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Abstract In this work we present a pseudo-random
Bit Generator via unidimensional multi-modal discrete
dynamical systems called k-modal maps. These multi-
modal maps are based on the logistic map and are
useful to yield pseudo-random sequences with longer
period, i.e., in order to attend the problem of periodic-
ity. In addition the pseudo-randomsequences generated
via multi-modal maps are evaluated with the statisti-
cal suite of test from NIST and satisfactory results are
obtained when they are used as key stream. Further-
more, we show the impact of using these sequences in
a stream cipher resulting in a better encryption quality
correlated with the number of modals of the chaotic
map. Finally, a statistical security analysis applied to
cipher images is given. The proposed algorithm to
encrypt is able to resist the chosen-plaintext attack and
differential attack because the same set of encryption
keys generates a different cipher image every time it is
used.
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1 Introduction

In these days information security has become an
important issue due to the fact that every day the Inter-
net has more and more activity such as online banking,
e-commerce, e-mail. Considering that the internet is
an open channel, the information circulating on it can
be intercepted by other users, so in order to solve this
drawback wemake use of cryptography and an scheme
of confidentiality.

A variety of ciphers have been proposed with the
intention of providing confidentiality and keep secretly
the information, but these ciphers have been proposed
for text like DES [1,2], IDEA [3], AES [4], RSA [5].
These encryption schemes do not seem to be ideal for
image applications, due to some intrinsic features of
images such as bulk data capacity, high pixel correla-
tion and high redundancy.

On the other hand, dynamical systems have been
a very active area of research and specifically those
with chaotic behavior; since their inception they have
been developed in many areas such as communica-
tion systems [6], neural networks [7], switching sys-
tems [8], synchronization [9] and cryptography [10].
There is a close relationship between chaos and cryp-
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tography, for example in [11] authors made a compar-
ison between the properties of these areas and show
that the ergodicity, sensitivity to initial conditions and
the control parameter, mixing property, determinis-
tic dynamics and complex structure are analogous
to confusion, sensitivity to key, diffusion, determin-
istic pseudo-randomness and algorithm complexity,
respectively.

Most of the image ciphers are in the framework
of symmetric key, and they are based on blocks [12].
Stream ciphers may provide better security under the
concept of perfect security; however, this kind of
ciphers has various critical requirements and one of
them is the randomness of the key stream.

There have been proposals of generators based on
unimodals chaotic maps, for example in [13,14] pro-
posed a pseudo-random bit generator by using only
one logistic map, but in [15] the authors pointed out
that bit streams generated through only one chaotic
system are potentially insecure due to the output may
leak some information about the chaotic system. In
order to overcome the aforementioned vicissitude, they
proposed a pseudo-random bit generator based on a
couple of piecewise linear chaotic maps, which are
iterated independently and the bit streams are gener-
ated by comparing the outputs of these chaotic maps.
A pseudo-random bit generator is proposed in [16]
which employs the logistic map as a perturbation and
a piecewise linear chaotic map as the main genera-
tor. Other works such as [17–19] used two chaotic
maps and combined to obtain a complex sequence of
bits. In this paper we show how the use of only a
multi-modal chaotic map may replace two unimodal
chaotic maps in the generation of pseudo-random
sequences.

In this work we propose a new architecture for a
pseudo-random bit generator based on k-modal chaotic
maps where we can yield a complex sequence of bits
with onemulti-modalmap. The sequences are analyzed
by the statistical suite of tests named NIST. This paper
is organized as follows. In the next Section we intro-
duce the k-modal maps. In Sect. 3 a pseudo-random
bit generator is presented via k-modal maps. In Sect. 4
the statistical suite of tests of randomness proposed by
NIST are used to prove safety of the sequences and the
results of the tests are shown. In Sect. 5 we use a stream
cipher and applied statistical security test like entropy,
pixel correlation, encryption quality. Furthermore, we
show that the proposed cryptosystemcan resist themost

common attacks such as chosen-plaintext attack and
differential attack. Finally in Sect. 6 we give conclu-
sions about the pseudo-random bit generator via multi-
modal chaotic maps.

2 Multi-modal maps

A discrete-time dynamical system is used to construct
a pseudo-random bit generator and is given as follows:

xn+1 = f (xn), n = 0, 1, 2, . . . , N ,

where xn ∈ � and x0 is the initial condition, such
dynamical system is usually referred to as map,
as it is fully determined by its right-hand side. To
ensure boundedness of trajectories, the study is usually
restricted to maps that are mapping a compact inter-
val into itself and without loss of generality we may
consider only the compact interval [0, 1]. The simplest
maps are the so-called unimodal maps like the logistic
and tent maps, while their generalization, the so-called
multi-modal or k-modal maps may present even more
rich dynamical behaviors, [20,21].

