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Abstract In this paper, the exponential synchroniza-
tion problem is investigated for a class of hybrid impul-
sive and switching dynamical networks (HISDNs).Dif-
ferent from the existing results concerning synchro-
nization of HISDNs, impulsive input delays are con-
sidered in our model. Moreover, in our model, the
impulsive instances and system switching instances do
not need to be coincident. By using the Razumikhin
theorem and the mathematical induction method, sev-
eral sufficient synchronization criteria are obtained in
terms of linear matrix inequalities. The obtained crite-
ria reveal that the frequency of impulsive occurrence,
impulsive input delays, can heavily affect the synchro-
nization performance. Finally, an example is provided
to illustrate the effectiveness of the obtained results.
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1 Introduction

With the development of science and technology, our
daily life is increasingly dependant on complex dynam-
ical networks, such as the internet, theWordWideWeb,
communication networks, and social networks [2,6].
Complex dynamical networks that consist of a large
number of nodes and links between the nodes have
been studied in many field of mathematics, engineer-
ing, biology, and social science [7,14,20,23,25,28,43].
As one of the most important collective behaviors,
synchronization has received considerable attention in
many fields, since synchronization of coupled dynam-
ical networks has potential applications in various
fields including information science, parallel image
processing, secure communication, and neural net-
works [16,30–32,37,42,48].

As we all know, when signals or waves propa-
gate between nodes, time delay can often occur due
to the finite speed of switching and transmitting sig-
nals, which may result in oscillatory behavior or sys-
tem instability [26,29,35]. On the other hand, time
delay also emerges due to intrinsic factors, for exam-
ple, in a neuronal system, information can be trans-
mitted between neurons via synapses, and the elec-
tric activity of neuron and collective behaviors of neu-
rons can be modulated by autapse. Autapse can change
the excitability and fluctuation of membrane potential,
and its effect can be described by time-delayed feed-
back terms, which is thought as another potential ori-
gin of time delay [21,24,27]. Moreover, the authors
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showed that coupled time delay also plays an impor-
tant role in enhancing synchronization in the network in
[22]. So, when modeling real-world complex dynam-
ical networks, time delays are necessary to be taken
into account. In the past decade, there have been many
excellent results concerning synchronization and sta-
bility of delayed complex networks [12,16,34,36,39–
41,48]. For example, the authors of [12] discussed the
stability of delayed impulsive and switching neural net-
works. In [41], the synchronization problem was stud-
ied for a class of switched neural networks with mixed
delays via impulsive control.

In network environment, complex dynamical net-
works may be affected more or less by uncertainties
such as unmodeled dynamics, link failure, and new
link creation that may happen at times, and then the
switching between different topologies is inevitable
[19]. Hence, it is important to consider the switch-
ing when modeling real-world dynamical networks.
Recently, synchronization problem of switched com-
plex networks has become a hot issue [13,16,29,30,
36,44,47,48]. One useful method to investigate the
synchronization problem of switched complex net-
works is the dwell time approach, By using the dwell
time approach, in [33], the synchronization problem of
switched complex networks was investigated. In [16],
by using the average dwell time approach, synchro-
nization of complex networks with switching topol-
ogy was investigated where some subnetworks are not
self-synchronized. In [48], based on the switched sys-
tem point view and the average dwell time approach,
synchronization of complex networks with switching
topology was studied.

On the other hand, in real life, many biological and
electronic networks are often subjected to instanta-
neous disturbances and experience abrupt changes at
certain instants, which may be caused by frequency
switching or other sudden noise, i.e., they exhibit
impulsive effects [18,44]. Due to the serious effects
on the dynamical behaviors caused by impulses and
switching, it is necessary to consider simultaneously
both impulsive and switching effects when modeling
the real-world dynamical networks [12,44]. Recently,
impulsive switched systems (networks) have gained
increasingly attention, since they provide a natural and
convenient unified framework for mathematical mod-
eling of switching and impulsive phenomena [1,8,10,
12,17,34,38,49]. For example, in [44], the synchro-
nization problem was investigated for a class of cou-

pled switched neural networks with mode-dependent
impulsive effects by using the average dwell time
approach and the comparison principle. In [10,12],
asymptotic synchronization of HISDNs with arbitrary
switching law was investigated by using feedback con-
trol. In [17], robust exponential stability of impulsive
switched systems with switching delays was studied
by the Razumikhin approach. However, in most exist-
ing results on impulsive switched systems, it is implic-
itly assumed that impulsive effects occur at the switch-
ing points [1,10,12,17,38,40]. Obviously this assump-
tion is conservative and impractical. As was shown in
[41,44], impulsive effects can be activated not only at
the instants coinciding with the system switching but
also at the instants when there is no system switching.

Moreover, all the results mentioned above on HIS-
DNs did not take into account the impulsive input
delays. In fact, for a impulsive dynamical network, it is
not practical to ignore the impulsive input delays. As
was demonstrated in [4], when applying the impulsive
control strategy, communication and sampling delays
often occur in the transmission of impulsive informa-
tion in network environments. For instance, in net-
worked control systems, sensor-to-controller delay and
controller-to-actuator delay are unavoidable,which can
bemodeled as impulseswith timedelays [4]. Therefore,
it is very important to consider impulsive input delays
in impulsive systems. Recently, delayed impulses have
received increasing attention [4,5,45]. For example,
in [45], synchronization of stochastic dynamical net-
works under delayed impulsive control was investi-
gated. These works provide a way to investigate stabil-
ity or synchronization of delayed impulsive systems.
Unfortunately, up to now, with respect to the HISDNs,
impulsive input delays have been largely overlooked
primarily due to its mathematical difficulty in analyz-
ing the coexistence of coupling terms, internal delays,
switching and delayed impulsive effects despite their
importance in modeling realistic complex dynamical
networks. In order to shorten the gapsmentioned above
and extend the application of HISDNs, in this paper,
both impulsive input delays and switching effects are
considered.Moreover, the impulsive effects can be acti-
vated not only at the instants coincidingwith the system
switching but also at the instants when there is no sys-
tem switching.

