) under transformation of Eq. (11) when
(u0, v0) equals to (0, 0), and the transformation (11) is
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Fig. 2 A spatial structure of u in (18) for parameters l1 =
0, k2 = 0.a3 = 1, t = 2, k3 = 1, k1 = √

2. a u0 = −0.1
and v0 = 2, b v0 = 2, u0 = 0.1

linear respect to (u0, v0), so, Eq. (12) is equivalent to
the bilinear equation of original equation. Therefore,
by studying the variety of spatiotemporal structure of
multi-wave of Eq. (12) we can find out some novel
nonlinear phenomenon of (2+1)DKdV equation when
u0 and v0 take different values in the neighborhood of
(0, 0). Figure (1) shows spatial structure ofu(x, y, t) for
parameters l1 = 0, k2 = 0, k1 = 0.25, k3 = 0.5, v0 =
−0.015, u0 = 0.1, a3 = 1, t = 2 and l1 = 0, k2 =
0, k1 = 0.25, k3 = 0.5, v0 = −0.015, a3 = 1, t =
2, u0 = −0.1.

From Fig. 1, we easily find out the spatiotemporal
structures of breather two-soliton happen outstanding
change when (u0, v0) makes small perturbation at (0,
0), two bright solitons not only change into two dark
solitons, but also the shape changes and direction of
propagation obviously deflects when v0 is fixed at a
small negative value −0.015 and u0 are taken −0.1
and 0.1, respectively.

In Eq. (14), when k1 > k3, we obtain three-soliton
solution

u = u0 + ℵ
[a1 cosh(ξ1) + cosh(ξ2) + a3 cosh(ξ3)]2 ,

(18)

where

Ξ = [b1 cosh(ξ1) + b2 cosh(ξ3)] cos(ξ2)
+ b3 cosh(ξ3) cosh(ξ1)

+[b4 sinh(ξ1) − b5 sin(ξ2)] sinh(ξ3)
− b6 sin(ξ2) sinh(ξ1) + b7.

and

ξ2 = −2
√(

k12 − k32
)−1

k1u0k3
−1y

+
−3k1k3

√
k21 − k23

2
t, (19)

Figure 2 exhibits the change in spatiotemporal struc-
ture of three solitons when v0 is fixed at the positive
value and u0 is taken −0.1 and 0.1, respectively. From
Fig. 2, we obviously see that the three solitons, i.e., two
bright and one dark solitons, not only change into two
dark and one bright solitons respectively, but also the
propagation direction happens outstanding deflexion of
different angles.

3 Conclusions

In conclusion, using three-wave method with a pertur-
bation parameter, we obtain novel solutions of (2+1)
KdV equation. We found that the perturbation parame-
ter u0 plays an important role to the resulting solution,
where the spatiotemporal deformation in multi-wave
propagation including change between bright and dark
multi-soliton each other, deflectionwith different direc-
tions and angles of multi-soliton even the shape will
vary as u0 makes small perturbation in the neighbor-
hood of u0 = 0. These solutions possessmany interest-
ing dynamical features as can be seen in the previous
sections. Whether there exist other methods to study
spatiotemporal variance of multi-wave for other types
of high-dimensional system is our future work.
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