To be more specific, we denote I := [0, 1] and
recall, that the critical point c of the continuous piece-
wise smooth map f (x) : I �→ I is c ∈ I where
f is differentiable and f ′(c) = 0. The critical point
c occurs for f ′(c) = 0 or f ′(c) does not exist. But
continuous smooth maps always present f ′(c) = 0.

Definition 1 [20] The map f : I �→ I is called
a k-modal mapping, if it is continuous on I and it
has k critical points denoted by c0, c1 . . . ck−1 in I .
Moreover, there exist intervals Ii , i = 0, . . . , k −
1,∪k

i=1Ii−1 = I , such that ∀ i = 0, . . . , k − 1 it
holds ci ∈ Ii and fβ(ci ) > fβ(x),∀x ∈ Ii and
x 	= ci , where β is a parameter. The case k = 1 is
simply referred as to the so-called unimodal map.

The above definition does not constraint a function to
have only k critical points. However, it only considered
those that are local maximum on a subinterval. This
means that the number k defines the maximal numbers
of modals in a familyF and the intervalI = [a, b] is
divided between k subintervals I0 = [d1, d2),I1 =
[d2, d3), ...,Ik−2 = [dk−2, dk−1),Ik−1 = [dk−1, dk]
so the system fβ is a piecewise function by k unimodals
maps.
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The parameterized family F of maps fβ(x) is
defined by the following piecewise function

fβ(x) = β(dr+1 − x)(x − dr ), x ∈ Ir (1)

where dr = r/k, (r = 0, 1, 2, ..., k − 1), k is the num-
ber of modals, β = β(k, γ ) is the bifurcation parame-
ter, γ = 1/k is the carrying on capacity. To obtain the
maximum value of β with k modals there is a direct
relationship, βmax = (4)(k)/(γ ) for more detail infor-
mation see ref. [20].

Let’s make an example of k-modal map with k = 3,
to construct the function of the monoparametric family
we use the equation (1) and we will have 3 subintervals
Ir , (r = 0, 1, 2), so the function fβ which is given by
the equation (2) is expressed as follows

fβ(x) = β

⎧
⎨

⎩

(1/3 − x)(x), for x ∈ [0, 1/3);
(2/3 − x)(x − 1/3), for x ∈ [1/3, 2/3);
(1 − x)(x − 2/3), for x ∈ [2/3, 1];

(2)

whereβ ∈ [0, 36] is the bifurcation parameter, depend-
ing on the value of β the system may be unimodal,
bi-modal or tri-modal.

Figure 1 shows a bifurcation diagram of the tri-
modal map fβ(x). In order to demonstrate whether the
system is chaotic, there are several ways, but the most
common for discrete dynamical systems are based on
the definition of Devaney [22] and Lyapunov exponent
[23,24]. In this paperwe show that the system is chaotic

Fig. 1 Bifurcation diagram of the tri-modal map given by Eq. 2
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Fig. 2 Lyapunov exponent of the tri-modal map

by means of Lyapunov exponent which is denoted by
λ as is shown in Fig. 2. When λ ≤ 0 the system’s orbit
converges to a fixed point or in a periodic orbit and
when λ > 0 the system’s orbit behaves chaotically.

3 Proposed pseudo-random bit generator

First we introduce some basic concepts of random and
pseudo-random number generators which are given in
[5].

Definition 2 A True Random Number Generator
(TRNG) is characterized by the fact that its output can-
not be reproduced, so this type of generator is based on
physical processes like semiconductor noise. In cryp-
tography, a TRNG is often needed for generating ses-
sion keys but not for stream ciphers.

Definition 3 A pseudo-random number generator
(PRNG) produces sequences which are computed from
an initial seed value, note that a PRNG is not random
in a true sense because it can be computed by an algo-
rithm, thus it is completely deterministic. A common
requirement of a PRNG is that it possesses good sta-
tistical properties, i.e., its output that resembles to a
sequence of true random numbers.

Definition 4 A cryptographically secure pseudo-
random number generator (CSPRNG) is a special type
of PRNG which possesses the following additional
property: a CSPRNG is a PRNG which is unpre-
dictable. This means that given n consecutive bits of
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the key stream, there is no polynomial time algorithm
that can predict the next bit sn+1 with better than 50
% chance of success. Another property of CSPRNG
is that given the above sequence, it is computationally
unfeasible to compute any preceding bits sn−1, sn−2.