Based on the above discussion, in this paper, we con-
sider a more general HISDNs with delayed impulses,
and several sufficient criteria are derived to ensure
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exponential synchronization of HISDNs by means of
the time-dependent Lyapunov function method com-
bined with the Razumikhin theorem. The contributions
of this paper can be listed as follows: (1) both impulsive
input delays and switching are considered simultane-
ously in our model; (2) the impulsive effects can be
activated not only at the instants coinciding with the
system switching but also at the instants when there
is no system switching; (3) by constructing a time-
dependent Lyapunov function, several synchronization
criteria are derived in terms of LMIs, which can be
applied to large-scale systems.

NotationsThroughout this paper,N+ andRn denote,
respectively, the set of nonnegative integers and the n-
dimensional space. Rm×n denotes m × n real matrix.
For vector x ∈ R

n , |x | and xT denote, respectively,
the Euclidean norm and its transpose. We use λmax(·)
(respectively λmin(·)) to denote the maximum (respec-
tively the minimum) eigenvalue of a real matrix. The
asterisk � in a matrix is used to denote a term that is
induced by symmetry. For matrix A ∈ R

n×n , |A| =√
λmax(AT A). The notation A ≤ B (respectively A <

B) means that the matrix A − B is negative semidef-
inite (respectively negative definite). In is the identity
matrix of order n. PC([−τ, 0];Rn) denotes the family
of piecewise continuous function from [−τ, 0] to R

n

with the norm ‖φ‖τ = sup−τ≤θ≤0 |φ(θ)|. Dini deriva-
tive D+W (t) is defined as D+W (t) = limh→0+(W (t+
h) − W (t))/h.

2 Model and preliminaries

Consider the following HISDNs model:
⎧
⎪⎪⎨

⎪⎪⎩

ẋi (t) = Cσ(t)xi (t) + Bσ(t)g1(σ (t), xi (t))
+Dσ(t)g2(σ (t), xi (t − τ(t)))

+ϑ
∑N

j=1 a
σ(t)
i j Γσ(t)x j (t), t �= tk , k ∈ N

+,

xi (t
+
k ) = xi (t

−
k ) + μσ(tk )xi ((tk − dk)−),

(1)

where xi (t) = [xi1(t), . . . , xin(t)]T denotes the state
vector of the i-th node; ϑ is the coupling strength; τ(t)
is the time-varying delay satisfying 0 ≤ τ(t) ≤ τ ;
σ(t) : [0,∞) → M = {1, 2, . . . ,m} is the switch-
ing signal, which is a piecewise constant function con-
tinuous from the right. The switching sequence 0 <

T1 < T2 < · · · < Tk < · · · satisfies limk→∞ Tk =
∞. For each fixed σ(t) = r ∈ M, μr ∈ R

n×n

represents the corresponding mode-dependent impul-
sive gain; Cr ∈ R

n×n , Br ∈ R
n×n , Dr ∈ R

n×n ,

g1(r, xi (t)) = [g11(r, xi1(t)), . . . , g1n(r, xin(t))]T ∈
R
n , g2(r, xi (t)) = [g21(r, xi1(t)), . . . , g2n(r, xin(t))]T

∈ R
n , Γr ∈ R

n×n > 0 is the diagonal inner coupling
matrix; Ar ∈ R

N×N is the outer coupling configuration
matrix which represents the structure of the network in
which ari j is defined as follows: if there is a connection
from node j to node i ( j �= i), then ari j �= 0; other-
wise, ari j = 0. The diagonal entries of matrix arii are
determined by the following coupling condition:

arii = −
N∑

j=1, j �=i

ari j , i = 1, 2, . . . , N , r ∈ M. (2)

The initial conditions are assumed to be xi (t) =
φi (t) ∈ PC([−τ, 0];Rn), i = 1, 2, . . . , n. dk is the
impulsive delay at instant tk satisfying 0 ≤ dk ≤ d,
where d is a positive scalar. The impulsive time instants
tk satisfy 0 < t1 < t2 < · · · < tk < · · · , limk→∞ tk =
∞. xi (t

+
k ) and xi (t

−
k ) denote the limit from the right

and the left at time tk , respectively.Without loss of gen-
erality, in this paper, we assume that xi (tk) = xi (t

+
k ).

Remark 1 Recently, in [44], the synchronization prob-
lem of coupled switched neural networks with mode-
dependent impulsive effects was investigated by using
the average dwell time approach and the comparison
principle. In [10,12], asymptotic synchronization of
HISDNs was investigated by using feedback control
in order to improve the security of communication. It
should be mentioned that impulsive input delays have
not been considered in [10,12,44]. In fact, to our best
knowledge, in existing results concerning HISDNs,
impulsive input delays have been largely overlooked. In
our model (1), impulsive input delays are considered,
which make our model more general.

Remark 2 In model (1), the impulsive instances and
system switching instances don’t need to be coincident.
It means that the impulsive effects may occur at the
switching instance Tk , e.g., there exits a positive integer
q1 such that tq1 = Tk , and the impulsive effects may
occur in the switching interval (Tk−1, Tk), e.g., there
exit some positive integer q2 such that Tk−1 < tq2 <

Tk . In most existing results concerning on HISDNs, it
is implicitly assumed that the impulsive effects occur
at instants coinciding with mode switching [10,12,15,
40].

