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Abstract In this paper, a novel adaptive neural net-
work control approach is presented for a class of
uncertain discrete-time nonlinear strict-feedback sys-
tems with input saturation. By combining single neural
network approximation and minimal learning parame-
ter technique, the proposed approach is able to elimi-
nate the complexity growing problem and alleviate the
explosion of learning parameters. An auxiliary design
system is incorporated into the control scheme to over-
come the problem of input saturation constraints. Fol-
lowing this approach, the designed controller contains
only one actual control law and one adaptive law, the
numbers of input variables and weights of neural net-
work updated online are decreased drastically, and the
number of parameter updated online for whole system
is reduced to only one. Compared with the existing
methods, the adaptive mechanism with much simpler
controller structure and minimal learning parameteri-
zation is achieved; therefore, the computational burden
is lighter. It is shown via Lyapunov theory that all sig-
nals in the closed-loop system are uniformly ultimately
bounded. Finally, simulation results via two examples
are employed to illustrate the effectiveness and merits
of the proposed scheme.
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1 Introduction

Since the excellent universal approximation ability of
the neural network (NN) was proven [1], the NN has
become an active research topic in the control domain.
In particularly, adaptive NN control has attracted much
attention and shown to be particularly useful for control
of highly uncertain, nonlinear, and complex systems
[2,3]. Through years of progress, a lot of adaptive NN
control approaches have been proposed based on Lya-
punov stability theory and the backstepping technique
[4–6]. In [5], an adaptive backstepping control was pro-
posed for uncertain strict-feedback nonlinear systems
by using RBF NN with fixed centers and widths.

In recent decades, adaptive control of discrete-time
nonlinear systems has attracted much research inter-
est. In contrast to the above-mentioned continuous-
time nonlinear systems, the Lyapunov design for
discrete-time nonlinear systems becomes much more
intractable. The reason lies in that the linearity prop-
erty of the derivative of a Lyapunov function in
continuous time is not present in the difference of
Lyapunov function in the discrete-time [7]. Hence,
many control schemes for continuous-time systems
may be not suitable for discrete-time systems. Such
as the noncausal problem will be encountered if we
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directly apply backsteppingdesign to discrete-time sys-
tems in lower triangular form, such as strict-feedback
form [8]. Specifically, to solve the noncausal prob-
lem for general strict-feedback discrete-time system,
system transformation using prediction functions of
future states was studied in [9], in which adaptive NN
backstepping design has been applied to the trans-
formed strict-feedback discrete-time systems without
noncausal problem. Through years of progress, a lot
of adaptive NN control schemes were developed for
discrete-time nonlinear systems in strict-feedback form
via backstepping in [10–18]; for instance, based on
backstepping design, an adaptive NN control was
developed for a class of discrete-time nonlinear strict-
feedback systems with unknown bounded disturbances
in [12]. In [15], to deal with the systems with unknown
control directions, an adaptive robust control was stud-
ied for a class of discrete-time nonlinear strict-feedback
systems based on discrete Nussbaum gain.

However, for previously mentioned discrete-time
nonlinear strict-feedback systems [8–18], the complex-
ity growing problem and explosion of learning para-
meters are universal exists in the conventional adap-
tive NN backstepping control design procedure. That
is, the complexity of the controller grows drastically
and a large number of parameters needed to be updated
online as the order of discrete-time system increases.
As a result, the online computation burden is very heavy
and the learning time tends to unacceptably long. In
recent years, some control methods have been devel-
oped to eliminate the two drawbacks partly.

On the one hand, to solve the complexity growing
problem, by introducing first-order filters of the syn-
thetic inputs at each intermediate steps of the tradi-
tional backstepping approach, a dynamic surface con-
trol (DSC) technique was proposed in [19,20]. But
the DSC technique can only eliminate the complexity
growing problem in a certain degree. In order to elimi-
nate the complexity growing problem completely, only
one NN was used to approximate the lumped unknown
function of the system at the last step, which was pre-
sented for a class of nonlinear strict-feedback systems
in [21] and pure-feedback systems in [22]. Afterward,
a single neural network (SNN)-approximation-based
adaptive control approach was developed for a class of
uncertain discrete-time nonlinear strict-feedback sys-
tems in [23], but this method is also suffered from the
explosion of learning parameters, that is, when NN is
used to approximate the lumped unknown function, a

large numbers of weights of neural network are need
to be updated online.