In this paper we propose a CSPRNG using one k-
modal map and a combination of its k-time series. The
algorithm for the construction of the generator is given
for any value of k and an example is also given for
the particular case of tri-modal map. The algorithm to
produce a CSPRNG is as follows:

Step 1 Set the value of k ∈ ¤N+.
Step 2 Compute the values of β j , for j = 1, . . . , k,

by means of the following equations.

β1 = (4)(k); (3)

β j = j ∗ β1; f or j ≥ 2. (4)

Taking these values ofβ j we are avoiding periodicwin-
dows and guarantee chaotic orbits.

Step 3 Take the values of β j and split the space

into 2 ∗ j regions δ
j
1 , . . . , δ

j
2∗ j which are determined

by values κ
j
1 , . . . , κ

j
(2∗ j)−1. Iterating the system x j

n =
fβ j (xn) and depending on which region evolves, i.e.,
δ11, δ

1
2 represent the value of 0 or 1, this generates a

binary sequence ζ j . Note that the generation of the
number of 0’s is approximately equal to the number of
1’s in all generated sequences with a tolerance of 1%.

Step 4 A k number of chaotic time series are gener-
ated by x j

n = fβ j (xn) and each one produces a binary
sequence ζ j . These sequences are mixed and the final
sequence Z is gotten as follows:

Fig. 3 Plot of the phase space of the tri-modal map with β = β1

Fig. 4 Distribution of the 2 regions from the 3-modal map with
β = β1

Fig. 5 Plot of the phase space of the tri-modal map with β = β2

Z = ζ 1 ⊕ ζ 2 ⊕ ... ⊕ ζ k . (5)

In order to clarify themechanism to generateCSPRNG,
we exemplify the process for k = 3 and iterate the
system 1,000,000 times. So the first step is given by
k = 3. According to the second step, β1 = 12, β2 =
24, β3 = 36. The third step is to take β1 for obtain-
ing the sequence ζ 1, therefore the space is divided
in two regions δ11 and δ12 split by κ1

1 = 1/6. These
regions represent a 0 and a 1, respectively, as is shown
in Fig. 3. The histogram of the two regions is shown
in Fig. 4. In the same step three, we need to com-
pute ζ 2 and ζ 3, so carry on with β2, we have a bi-
modal map with four regions δ21, . . . , δ

2
4 separated by

κ2
1 = 0.1521, κ2

2 = 0.40174, κ2
3 = 0.5954. In Fig. 5 is
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Fig. 6 Distribution of the tri-modal map with β = β2

shown the bi-modal map for β2 and the regions δ’s.
Fig. 6 shows the histogram of the binary sequence
ζ 2. Now for the last case β3 splits the space in six
regions δ31, . . . , δ

3
6 which are determined by the val-

ues κ3
1 = 0.1465, κ3

2 = 0.396, κ3
3 = 0.639, κ3

4 =
0.8335, κ3

5 = 0.9572.
Finally, the sequences are mixed by Z = ζ 1 ⊕ ζ 2 ⊕

ζ 3, where ⊕ is the operation XOR. We have computed
some values that κ can take for different values of k =
1, . . . , 4 and they are shown in Table 1.

For security reasons and in order to increase the key
space, we use the high sensitivity to initial conditions,
then we iterate the algorithm 200 times without con-
sidering its output bits.

Thus, the correlation is checked between the pro-
duced sequences x j

n = fβ j (xn) by the proposed algo-
rithm (step 3)with nearby keys and also it is verified the
sensitivity to initial conditions. The correlation coeffi-
cient Cxy for each pair of sequences x = [x1, ..., xN ]
and y = [y1, ..., yN ] are computed as follows [19]:

Cxy =
∑N

i=1(xi − x̄)(yi − ȳ)
[∑N

i=1(xi − x̄)2
]1/2 [∑N

i=1(yi − ȳ)2
]1/2 (6)

where x̄ = 1
N

∑N
i=1 xi and ȳ = 1

N

∑N
i=1 yi are the

mean values of x and y, respectively. The coefficients
Cxy are computed for each pair of produced sequences
with nearby initial conditions, and this has been done
for every value of j . Remember when the parame-
ter k increases, then the number of sequences and the
number of initial conditions also increase, for exam-
ple, in the case of bi-modal map k = 2. There are two
sequences x1n and x

2
n with initial conditions x01 and x02

for evaluate Cxy , we need other two sequences x ′1
n and

x ′2
n with small different initial conditions x01 + δ and
x02 + δ. The corresponding data are listed in Table 2