We assume that the isolated node of the network (1)
is in the form of:
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ṡ(t) = Cσ(t)s(t) + Bσ(t)g1(σ (t), s(t))

+ Dσ(t)g2(σ (t), s(t − τ(t))), (3)

where s(t) = [s1(t), . . . , sn(t)]T denotes the state
vector of the isolate node with the initial condition
s(t) = ϕ(t) ∈ PC([−τ, 0];Rn). Moreover, s(t) can
be either an equilibrium point, or a periodic orbit, or a
chaotic orbit in the phase space.

Let ei (t) = xi (t) − s(t), then the following error
dynamical system can be obtained:

⎧
⎪⎪⎨

⎪⎪⎩

ėi (t) = Cσ(t)ei (t) + Bσ(t)g1(σ (t), ei (t))
+ Dσ(t)g2(σ (t), ei (t − τ(t)))

+ϑ
∑N

j=1 a
σ(t)
i j Γσ(t)e j (t), t �= tk , k ∈ N

+,

ei (t
+
k ) = ei (t

−
k ) + μσ(tk )ei ((tk − dk)−),

(4)

where g1(σ (t), ei (t)) = g1(σ (t), xi (t)) − g1(σ (t),
s(t)), g2(σ (t), ei (t−τ(t))) = g2(σ (t), xi (t−τ(t)))−
g2(σ (t), s(t − τ(t))).

Let e(t) = [eT1 (t), eT2 (t), . . . , eTN (t)]T , G1(σ (t),
e(t)) = [gT1 (σ (t), e1(t)), . . . , gT1 (σ (t), eN (t))]T , G2

(σ (t), e(t − τ(t))) = [gT2 (σ (t), e1(t − τ(t))), . . . , gT2
(eN (σ (t), t − τ(t)))]T , Cσ(t) = IN ⊗ Cσ(t), Bσ(t) =
IN ⊗ Bσ(t), Dσ(t) = IN ⊗ Dσ(t), Aσ(t) = ϑ(Aσ(t) ⊗
Γσ(t)), Uσ(tk ) = IN ⊗μσ(tk ), then the system in (4) can
be rewritten as:
⎧
⎪⎪⎨

⎪⎪⎩

ė(t) = Cσ(t)e(t) + Bσ(t)G1(σ (t), e(t))
+Dσ(t)G2(σ (t), e(t − τ(t)))
+Aσ(t)e(t), t �= tk, k ∈ N

+,

Δe(tk) = Uσ(tk )e((tk − dk)−),

(5)

whereΔe(tk) = e(t+k )−e(t−k ). The initial value of error
system (5) is prescribed as e(t) = Φ(t) = [(φ1(t) −
ϕ(t))T , . . . , (φN (t) − ϕ(t))T ]T ∈ PC([−τ, 0];RnN ).

In order to overcome the difficulties caused by the
switching, we define an indicator function π(t) =
[π1(t), . . . , πm(t)]T [41], where

πr (t) =
{
1, when σ(t) = r,
0, otherwise,

r ∈ M. (6)

It is easy to see that
m∑

r=1
πr (t) = 1. And then the system

(5) can be rewritten as:
⎧
⎪⎪⎨

⎪⎪⎩

ė(t) = ∑m
r=1 πr (t)[Cr e(t) + BrG1(r, e(t))

+DrG2(r, e(t − τ(t)))
+Ar e(t)], t �= tk, k ∈ N

+,

Δe(tk) = ∑m
r=1 πr (tk)Ur e((tk − dk)−).

(7)

In order to derive our main results, the following
basic definition, lemmas and assumptions are needed.

Definition 1 The complex dynamical network in (1) is
said to be globally exponentially synchronized to the
objective state s(t), if there exist ε > 0, �1 > 0 such
that when ‖Φ(t)‖τ ≤ �1 holds for some � > 0, the
following condition is satisfied:

|xi (t) − s(t)| ≤ �e−ε(t−t0), i = 1, 2, . . . , N , ∀t ≥ t0.

(8)

Assumption 1 There exist two positive integers δ1 and
δ2 such that for k ∈ N

+, δ1 ≤ tk − tk−1 ≤ δ2.

Assumption 2 The nonlinearities g1(., .) and g2(., .)
with g1(., 0) = 0 and g2(., 0) = 0 satisfy the following
Lipschitz condition:

|g1(σ (t), x) − g1(σ (t), y)| ≤ Kσ(t)|x − y|, (9)

|g2(σ (t), x) − g2(σ (t), y)| ≤ Lσ(t)|x − y|, (10)

∀x, y ∈ R
n , ∀t ∈ [0,+∞). For every fixed σ(t) = r ∈

M, Kr and Lr are positive constants.

Lemma 1 [46]: Let x, y ∈ R
n, Q ∈ R

n×n be a pos-
itive semidefinite matrix, then the following inequality
holds

2xT Qy ≤ xT Qx + yT Qy.

Lemma 2 [46]: Assume that Ω, X1 and X2 are con-
stant matrices with appropriate dimensions, 0 ≤
�(t) ≤ 1, then
{

Ω + X1 < 0,
Ω + X2 < 0,

(11)

is equivalent to

Ω + (1 − �(t))X1 + �(t)X2 < 0. (12)

Lemma 3 [3]: The following linear matrix inequality
[
Q(x) S(x)
ST (x) R(x)

]
> 0,

where QT (x) = Q(x), RT (x) = R(x), is equivalent
to either of the following conditions:

1) Q(x) > 0, R(x) − ST (x)Q−1(x)S(x) > 0;
2) R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0.