On the other hand, to address the explosion of learn-
ing parameters, a novel adaptive robust tracking con-
trol approach with fewer online parameters was pro-
posed for a class of nonlinear systems by combination
of the backstepping technique and fuzzy logic system in
[24]. In [25,26], based on minimal learning parameters
(MLP) technique, the robust adaptive neural network
(or fuzzy) control approach was presented for a class
of strict-feedback nonlinear systems. By this approach,
the number of parameters updated online for each sub-
system was reduced to 2. Recently, a direct adaptive
control algorithm with less online updated parameters
was developed for a class of discrete-time nonlinear
systems in strict-feedback form in [27], but this method
still needs many parameters to be adjusted online when
the number of state variables of the system increases
and suffers from the complexity growing problem, in
particular for high-order systems.

As we know, many industrial control systems have
constraints on their inputs. In practice, input satura-
tion constraint is one of the most important input con-
straints because the saturation is a potential problem
that degrades the control system performance, gives
rise to undesirable inaccuracy, or even affects system
stability, and the control actions are usually limited in
energy or magnitude. Recently, to analyze and design
control systems with saturation nonlinearities, a decen-
tralized adaptive neural control with auxiliary design
system was proposed for a class of interconnected
large-scale uncertain Nussbaum gain function systems
with input saturation in [28].Afterward, based onNuss-
baum gain functions, the direct adaptive fuzzy back-
stepping control approaches were presented for a class
of uncertain nonlinear strict-feedback systems with
input saturation in [29,30]. But these elegant control
approaches are studied for continuous-time systems,
and due to difficulties in discrete-time systems, there is
few research on the adaptive control for discrete-time
nonlinear systems in presence of input saturation.

In this paper, based on above observation, in order
to eliminate the complexity growing problem, alleviate
the explosion of learning parameters, and address the
problem of input saturation constraint, a novel adaptive
NNcontrol approach is presented for a class of discrete-
time nonlinear systems in strict-feedback form. Com-
pared with the existing methods, the adaptive mecha-
nism with much simpler controller structure and min-
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imal learning parameterization is achieved; hence, the
computational burden is lighter.

The main contributions of this paper are as follows:

(i) Based on SNN approximation, the designed con-
troller contains only one actual control law and
one adaptive law, so the complexity growing
problem is eliminated drastically.

(ii) By combining SNN approximation and MLP
technique, the numbers of input variables and
weights of neural network updated online are
decreased drastically, and the number of parame-
ter updated online for whole system is reduced to
only one; hence, the explosion of learning para-
meters is alleviated significantly.

(iii) An auxiliary design system is employed to ana-
lyze the effect of input saturation, and states of
auxiliary design system are utilized to develop
the tracking control.

This paper is organized as follows. Section 2 intro-
duces the discrete-time nonlinear systems and prelim-
inaries that are necessary for adaptive fuzzy control
design. In Sect. 3, by combining the SNN approxima-
tion and theMLP technique, the adaptive backstepping
control design procedure for a class of discrete-time
nonlinear strict-feedback systems is carried out. The
stability analysis for the closed-loop control system are
presented in Sect. 4. In Sect. 5, simulation results via
two examples are presented. This paper ends with con-
clusion in Sect. 6.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider the following single-input and single-output
(SISO) discrete-time nonlinear system in strict-
feedback form with input saturation:
⎧
⎨

⎩

xi (k+1)= fi (x̄i (k))+xi+1(k), i=1, 2, . . . , n−1,
xn(k + 1) = fn(x̄n(k)) + u(k),
yk = x1(k),

(1)

where x̄i (k) = [x1(k), . . . , xi (k)]T ∈ Ri , i =
1, 2, . . . , n and yk ∈ R are the state variables and sys-
temoutput, respectively; fi (x̄i (k)), i = 1, 2, . . . , n are
unknown smooth nonlinear functions; and u(k) ∈ R
represents the control input with saturation constraint.