Table 1 Summary of
values κ

Map β = β1 β = β2 β = β3 β = β4

k = 1 κ1
1 = 1/2 – – –

k = 2 κ1
1 = 1/4 κ2

1 = 0.2273 – –

κ2
2 = 0.6020

κ2
3 = 0.8931

k = 3 κ1
1 = 1/6 κ2

1 = 0.1521 κ3
1 = 0.1465 –

κ2
2 = 0.4017 κ3

2 = 0.3960

κ2
3 = 0.5954 κ3

3 = 0.6390

κ3
4 = 0.8335

κ3
5 = 0.9572

k = 4 κ1
1 = 1/8 κ2

1 = 0.1140 κ3
1 = 0.1105 κ4

1 = 0.1070

κ2
2 = 0.3012 κ3

2 = 0.2970 κ4
2 = 0.2911

κ2
3 = 0.4465 κ3

3 = 0.4790 κ4
3 = 0.4829

κ3
4 = 0.6250 κ4

4 = 0.6576

κ3
5 = 0.7180 κ4

5 = 0.8034

κ4
6 = 0.9114

κ4
7 = 0.9776
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Table 2 Correlation coefficients of pseudo-random sequences

Unimodal x1n → x01 = 0.24879652 x ′1
n → x01 + δ = 0.248796520000001 Cx1x ′1 = 0.0015

Bimodal x1n → x01 = 0.19685672 x ′1
n → x01 + δ = 0.196856720000001 Cx1x ′1 = 0.0018

x2n → x02 = 0.86241957 x ′2
n → x02 + δ = 0.862419570000001 Cx2x ′2 = −0.0022

Trimodal x1n → x01 = 0.38461795 x ′1
n → x01 + δ = 0.384617950000001 Cx1x ′1 = −0.0004

x2n → x02 = 0.73519846 x ′2
n → x02 + δ = 0.735198460000001 Cx2x ′2 = −0.0013

x3n → x03 = 0.48617852 x ′3
n → x03 + δ = 0.486178520000001 Cx3x ′3 = −0.0016

Quadmodal x1n → x01 = 0.26487146 x ′1
n → x01 + δ = 0.264871460000001 Cx1x ′1 = −0.0006

x2n → x02 = 0.52975314 x ′2
n → x02 + δ + 0.529753140000001 Cx2x ′2 = 0.00001

x3n → x03 = 0.93457812 x ′3
n → x03 + δ = 0.934578120000001 Cx3x ′3 = −0.0004

x4n → x04 = 0.63789514 x ′4
n → x04 + δ = 0.637895140000001 Cx4x ′4 = 0.0008

Fig. 7 Part 1 of the results of the suite of statistical tests

where it is possible to see that there is no correlation
between the generated sequences as a consequence that
the chaotic map is very sensitive to very small changes
in all initial conditions.

4 The statistical suite test

In order to characterize the proposed generator and
demonstrate that it is safe for use in cryptography, it

Fig. 8 Part 2 of the results of the suite of statistical tests

must be analyzed with a variety of statistical tests.
These statistical tests determine whether the gener-
ated sequences possess specific characteristics similar
to truly random sequences. To achieve this goal there
are several options available for analyzing the random-
ness of the pseudo-random bit generators, for exam-
ple the suite developed by Beker and Piper [25], the
Gustafson’s suite [26] or the DIEHARD suite [27].
However, the most used and standard test is defined
by the NIST [28] that contains a sufficient number of
independent statistical tests and detects any deviation
from the randomness.
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A random process means lack of pattern or pre-
dictability in events, and it is a sequence of random
variables describing a process whose outcomes do not
follow a deterministic pattern, but follow an evolution
described by probability distributions. So a random-
ness is a probabilistic property; that is, a theoretical
reference distribution of this statistic is determined by
mathematical methods, in addition the results of sta-
tistical testing must be interpreted with some care and
caution to avoid incorrect conclusions about a specific
generator. First we need to define a significance level
σ . Typically, it is chosen in the range [0.001, 0.01], by
default σ = 0.01 and indicates that one would expect
one sequence of 100 sequences to be rejected by the
test if the sequence is random.

The NIST has adopted two ways to interpret results.
In this paper we used the examination of the proportion
of sequences that pass a statistical test. For this we need
the confidence interval defined as:

(1 − σ) ± 3

√
1 − (1 − σ)

m
, (7)

where σ = 0.01 and m is the sample size of sequences
that in our case is 1,000 sequences and each has
1,000,000 of elements. If the proportion falls outside

of this interval, then there is evidence that the data is
non-random.