Lemma 4 [9]: For any real matrices E and G and any
real positive definite matrix P with compatible dimen-
sions

EG + GT ET ≤ EPET + GT P−1G. (13)
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3 Main results

In this section, the exponential synchronization of HIS-
DNs with delayed impulses is investigated by using the
Razumikhin theorem and the mathematical induction
method. For this purpose, we need the following lemma
to give an estimate of the solutions of the system (5) on
[t0 − τ, t0 + d].

Lemma 5 Consider system (5) and assume that Ass-
umptions 1 and 2 hold and (� − 1)δ1 < d ≤ �δ1 for
some positive integer �. Then, we have

|e(t)| ≤ �0‖Φ‖τ , t ∈ [t0 − τ, t0 + d], (14)

where �0 = α�
2e

α1d , α1 = maxr {|Ar +Cr |+Kr |Br |+
Lr |Dr |, r ∈ M}, α2 = maxr {1 + |Ur |, r ∈ M}.

Proof Since (�−1)δ1 < d ≤ �δ1, the maximum num-
ber of impulse times in the interval (t0, t0 + d] is �. We
assume that the impulsive instants on (t0, t0 + d] are
tω, ω = 1, 2, . . . , �0 ≤ �.

When t + θ ∈ [t0 − τ, t0], |e(t + θ)| ≤ ‖Φ‖τ .
When t + θ ∈ [t0, t1),

|e(t + θ)|

= |e(t0) +
∫ t+θ

t0

m∑

r=1

πr (t)[(Ar + Cr )e(s)

+ BrG1(r, e(s)) + DrG2(r, e(s − τ(s)))]ds|

≤ |e(t0)| +
∫ t+θ

t0

m∑

r=1

πr (t)[|Ar + Cr ||e(s)|

+ Kr |Br ||e(s)| + Lr |Dr ||e(s − τ(s))|]ds

≤ ‖Φ‖τ +
∫ t

t0

m∑

r=1

πr (t)(|Ar + Cr | + Kr |Br |

+ Lr |Dr )|)‖e(s)‖τds. (15)

For t ∈ [t0, t1), it follows from (15) that

‖e(t)‖τ ≤ ‖Φ‖τ +
∫ t

t0

m∑

r=1

πr (t)(|Ar + Cr | + Kr |Br |

+ Lr |Dr )|)‖e(s)‖τds

≤ ‖Φ‖τ +
∫ t

t0
α1‖e(s)‖τds. (16)

Applying the Gronwall inequality gives

‖e(t)‖τ ≤ ‖Φ‖τ e
α1(t−t0), t ∈ [t0, t1). (17)

Moreover

|e(t1)| = |e(t−1 ) + Δe((t−1 )|

= |e(t−1 ) +
m∑

r=1

πr (t1)Ur e((t1 − d1)
−)|

≤ [1 +
m∑

r=1

(πr (t1)|Ur |)]‖Φ‖τ e
α1(t1−t0)

≤ α2‖Φ‖τ e
α1(t1−t0). (18)

Hence, |e(t)| ≤ α2‖Φ‖τ eα1(t−t0), t ∈ [t0, t1]. Repeat-
ing the above argument, for t ∈ [t0, t�0 ], one has

|e(t)| ≤ α
�0
2 ‖Φ‖τ e

α1(t−t0). (19)

Since there are no impulses on (tl0 , t0 + d], we can
obtain

|e(t)| ≤ ‖e(t�0)‖τ e
α1(t−t�0 )

≤ α
�0
2 ‖Φ‖τ e

α1(t�0−t0)eα1(t−tl0 )

≤ α
�0
2 ‖Φ‖τ e

α1(t−t0)

≤ α�
2‖Φ‖τ e

α1d . (20)

From (19) and (20), for any t ∈ [t0 − τ, t0 + d], we
have

|e(t)| ≤ α�
2‖Φ‖τ e

α1d . (21)

Thus, the proof is complete. ��
Theorem 1 Suppose that Assumptions 1 and 2 hold
and the impulsive input delays dk satisfy 0 ≤ dk ≤ d.
If for a prescribed positive scalar u ∈ (0, 1), there
exist positive constants λ0, λ1, βr and ςr , r ∈ M, and
positive definite matrices P1, P2 ∈ R

nN×nN such that
∀r ∈ M, the following LMIs hold:

λ0 InN ≤ Pj ≤ λ1 InN (22)
(

βr

u
+ ln u

δ2

)
Pj + PjCr + CT

r Pj + PjAr + AT
r Pj

+ 2λr Kr |Br |InN + λr Lr |Dr |InN + P1 − P2
δh

< 0

(23)
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λ1Lr |Dr |InN − βr Pj < 0 (24)
⎡

⎣
Πr P1 (InN + Ur )

T P2 0
� −P2 P2Ur

� � −ςr InN

⎤

⎦ < 0, (25)

where Πr = −(u − ςr
α2
4

λ0
), j = 1, 2, h = 1, 2,

α4 = dα1 + �α3, α3 = maxr {|Ur |, r ∈ M}, and the
other parameters are as defined in Lemma 5. Then the
HISDNs in (1) is exponentially synchronized under the
arbitrary switching signals.