In this paper, considering the presence of input sat-
uration constraints on u(k) as

− umin ≤ u(k) ≤ umax (2)

where umin and umax are the positive known lower limit
and upper limit of the input saturation constraints of
u(k), respectively. Thus,

u(k) = sat (v(k))

=
⎧
⎨

⎩

umax if v(k) > umax

v(k) if − umin ≤ v(k) ≤ umax

−umin if v(k) < −umin

(3)

where v(k) is the designed control input of the system.
The control objective is to design an adaptive NN

controller for system (1) such that: (i) All the sig-
nals in the closed-loop system are uniformly ultimately
bounded (UUB) and (ii) the system output yk follows
the desired reference signal yd(k).

Assumption 1 The desired reference signal yd(k) ∈
�y, ∀k > 0 is smooth, known, and bounded, where
�y := {χ |χ = x1}.

2.2 High-order neural network (HONN)

There are many well-developed approaches used to
approximate an unknown function. NN is one of the
most frequently employed approximation methods due
to the fact that NN is shown to be capable of uni-
versally approximating any unknown continuous func-
tion to arbitrary precision. HONNs satisfies the con-
ditions of the Stone–Weierstrass theorem. Because of
its high-order interaction between neurons, HONN can
approximate any continuous nonlinear smooth func-
tion to any desired accuracy over a compact set. In
this paper, a HONNs is employed to approximate the
lumped unknown function of the system. The structure
of HONNs is expressed as follows:

ϕ(W, z) = WT S(z), W and S(z) ∈ Rl ,

S(z) = [s1(z), s2(z), . . . , sl(z)]T , (4)

si (z) =
∏

j∈Ii
[s(z j )]d j (i), i = 1, 2, . . . l, (5)

where z = [z1, z2, . . . , zm]T ∈ �z ⊂ Rm ; positive
integer l denotes the NN node number; {I1, I2, . . . , Il}
is a collection of l not-ordered subsets of {1, 2, . . . ,m}
and d j (i) are nonnegative integers; W is an adjustable
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synaptic weight vector; and s(z j ) is chosen as a hyper-
bolic tangent function s(z j ) = (ez j − e−z j )

/
(ez j −

e−z j ).
For a smooth functionφ(z), there exists ideal weight

W ∗ such that the smooth function φ(z) can be approx-
imated by an ideal NN on a compact set �z ⊂ Rm :

φ(z) = W ∗T S(z) + εz, (6)

where εz is called the NN approximation error with an
assumption of |ε| ≤ ε∗, where the unknown constant
ε∗ > 0 for all z ∈ �z . The NN approximation error is
a critical quantity, representing the minimum possible
deviation of the ideal approximator W ∗T S(z) form the
unknown smooth function φ(z).

The idealweight vectorW ∗ is an “artificial” quantity
required for analytical purposes. W ∗ is defined as the
value of W that minimizes |εz | for all z ∈ �z ⊂ Rm in
a compact region, i.e.,

W ∗ :=arg min
W∈Rl

{

sup
z∈�z

∣
∣
∣φ(z) − WT S(z)

∣
∣
∣

}

, �z ⊂ Rm

(7)

In general, the ideal NN weight W ∗ is unknown and
needs to be estimated. In this paper, we shall consider
Ŵ being the estimate of the ideal NN weight W ∗.

Assumption 2 On a compact set �z ⊂ Rm , the ideal
NN weight W ∗ satisfies ‖W ∗‖ ≤ wm where wm is a
positive constant.