In Figs. 7 and 8, we show the confidence interval of
sequences generated with k = 1, ..., 4. The dash-dot
line with marker plus “+” represents the result for uni-
modalmapor logisticmap, andwe can see that there are
some results outside of the confidence interval then we
cannot use this sequence for cryptography. On the other
hand, the dot line with marker empty circle “◦” corre-
sponds to the bi-modal map, the dash line with marker
square “�” corresponds to the tri-modal map, and the
solid line with marker diamond “�” is the quad-modal
map. This information is summarized in Tables 3 and 4.

It is clear that the maps with k ≥ 2 lie inside the
confidence interval; hence, these sequences are crypto-
graphically secure according to the suite of tests pro-
posed by NIST.

4.1 Differential attack

This technique of cryptanalysis is mainly applicable
on block ciphers and was introduced by Biham and
Shamir [29]. The basic idea is to analyze the effect of a
small difference in two inputs and the difference of cor-
responding two cipher outputs. In this case we applied

Table 3 Part 1 of results from statistical suite of tests

Test name Unimodal
portion
passing

Result Bi-modal
portion
passing

Result Tri-modal
portion
passing

Result Quad-
modal
portion
passing

Result

Frequency test 0.9820 Success 0.9900 Success 0.9910 Success 0.9930 Success

Frequency test
within a block

0.9770 Fail 0.9850 Success 0.9890 Success 0.9900 Success

Runs test 0.9860 Success 0.9920 Success 0.9910 Success 0.9900 Success

Test for the
longest run

0.9850 Success 0.9890 Success 0.9930 Success 0.9920 Success

Binary matrix 0.9810 Success 0.9920 Success 0.9840 Success 0.9930 Success

Discrete Fourier
transform

0.9850 Success 0.9920 Success 0.9840 Success 0.9930 Success

Overlapping
template
matching test

0.9790 Fail 0.9870 Success 0.9930 Success 0.9890 Success

Maurer’s
universal
statistical test

0.9900 Success 0.9880 Success 0.9880 Success 0.9900 Success

Approximate entropy 0.9790 Fail 0.9850 Success 0.9900 Success 0.9890 Success

Linear complexity 0.9830 Success 0.9910 Success 0.9900 Success 0.9940 Success
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Table 4 Part 2 of results from statistical suite of tests