Proof From (23), (24) and (25), there exist small
enough scalars ε0 and ε1 ∈ (0, 1 − u) such that (22)
and the following LMIs hold:
(

ε0 + βr

u
+ ln(u + ε1)

δ2

)
Pj + PjCr + CT

r Pj + PjAr

+AT
r Pj + 2λr Kr |Br |InN + λr Lr |Dr |InN

+ P1 − P2
δh

< 0, (26)

λr Lr |Dr |InN − βr e
−ε0τ Pj < 0, (27)

⎡

⎣
Π̃r P1 (InN + Ur )

T P2 0
� −P2 P2Ur

� � −ςr InN

⎤

⎦ < 0, (28)

where Π̃r = −(u−ςr
α̃2
4

λ0
), α̃4 = dα1e

ε0(τ+d)

2 +�α3eε0d .
We introduce the following piecewise linear functions
ρ : [t0,∞) → (0, 1]:

ρ(t) = tk − t

tk − tk−1
, t ∈ [tk−1, tk), k ∈ N

+.

It is easy to see that

ρ(t−k ) = 0, ρ(tk) = ρ(t+k ) = 1, k ∈ N
+. (29)

Consider the following time-dependentLyapunov func-
tion for system (5):

V (t) = eT (t)[(1 − ρ(t))P1 + ρ(t)P2]e(t). (30)

For simpleness, set P(t) = (1 − ρ(t))P1 + ρ(t)P2.
For any given scalar �, choose �1 > 0 such that

λ1(�0�1)
2 < uλ0�. By Lemma 5, we have |e(t)| ≤

�0‖Φ‖τ ≤ �0�1 for t ∈ [t0 − τ, t0 + d].
In the following, we will prove that

V (t) ≤ λ0�
2e−ε0(t−t0−d), t ∈ [t0 − τ,+∞). (31)

We assume that the impulsive time sequence on (t0 +
d,+∞) is {tk}, k = 1, 2, . . . For any given t ∈
[tk, tk+1), set W (t) = eε0(t−t0−d)V (t). We claim that

W (t) < λ0�
2, t ∈ [t0 − τ,+∞). (32)

In the following, we will use the mathematical induc-
tion method to show that (32) holds.

Firstly, we will prove that

W (t) < λ0�
2, t ∈ [t0 − τ, t1). (33)

Wedivide the proof of (33) into the following two steps:
Step 1: From Lemma 5, when t ∈ [t0 − τ, t0 + d],

W (t) = eε0(t−t0−d)eT (t)P(t)e(t) ≤ λ1|e(t)|2
≤ λ1�

2
0‖Φ‖2τ ≤ λ1(�0�1)

2 ≤ uλ0�
2. (34)

Step 2: In the following, we will prove that

W (t) < λ0�
2, t ∈ (t0 + d, t1). (35)

If it is not true, there exists t ∈ (t0 + d, t1) such that
W (t) ≥ λ0�

2. Set t∗ = inf{t ∈ [t0 + d, t1);W (t) ≥
λ0�

2}. Then we have W (t∗) = λ0�
2. Set t∗ = sup{t ∈

[t0 + d, t∗) : W (t) ≤ uλ0�
2}, then W (t∗) = uλ0�

2.
Therefore, for t ∈ [t∗, t∗],

W (t) ≥ uλ0�
2 ≥ uW (t + θ), θ ∈ [−τ, 0]. (36)

When t ∈ [t∗, t∗], we have

D+V (t) = 2eT (t)P(t)
m∑

r=1

πr (t)[Cr e(t)

+BrG1(r, e(t))

+DrG2(r, e(t − τ(t)) + Ae(t)]
+ eT (t)Ṗ(t)e(t). (37)

In view of Lemma 1, (22) and Assumption 2, the fol-
lowing inequalities can be obtained:

2eT (t)P(t)BrG1(r, e(t))

≤ 2λ1|e(t)|
√

|BrG1(r, e(t))|2
≤ 2λ1Kr |Br |eT (t)e(t), (38)
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2eT (t)P(t)DrG2(r, e(t − τ(t)))

≤ 2λ1
√

|e(t)|2
√

|DrG2(r, e(t − τ(t)))|2
≤ 2λ1Lr |Dr |

√
|e(t)|2

√
|e(t − τ(t)))|2

≤ λ1Lr |Dr |eT (t)e(t)

+ λ1Lr |Dr |eT (t − τ(t))e(t − τ(t)). (39)

From (38) and (39), we have

D+V (t) ≤
m∑

r=1

πr (t){eT (t)[P(t)Cr + CT
r P(t)

+ P(t)Ar + AT
r P(t) + 2λ1Kr |Br |InN

+ λ1Lr |Dr |InN + Ṗ(t)]e(t)
+ λ1Lr |Dr |eT (t − τ(t))e(t − τ(t))}. (40)

It follows from (40) that for t ∈ [t∗, t∗],
D+W (t)

= eε0(t−t0−d)(ε0V (t) + D+V (t))

≤ eε0(t−t0−d)[
m∑

r=1

πr (t)ε0V (t) + D+V (t)]

+
m∑

r=1

πr (t)βr (
1

u
W (t) − W (t − τ(t)))

−
m∑

r=1

πr (t)u1W (t) + u1W (t)

≤ eε0(t−t0−d)
m∑

r=1

πr (t){ε0V (t) + eT (t)[P(t)Cr

+ CT
r P(t) + P(t)Ar + AT

r P(t)

+ 2λ1Kr |Br |InN + λ1Lr |Dr |InN + Ṗ(t)]e(t)
+ λ1Lr |Dr |eT (t − τ(t))e(t − τ(t))

+ βr

u
V (t) − βr e

−ε0τV (t − τ(t)) − u1V (t)}
+ u1W (t)

≤ eε0(t−t0−d)
m∑

r=1

πr (t){eT (t)[(ε0 + βr

u
− u1)P(t)

+ P(t)Cr + CT
r P(t) + P(t)Ar + AT

r P(t)