Lemma 1 [9] Consider the basis functions of HONN
(4) with z being the input vector. The following proper-
ties of HONNs will be used in the proof of the closed-
loop system stability:

λmax[S(z)ST (z)] < 1, ST (z)S(z) < l (8)

Lemma 2 [24] For any given real continuous function
f (x) with f (0) = 0, if the continuous function sepa-
ration technique and HONN approximation technique
are used, then f (x) can be denoted as

f (x) = S̄(x)Ax (9)

where S̄(x) = [1, S(x)] = [1, s1(x), s2(x), . . . , sl(x)],
AT = [ε,WT ], εT = [ε1, ε2, . . . , εn] is a vector of
the approximation errors, and

W =

⎡

⎢
⎢
⎢
⎣

w∗
11 w∗

12 · · · w∗
1n

w∗
21 w∗

22 · · · w∗
2n

...
...

...
...

w∗
l1 w∗

l2 · · · w∗
ln

⎤

⎥
⎥
⎥
⎦

is a weight matrix.

3 Adaptive backstepping control design

Consider the discrete-time nonlinear system in strict-
feedback form with unknown control gain described
in (1). The causality contradiction is one of the
major problems that we will encounter in discrete-
time domain when we construct a controller for the
general strict-feedback nonlinear system through back-
stepping. However, the above problem can be avoided
if we transform the system equation into a special form
which is suitable for backstepping design. If we con-
sider the original system (1) as a one-step-ahead predic-
tor, we can transform it into an equivalent maximum
n-step-ahead predictor, which can predict the future
states x1(k + n), x2(k + n − 1), . . . , xn(k + 1), then
the causality contradiction is avoidedwhen controller is
constructed based on the maximum n-step-ahead pre-
diction. Similarly, with the help of the transformation
process in [9], system (1) is equivalent to

xi (k + n − i + 1) = Fi (x̄n(k)) + xi+1(k + n − i),

i = 1, 2, . . . , n − 1,

xn(k + 1) = fn(x̄n(k)) + u(k),

yk = x1(k), (10)

where Fi (x̄n(k)) is an unknown function depending on
f j (·), j = 1, . . . , n − 1. It should be noted that the
functions Fi (x̄n(k)), i = 1, 2, . . . , n − 1 are highly
nonlinear.

For convenience of analysis and discussion, for i =
1, . . . , n − 1, let

Fi (k) = Fi (x̄n(k)), fn(k) = fn(x̄n(k))

they are functions of system states x̄n(k) at the kth step.
Step 1: For η1(k) = x1(k)− yd(k), its nth difference

is given by

η1(k + n) = x1(k + n) − yd(k + n)

= F1(k) + x2(k + n − 1) − yd(k + n) (11)

Consider x2(k + n − 1) as a virtual control for (11)
and α2(k + n − 1) as the ideal intermediate function.
By introducing the error variable

η2(k + n − 1) = x2(k + n − 1) − α2(k + n − 1) (12)

if we choose

α2(k + n − 1) = −F1(k) + yd(k + n) (13)

it is obvious that η1(k + n) = 0. Substituting (13) into
(12) leads to

x2(k+n − 1)=η2(k + n − 1)−F1(k) + yd(k + n)

(14)
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Substituting (14) into (11), the error Eq. (11) can be
rewritten as

η1(k + n) = η2(k + n − 1) (15)

Step 2: as defined before, η2(k) = x2(k) − α2(k).
Its (n − 1)th difference is given by

η2(k + n − 1) = x2(k + n − 1) + α2(k + n − 1)

= x3(k + n − 2) + F2(k) + F1(k)

−yd(k + n)

= x3(k + n − 2) + F∗
2 (k) − yd(k + n)

(16)

where F∗
2 (k) = F2(k) + F1(k) is an unknown smooth

function
Similarly, consider x3(k+n−2) as a virtual control

for (16) and α3(k + n − 2) as the ideal intermediate
function. By introducing the error variable