Test name Unimodal
portion
passing

Result Bi-modal
portion
passing

Result Tri-modal
portion
passing

Result Quad-
modal
portion
passing

Result

Serial test 1 0.9870 Success 0.9870 Success 0.9890 Success 0.9930 Success

Serial test 2 0.9820 Success 0.9920 Success 0.9910 Success 0.9950 Success

Cumulative sums test Success

a) Forward 0.9850 Success 0.9920 Success 0.9930 Success 0.9940 Success

b) Backward 0.9850 Success 0.9890 Success 0.9940 Success 0.9930 Success

Non-overlapping template matching test

a) 0.9820 Success 0.9890 Success 0.9820 Success 0.9950 Success

b) 0.9830 Success 0.9850 Success 0.9820 Success 0.9890 Success

c) 0.9840 Success 0.9890 Success 0.9830 Success 0.9920 Success

d) 0.9850 Success 0.9850 Success 0.9870 Success 0.9920 Success

e) 0.9770 Fail 0.9910 Success 0.9970 Success 0.9910 Success

Random excursions test

a) −4 0.9850 Success 0.9860 Success 0.9900 Success 0.9900 Success

b) −3 0.9880 Success 0.9890 Success 0.9930 Success 0.9830 Success

c) −2 0.9920 Success 0.9870 Success 0.9930 Success 0.9830 Success

d) −1 0.9920 Success 0.9870 Success 0.9900 Success 0.9850 Success

e) 1 0.9890 Success 0.9900 Success 0.9850 Success 0.9930 Success

f) 2 0.9920 Success 0.9820 Success 0.9880 Success 0.9950 Success

g) 3 0.9850 Success 0.9900 Success 0.9820 Success 0.9900 Success

h) 4 0.9860 Success 0.9890 Success 0.9900 Success 0.9900 Success

Random excursions variant test

a) −9 0.9850 Success 0.9930 Success 0.9960 Success 0.9900 Success

b) −8 0.9850 Success 0.9930 Success 0.9930 Success 0.9880 Success

c) −7 0.9860 Success 0.9900 Success 0.9950 Success 0.9900 Success

d) −6 0.9900 Success 0.9900 Success 0.9950 Success 0.9900 Success

e) −5 0.9910 Success 0.9920 Success 0.9980 Success 0.9880 Success

f) −4 0.9900 Success 0.9890 Success 0.9950 Success 0.9870 Success

g) −3 0.9900 Success 0.9920 Success 0.9930 Success 0.9850 Success

h) −2 0.9930 Success 0.9860 Success 0.9900 Success 0.9850 Success

i) −1 0.9920 Success 0.9890 Success 0.9930 Success 0.9910 Success

i) 1 0.9930 Success 0.9870 Success 0.9870 Success 0.9910 Success

k) 2 0.9860 Success 0.9900 Success 0.9930 Success 0.9910 Success

l) 3 0.9860 Success 0.9900 Success 0.9920 Success 0.9880 Success

m) 4 0.9900 Success 0.9840 Success 0.9950 Success 0.9910 Success

n) 5 0.9930 Success 0.9890 Success 0.9930 Success 0.9900 Success

o) 6 0.9950 Success 0.9870 Success 0.9910 Success 0.9900 Success

p) 7 0.9950 Success 0.9870 Success 0.9900 Success 0.9930 Success

q) 8 0.9950 Success 0.9870 Success 0.9870 Success 0.9920 Success

r) 9 0.9950 Success 0.9870 Success 0.9950 Success 0.9950 Success
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the same idea to pseudo-random sequences and instead
of having two inputs with plaintext, there are two ini-
tial conditions and an output with the corresponding
sequences, the difference can be used as:

1. Sumof absolute difference (SAD)which is applica-
ble to sequences x j

n ∈ � and is defined by SAD=
|(x j

n − x ′ j
n )| where the sequences x j

n and x ′ j
n are

obtained with initial conditions x01 and x01 + δ,
respectively.

2. XOR difference is applicable to sequences Z , Z ′ ∈
{0, 1} and is defined by D = Z ⊕ Z ′ where the
sequences Z and Z ′ are obtained with k initial con-
ditions.

In previous section we analyzed the sequences x j
n ∈ �

with nearby initial conditions, now the goal in this sec-
tion is to analyze the Z , Z ′ ∈ {0, 1} sequences (step
4 of the proposed algorithm) with nearby initial con-
ditions through the XOR Difference. Recall that for
obtaining the sequence Z we need k initial conditions,
for example if k = 3 we need three initial conditions
x01, x02, x03 to obtain the sequence Z , and three initial
conditions x ′

01, x
′
02, x

′
03 to obtain the sequence Z ′ and

then apply the XOR Difference. In the worst case of
nearby initial conditions we have x01 = x02 = x03 =
x ′
01 = x ′

02, x
′
03 = x03 + δ, with δ 	= 0 which means

that we have the same initial conditions to generate
x1n , x

2
n and small difference in x3n for Z ′. When we

applied the XORDifference to Z and Z ′, we obtain that
approximately 50% of the elements in the sequences
are different. Even if we have the same initial condi-
tion x01 = x02 the series x1n 	= x2n because the fβ j (xn)
is different in each case. We can conclude that there is
no correlation between the binary sequences Z and Z ′,
so the chaotic map is very sensitive in x j

n and Z .

5 Chaos based gray-scale image cryptosystem

In this section we show a stream cipher algorithm
for cipher gray-scale images and the impact of using
multi-modal maps, i.e., the quality of the cipher image
depends on the pseudo-randombit generator employed.
At the end of the last section, we can infer that a
multi-modal map generates a sequence cryptograph-
ically secure, but in order to determine which sequence
is better, we need a statistical security analysis applied
to cipher images instead of key stream.

We use the following algorithm for cipher the gray-
scale image:

• First we consider an image of N x M pixels, sec-
ondly we add a column of random values R(i, 1) ∈
{0, 1, . . . , 255} with i = 1, ..., N , so the size of
the image increases to N x (M + 1). This image
will be called augmented image (P̄) with a total of
(N )(M + 1) pixels.

• Compute pixel by pixel as follows:

{
C1 = P̄1 ⊕ Z1 ⊕ I V
Ci = P̄i ⊕ Zi ⊕ Ci−1

(8)

where Ci is the ith pixel of the cipher image, P̄i is
the ith pixel of the augmented image, note that the
value of P̄1 = R(1, 1), Zi is the key stream accord-
ing to the proposed algorithm given in Sect. 3, IV
∈ {0, 255} is an initialization vector of 8 bits, it is
used only once and ⊕ is the operation XOR bit by
bit. We generate different key streams from multi-
modal maps with k = 1, 2, 3, 4.

For decrypt the image we need the same key stream
for this we need the values: k, the initial conditions
x01, x02, ..., x0k and the initialization vector (IV) as fol-
lows:

{
P̄1 = C1 ⊕ Z1 ⊕ I V
P̄i = Ci ⊕ Zi ⊕ Ci−1

(9)

Note that the decrypted image is the augmented image
then has one extra column so when the process of
decrypt is completed we need to remove this column
to get original size of the image (N )(M). In Fig. 9 are
some examples of encrypt and decrypt images.