+ 2λ1Kr |Br |InN + λ1Lr |Dr |InN + Ṗ(t)]e(t)}

+ eε0(t−t0−d)
m∑

r=1

πr (t)e
T (t − τ(t))[λ1Lr |Dr |InN

− βr e
−ε0τ P(t)]e(t − τ(t)) + u1W (t), (41)

where u1 = − ln(u+ε1)
δ2

.
From the definition of P(t), we have

Ṗ(t) = 1

tk − tk−1
(P1 − P2). (42)

In view of Assumption 1, one has

1

δ2
≤ 1

tk − tk−1
≤ 1

δ1
. (43)

Then, there exists a function π(t) : (0,+∞) → [0, 1]
such that

1

tk − tk−1
= (1 − π(t))

1

δ1
+ π(t)

1

δ2
. (44)

From (41) to (44), we have
(

ε0 + βr

u
− u1

)
P(t) + P(t)Cr + CT

r P(t) + P(t)Ar

+AT
r P(t) + 2λ1Kr |Br |InN + λ1Lr |Dr |InN + Ṗ(t)

= 2λ1Kr |Br |InN + λ1Lr |Dr |InN + (1 − ρ(t))[(ε0
+ βr

u
− u1)P1 + P1Cr + CT

r P1 + P1Ar + AT
r P1]

+ ρ(t)[(ε0 + βr

u
− u1)P2 + P2Cr + CT

r P2

+ P2Ar + AT
r P2] + (1 − π(t))

P1 − P2
δ1

+π(t)
P1 − P2

δ2
. (45)

From Lemma 2, we know that (26) is equivalent to
(

ε0 + βr

u
+ ln(u + ε1)

δ2

)
Pj + PjCr

+CT
r Pj + PjAr

+AT
r Pj + 2λ1Kr |Br |InN + λ1Lr |Dr |InN

+ (1 − π(t))
P1 − P2

δ1
+ π(t)

P1 − P2
δ2

< 0. (46)

Similarly, we know that (46) is equivalent to

2λ1Kr |Br |InN + λ1Lr |Dr |InN + (1 − ρ(t))[(ε0
+ βr

u
− u1)P1 + P1Cr + CT

r P1 + P1Ar + AT
r P1]

+ ρ(t)[(ε0 + βr

u
− u1)P2 + P2Cr + CT

r P2
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+ P2Ar + AT
r P2] + (1 − π(t))

P1 − P2
δ1

+ π(t)
P1 − P2

δ2
< 0. (47)

Then, we obtain that (45) is negative definition. And
similarly , from (27), one can obtain

λ1Lr |Dr |InN − βr e
−ε0τ P(t − τ(t)) < 0. (48)

From (41), (47) and (48), we can obtain

D+Wr (t) < u1Wr (t), t ∈ [t∗, t∗]. (49)

It leads to

Wr (t
∗) ≤ Wr (t∗)eu1δ2 ≤ uλ0�

2eu1δ2 < λ0�
2. (50)

This is a contradiction. Therefore, (33) holds.
Secondly, we assume that for some k ∈ N

+

W (t) < λ0�
2, t ∈ [t0 − τ, tk). (51)

Then, we will prove that

W (t) < λ0�
2, t ∈ [tk, tk+1). (52)

By (51), we have

|e(t)|2 ≤ �2e−ε0(t−t0−d), t ∈ [t0 − τ, tk). (53)

Since δ1 ≤ tk − tk−1 ≤ δ2, and similar to Lemma 5,
there are at most � impulse time on the interval [tk −
dk, tk). We assume that impulsive instants are tkj , j =
1, 2, . . . , �0 ≤ �. By (15), (16) and (53), we get

|e(t−k ) − e((tk − dk)
−)|

= |
∫ tk

tk−dk
ė(s)ds −

�0∑

j=1

Δe(tkj )|

≤
∫ tk

tk−dk
|ė(s)|ds +

�0∑

j=1

|Δe(tmj )|

≤
∫ tk

tk−dk
α1‖e(s)‖τds +

�0∑

j=1

α3|e((tkj − dkj )
−)|

≤ (dα1e
ε0(d+τ )

2 + �0α3e
ε0d)�e− ε0

2 (tk−t0−d)

≤ α̃4�e
− ε0

2 (tk−t0−d). (54)

From the definition of P(t), one can obtain that
V (tk) = V (t+k ) = eT (t+k )P2e(t

+
k ) and V (t−k ) =

eT (t−k )P1e(t
−
k ). Set Δẽ(tk) = e((tk − dk)−) − e(t−k ).

Pre- and post-multiplying (28) by diag{eT (t−k ),

InN , InN } and its transpose, respectively, we have

⎡

⎣
Π̃r V (t−k ) Θ12 0

� −P2 P2Ur

� � −ςr InN

⎤

⎦ < 0, (55)

where Θ12 = eT (t−k )(InN + Ur )
T P2.

It follows from (51) that

⎡

⎣
Θ11 Θ12 0
� −P2 P2Ur

� � −ςr InN

⎤

⎦ < 0, (56)

where Θ11 = −(u − λ0ςr α̃
2
4)�

2e−ε0(tk−t0−d).
Then, by (54), (56) and Lemma 3, we further obtain

[
Θ11 Θ12

� −P2

]
+ ςr

[
ΔẽT (t−k )

0

]
[
Δẽ(t−k ) 0

]

+ ς−1
r

[
0

P2Ur

]
[
0 UT

r P2
]

< 0, (57)

By Lemma 4, for any scalars ςr > 0,

[
ΔẽT (t−k )

0

]
[
0 UT

r P2
] +

[
0

P2Ur

]
[
ΔẽT (t−k ) 0

]

≤ ςr

[
ΔẽT (t−k )

0

]
[
Δẽ(t−k ) 0

]