Some statistical analysis has been performed on the
proposed image encryption scheme, including the cor-
relation of pixels, entropy and quality encryption, as
demonstrated in the following subsections.

5.1 Key space analysis

A good encryption algorithm must have a large key
space enough to render brute-force attacks unfeasible.
For the proposed image encryption algorithm, the key is
given by the initial conditions x01, ..., x0k , where each
initial condition has a double precision. According to
the IEEE floating-point standard [30], the computa-
tional precision of the 64-bit double-precision number
is about 1015; thereby, the total space depends on the
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Fig. 9 Different plain images and encrypted-images with the proposed algorithm. a Lenna with its histogram for plain and encrypted
image, b Baboon with its histogram for plain and encrypted image, c Einstein with its histogram for plain and encrypted image

number of initial conditions, for k = 3 the key space
is:

� 1 × 1047 � 2159.

As the number k increases so does the key space but
without loss of generality with k = 3, we assure that
the key space is enough to resist brute-force attacks.

5.2 Correlation pixels

In general for any original image P , each pair of adja-
cent pixels is highly correlated in horizontal, vertical
or diagonal direction; however, a cryptosystem should
produce changes in all pixels and low correlation in
adjacent pixels. To quantify and compare the correla-
tions of adjacent pixels in the plain and cipher image,
we use the correlation coefficient rxy defined by

rxy = cov(x, y)√
D(x)

√
D(y)

, (10)

E(x) = 1

η

η∑

i=1

xi , (11)

D(x) = 1

η

η∑

i=1

(xi − E(x))2 , (12)

cov(x, y) = 1

η

η∑

i=1

(xi − E(x))(yi − E(y)), (13)

where x and y denote two adjacent pixels and η is the
total number of duplets (x, y) in this case η = 2, 000.
In Table 5 we show the results of three different images
and it is possible to see that the adjacent pixels of

the original plain image (P) are highly correlated in
any direction unlike the cipher image (C), the adjacent
pixels are low correlated. This demonstrate the perfor-
mance of the stream cipher algorithm.

5.3 Information entropy

As it is known, the entropy is a statistical measure of
randomness that can be used to characterize the texture
of the image and can be defined by [31]:

H(s) = −
2n−1∑

i=0

Pr(si )log2Pr(si ), (14)

where n=8 is the number of bits to represent a symbol
si ∈ s and Pr(si ) represents the probability of the
symbol si then the entropy is expressed in bits, for a
cipher gray-scale image with 256 levels, the entropy
should ideally be H(s) = 8.

The entropies for plain images and cipher images
using various k-modal maps are calculated and listed
in Table 6. According to the Table 6, it is possible to see
that when the number of modals is increased so does
the entropy of each encrypted image.

5.4 Encryption quality

The encryption creates large changes in the value of
pixels, these pixels should be completely different from
the original image, these changes are irregular andmore
changes in the value of pixels show more effectiveness
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Table 5 Correlation
coefficients of two adjacent
pixels

Image Plain image k = 1 k = 2 k = 3 k = 4

Lenna

Vertical 0.9852 −0.0280 −0.0051 0.0226 −0.0050

Horizontal 0.9658 0.0252 −0.0113 0.0022 −0.0041

Diagonal 0.9506 0.0176 −0.0157 −0.0081 −0.0077

Baboon

Vertical 0.9852 −0.0280 −0.0051 0.0226 −0.0050

Horizontal 0.9658 0.0252 −0.0113 0.0022 −0.0041

Diagonal 0.9506 0.0176 −0.0157 −0.0081 −0.0077

Einstein

Vertical 0.9817 0.0091 −0.0245 −0.0164 −0.0001

Horizontal 0.9797 0.0165 −0.0095 0.0085 0.0050

Diagonal 0.9647 0.0136 0.0124 0.0038 0.0035

Table 6 Entropy for plain image and cipher image with k =
1, 2, 3, 4

Entropy Plain image k = 1 k = 2 k = 3 k = 4

Lenna 7.8059 7.9988 7.9988 7.9989 7.9989

Baboon 7.7091 7.9970 7.9970 7.9971 7.9973

Einstein 7.4913 7.9989 7.9989 7.9989 7.9989

Table 7 Encryption quality for cipher imageswith k = 1, 2, 3, 4

Encryption
quality

Unimodal Bimodal Trimodal Quamodal

Lenna 267.6016 268.2734 268.6094 269.1953

Baboon 116.2344 117.5859 117.9062 128.9297

Einstein 309.7734 311.2969 312.2500 312.6406

of encryption algorithm and thus better quality. The
encryption quality represents the average number of
changes to each gray level according to [32] and can
be expressed as:

Q =
∑255

L=0 |HL(C) − HL(P̄)|
256

, (15)

where L is the gray levels of the images, HL(C) and
HL(P̄) are the numbers of repetition from each gray
value in the original and the encrypted image, respec-
tively. The results of this test are shown in Table 7,
where it is possible to see that if the k number of a
multi-modal map increases then the encryption quality
of the cipher image increases too.