+ ς−1
r

[
0

P2Ur

]
[
0 UT

r P2
]

< 0. (58)

Combining (57) and (58), and noting e(tk) = e(t−k ) +
Ur e((tk − dk)−), we have

[−uλ0�
2e−ε0(tk−t0−d) eT (tk)P2

� −P2

]
< 0. (59)
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Then, by Lemma 3, we have

V (tk) = V (t+k ) = eT (t+k )P2e(t
+
k ) (60)

= eT (tk)P2e
T (tk) < uλ0�

2e−ε0(tk−t0−d)

which means that

|e(tk)|2 ≤ �2e−ε0(tk−t0−d) (61)

Thus, we obtain Wσ(tk ) < uλ0�
2 < λ0�

2. Therefore,
if (52) is not true, there exists t ∈ [tk, tk+1) such that
W (t) ≥ λ0�

2. Set t∗ = inf{t ∈ [tk, tk+1) : W (t) ≥
λ0�

2} and t∗ = sup{t ∈ [tk, t∗) : W (t) ≤ uλ0�
2}.

Then (52) can be obtained by using the similar argu-
ment in the proof of (35) directly and therefore the claim
in (32) holds by the mathematical induction method.
This completes the proof. ��
Remark 3 Recently, the exponential stability problem
was studied for nonlinear time delay systems with
delayed impulses in [4], in which the switching effect
was ignored. Compared with [4], the differences are as
follows.

(1) Model Difference Firstly, in this paper, the syn-
chronization problem is studied for a class of coupled
switched dynamical networks with delayed impulses.
Secondly, the switching and delayed impulsive effects
are considered simultaneously in this paper, which can
render more dynamic behaviors of systems.

(2) Method Difference In [4], the Lyapunov func-
tion method and the Razumikhin scheme were used
to deal with the delayed impulses. In this paper, by
constructing a time-dependent Lyapunov function and
combining the Razumikhin scheme with the mathe-
matical inductionmethod, the synchronizationproblem
of HISDNs with impulsive input delay is investigated.
In this paper, the time-dependent Lyapunov function
plays a key role in deriving our main results. The latter
Remark 5 shows this point in detail.

If there are no impulsive input delays in (1), then
model (1) reduces to the following HISDNs:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi (t) = Cσ(t)xi (t) + Bσ(t)g1(σ (t), xi (t))
+ Dσ(t)g2(σ (t), xi (t − τ(t)))

+ϑ
∑N

j=1 a
σ(t)
i j Γσ(t)x j (t), t �= tk , k ∈ N

+,

xi (t
+
k ) = xi (t

−
k ) + μσ(tk )xi ((tk)

−).

(62)

For HISDNs in (62), the following corollary can be
obtained directly.

Corollary 1 Suppose that Assumptions 1 and 2 hold.
If for a prescribed positive scalar u ∈ (0, 1), there
exist positive constants λ0, λ1, βr , r ∈ M, and positive
definite matrices P1, P2 ∈ R

nN×nN such that for ∀r ∈
M, the LMIs (22)–(24) hold and
[−uP1 (InN + Ur )

T P2
� −P2

]
< 0, (63)

where j = 1, 2, h = 1, 2. Then the HISDNs in (62) is
exponentially synchronized under the arbitrary switch-
ing signals.

Remark 4 Recently, the synchronization problem was
investigated for a class of coupled switched neural net-
works withmode-dependent impulsive effects by using
the average dwell time approach and the comparison
principle in [44]. It should be pointed out that the
impulsive input delay was neglected in [44]. On the
other hand, there are two theorems in [44], in which
|ur + 1| < 1,∀r ∈ M and |ur + 1| > 1,∀r ∈ M are
considered, respectively. However, our results can be
applied to these two cases simultaneously. Hence, the
model considered here is more general than the model
in [44] and the results have wider applications than the
results in [44].

If there are no switching signals in (1), then model
(1) reduces to the following complex dynamical net-
work with delayed impulses:
⎧
⎨

⎩

ẋi (t) = Cxi (t) + Bg1(xi (t)) + Dg2(xi (t − τ(t)))
+ ϑ

∑N
j=1 ai jΓ x j (t), t �= tk , k ∈ N

+,

xi (t
+
k ) = xi (t

−
k ) + μk xi ((tk − dk)−).

(64)

Then, the following corollary can be obtained:

Corollary 2 Suppose that Assumptions 1 and 2 hold
and the impulsive input delays dk satisfy 0 ≤ dk ≤ d.
If for a prescribed positive scalar u ∈ (0, 1), there
exist positive constants λ0, λ1, ς , β and positive defi-
nite matrices P1, P2 ∈ R

nN×nN such that (22) and the
following LMIs hold:
(

β

u
+ ln u

δ2

)
Pj + PjC + CT Pj + PjA + AT Pj

+ 2λ1K |B|InN + λ1L|D|InN + P1 − P2
δh

< 0, (65)

λ1L|D|InN − βPj < 0, (66)
⎡

⎢
⎢
⎣

−
(
u − ς

α2
4

λ0

)
P1 (InN + Uk)

T P2 0

� −P2 P2Uk

� � −ς InN

⎤

⎥
⎥
⎦ < 0,

(67)
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where j = 1, 2, h = 1, 2, C = IN ⊗ C, B = IN ⊗ B,
D = IN ⊗ D, A = ϑ(A ⊗ Γ ), Uk = IN ⊗ μk

α4 = dα1 + �α3, α1 = |A + C| + K |B| + L|D|,
α3 = max1≤j≤�k {|Uk j |}. kj is the number of impul-
sive instants in the interval [tk − dk, tk), and Uk j are
the corresponding impulsive gain and �k is the num-
ber of impulses in [tk − dk, tk). The other parameters
are as defined in Lemma 5 and Theorem 1. Then the
impulsive dynamical networks in (64) is exponentially
synchronized.