5.5 Chosen-plaintext attack

One common weakness in many ciphers is when the
algorithm encrypts an original image twice using the
same set of keys the cipher images are always the
same, this provides the opportunity to break the algo-
rithm using the chosen-plaintext attack. In this kind of
attack somewhat the attacker has temporary access to
the encryption algorithm and he can choose the image
to encrypt and obtains its corresponding cipher image
then trying to find the equivalent key stream image.

Seeking to solve this problem we add one column
of random values (noise) in the original image, with
this each time, we encrypt the image, these values
will be different, even if we use the same set of keys
so we obtain a different cipher image each time. We
encrypt an image twice using the same set of keys,
and the results are shown in Fig. 10: (a)Plain image of
Lenna, (b) encrypted image in the first time C1, (c) the
encrypted image second time with the same set of keys
C2, (d) the pixel difference |C1−C2| and the histogram
for each image, respectively. This ensures that the pro-
posed algorithm is able to resist the chosen-plaintext
attack.

5.6 Differential attack

In the differential attack the opponent can usually per-
form a slight change just by modifying a pixel of the
original image in order to observe the changes on the
corresponding cipher image, trying to find a relation-
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Fig. 10 a Plain Image of Lenna, b Encrypted Image of Lenna for first time C1, c Encrypted Image of Lenna for second time C2, d the
pixel difference |C1 − C2| and its histogram for each image, respectively

ship between the plain image and the cipher image.
If one minor change in the plain image produces a
significant change in the cipher image then this attack
becomes very inefficient and practically useless. As we
can see in the previous section each time we encrypt
the image the result is different then without modifying
the original image the result between the cipher images
is different with this the differential attack is unfeasible
but we are able to measure how different are the images
when we encrypt twice. This can be measured by two
criteria, the number of pixel change rate (NPCR) and
the unified average changing intensity (UACI).

The NPCR measures the number of different pixels
between two cipher images.

NPCR =
∑

i, j δa(i, j)

ν
× 100%. (16)

δa(i, j) =
{
0 ifC1(i, j) = C2(i, j);
1 ifC1(i, j) 	= C2(i, j).

(17)

where ν is the total number of pixels in the image, C1

and C2 are the cipher images encrypted twice with the
same set of keys.

The second criterion, UACI can be defined as:

UACI = 1

ν

⎡

⎣
∑

i, j

|C1(i, j) − C2(i, j)|
28 − 1

⎤

⎦ (18)

Results of these tests are shown inTable 8. These results
show that the algorithm produces complete different

Table 8 NPCR and UACI from an image encryption twice

Proposed scheme

NPCR 99

UACI 34.8353

cipher images even using the same set of keys. Thus
the algorithm can resist differential attack and chosen-
plaintext attack.

6 Conclusion

In this work we present a Cryptographically Secure
Pseudo-randomBitGenerator basedondiscrete dynam-
ical system of one-dimensional and multi-modal or k-
modal map. A key stream was constructed by means
of the combination of k sequences and were evaluated
with the statistical suite of test from the NIST, satis-
factory results were obtained which show that these
sequences possess statistical properties like truly ran-
dom sequences and show that the k-modal map is
highly sensitive to initial conditions. Furthermore, we
use the Pseudo-random Bit Generator like a key stream
and show the impact of using multi-modal maps which
are reflected in the encryption quality. Finally, a pre-
processing in imagewas proposed bywhich the encryp-
tion process becomes probabilistic. In other words, in
this approach it is achieved that an encrypted image
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twice under the same set of keys, the encrypted image
is different each time, while the process of decryption
remains deterministic. However if the encryption func-
tion is modified as follows: Ci = P̄i ⊕ Zi ⊕ Ci−1 ⊕
Ci−1 = P̄i ⊕ Zi , if we consider the assumption that all
values P̄i are zero, it is possible to retrieve the image
with the exception of the P̄(i, 1) column, in summary
this requires extra computation and the assumption that
P̄i = 0 for all values of i . We are currently working to
build a probabilistic encryption scheme in which this
point would be infeasible.
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