Remark 5 Recently, the delayed impulsive control
problem was studied for complex dynamical networks
with stochastic disturbances in [45]. However, it can
be seen that we focus on revealing the relationship
among impulses, switching and time delay. On the
other hand, in [45], a time-independent Lyapunov
function V0(t) = eT (t)e(t) was used to prove the
main results. In this paper, a time-dependent Lyapunov
function V (t) = eT (t)[(1 − ρ(t))P1 + ρ(t)P2]e(t)
have been used to prove the main results. There are
three important features of the time-dependent Lya-
punov function that are worth mentioning: Firstly,
when P1 = P2 = InN , V (t) reduces to V0(t), which
shows that the time-independent Lyapunov function
method in [45] can be viewed as a special case of
the time-dependent Lyapunov function method. Sec-
ondly, according to (22–25) in Theorem 1, one can
find that the results obtained by using V (t) have bet-
ter conservativeness than the results obtained by using
V0(t). Thirdly, the time-independent Lyapunov func-
tion V0(t) cannot be applied to our results. The reason
is as follows. In the proof of this paper, the inequal-
ity |e(tk)|2 ≤ �2e−ε0(tk−t0−d) is of vital importance.
However, if we use V0(t) to prove our main results, the
following inequality will be obtained:

V0(tk) =eT (tk)e(tk)

=[e(t−k ) + μσ(tk )(e(t
−
k )+)Δẽ(tk)]T

× [e(t−k ) + μσ(tk )(e(t
−
k )+)Δẽ(tk)]

≤2(1 + μσ(tk ))
2|e(t−k )|2 + 2μ2

σ(tk )|Δẽ(tk)|2
≤[2(1 + μr )

2 + 2μ2
r α̃4]�2e−ε0(tk−t0−d)

≤�2e−ε0(tk−t0−d). (68)

Then the following condition will be imposed accord-
ing to the method in [45]: 2(1 + μr )

2 + 2μ2
r α̃4 < 1,

whichmeans that |1+ur | ≤
√
2
2 .However, in this paper,

the impulsive strength applies to not only |ur + 1| < 1
but also |ur+1| > 1.Thus, byusing the time-dependent
Lyapunov function method, our results are less conser-
vative than the results in [45].

4 Numerical example

In this section, an example is given to illustrate the
effectiveness of the main results obtained in this paper.

Example 1 Consider a HISDNs with 100 nodes as fol-
lows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi (t) = Cσ(t)xi (t) + Bσ(t)g1(σ (t), xi (t))
+ Dσ(t)g2(σ (t), xi (t − τ(t)))

+ϑ
∑100

j=1 a
σ(t)
i j Γσ(t)x j (t), t �= tk, k ∈ N

+,

xi (t
+
k ) = xi (t

−
k ) + μσ(tk )xi ((tk − dk)−),

(69)

where ϑ = 0.3, dk = 0.2, M = {1, 2}, μ1 =
−0.8 and μ2 = 0.15, g1(1, xi (t)) = g2(1, xi (t)) =
g1(2, xi (t)) = g2(2, xi (t)) = (

x2i1(t)

x2i1(t)+1
,

x2i2(t)

x2i2(t)+1
)T ,

τ(t) = et

1+et + 1,

C1 =
[
0.5 −3.1
1.9 −1.3

]
, C2 =

[−0.4 0.3
0.4 −0.3

]
,

B1 =
[−0.1 0

0.1 0.1

]
, B2 =

[−0.2 0.2
0 0.2

]

D1 =
[
0.4 0.2
0 0.03

]
, D2 =

[
0.3 0
0 0.5

]
,

Γ1 =
[
1 0
0 1

]
, Γ2 =

[
1.1 0
0 0.9

]

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−99 1 1 · · · 1 1
1 −99 1 · · · 1 1
1 1 −99 · · · 1 1
...

...
...

. . .
...

...

1 1 1 · · · −99 1
1 1 1 · · · 1 −99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
1 0 0 · · · 1 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, we obtain K1 = K2 = L1 = L2 = 1. Fix
u = 0.85 ∈ (0, 1), λ0 = 0.1, λ1 = 0.4, β1 = β2 = 1,
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Fig. 1 a The impulsive sequences uσ(tk ) where u1 = −0.8,
u2 = 0.15; b the switching signal σ(t)

ς1 = 0.13, ς2 = 0.27. By solving (22–25), we
have δ1 > 0.1382 and δ2 < 1.066. Figure 1a gives
the impulsive sequences uσ(tk ), and Fig. 1b gives the
switching signal σ(t). From Fig. 1, one can find that
the impulsive effects can be activated not only at the
instants coinciding with the system switching but also
at the instants when there is no system switching.
Figure2 gives the synchronization errors ei (t), from
which, it can be seen that the simulation confirms the
theoretical results well.

5 Conclusion

In this paper, synchronization of HISDNs with delayed
impulsive effects has been investigated, where the
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Fig. 2 a The synchronization errors of ei1(t) of the HISDNs in
(69); b the synchronization errors of ei2(t) of the HISDNs in (69)

impulsive instances and system switching instances
don’t need to be coincident. Based on the Razumikhin
theorem and the mathematical induction method, sev-
eral synchronization criteria have been obtained in term
of LMIs such that the addressed systems can be syn-
chronized to a desired state. Finally, a numerical exam-
ple has been given to illustrate the effectiveness of our
results. In the future, it is interesting to investigate syn-
chronization of HISDNs with stochastic disturbances.
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