η3(k + n − 2) = x3(k + n − 2) − α3(k + n − 2) (17)

if we choose

α3(k + n − 2) = −F∗
2(k) + yd(k + n) (18)

it is obvious that η2(k + n − 1) = 0. Substituting (18)
into (17) leads to

x3(k + n − 2) = η3(k + n − 2) + α3(k + n − 2)

= η3(k + n − 2) − F∗
2 (k) + yd(k + n)

(19)

Substituting (19) into (16), the error Eq. (16) is
rewritten as

η2(k + n − 1) = η3(k + n − 2) (20)

Step i: Following the same procedure as in step 2,
for ηi (k) = xi (k) − αi (k). Its (n − i + 1)th difference
is given by

ηi (k + n − i + 1)

= xi (k + n − i + 1) − αi (k + n − i + 1)

= xi+1(k + n − i) + Fi (k) + F∗
i−1(k)

−yd(k + n)

= xi+1(k + n − i) + F∗
i (k) − yd(k + n) (21)

where F∗
i (k) = Fi (k)+F∗

i−1(k) is an unknown smooth
function.

Consider xi+1(k+n− i) as a virtual control for (21)
and αi+1(k + n − i) as the ideal intermediate function.
By introducing the error variable

ηi+1(k + n − i) = xi+1(k + n − i) − αi+1(k + n − i)

(22)

if we choose

αi+1(k + n − i) = −F∗
i (k) + yd(k + n) (23)

it is obvious that ηi (k + n − i + 1) = 0. Substituting
(23) into (22) leads to

xi+1(k + n − i) = ηi+1(k + n − i)+αi+1(k + n − i)

=ηi+1(k+n−i)−F∗
i (k)+yd(k+n)

(24)

Substituting (24) into (21), the error Eq. (21) is
rewritten as

ηi (k + n − i + 1) = ηi+1(k + n − i) (25)

Step n:Forηn(k) = xn(k)−αn(k), its first difference
is given by

ηn(k + 1) = xn(k + 1) − αn(k + 1)

= fn(k) + u(k) + F∗
n−1(k) − yd(k + n)

= u(k) + F∗
n (k) − yd(k + n) (26)

where F∗
n (k) = fi (k)+F∗

n−1(k) is an unknown smooth
function.

Since F∗
n (k) is unknown and F∗

n (k) is a function of
system state x̄n(k), therefore the HONN can be used to
approximate F∗

n (k). According to Lemma 2, a suitable
HONN f̂ (x, A) with input vector x̄n ∈ �x̄n , where
�x̄n is a compact set and A is a matrix containing
unknown weights, which is proposed here to approxi-
mate unknown function f (x). Then, the unknown func-
tion F∗

n (k) can be approximated by HONN as follows:

F∗
n (k) = S(z(k))Ax̄Tn (k) + ε

= S(z(k))A

⎡

⎢
⎢
⎢
⎣

η1(k) + yd(k)
η2(k) + α2(k)

...

ηn(k) + αn(k)

⎤

⎥
⎥
⎥
⎦

T

+ ε (27)

z(k) = [x̄ Tn (k), yd(k + n)]T ∈ �Z ⊂ Rn+1 (28)

where ε is the approximation error. Let b = ‖A‖, the
normalized term Am = A/‖A‖ = A/b, andω = Am×
η̄n(k) with η̄n(k) = [η1(k), η2(k), . . . , ηn(k)]T . Then,
one has

F∗
n (k) = bS(z(k))ω + d ′ (29)

where d ′ = S(z(k))A
[
yd(k) + ∑n

j=2 α j (k)
]

+ ε. By

noticing the bound of ε, one has

‖d‖ ≤
∥
∥
∥S(z(k))A

[
yd(k) +

∑n

j=2
α j (k)

]
+ ε∗

∥
∥
∥

≤ cminθψ(z(k)) (30)

123



2026 X. Wang et al.

where θ = c−1
min max

(
‖Ayd(k)‖ ,

∥
∥
∥
∑n

j=2 Aα j (k)
∥
∥
∥ ,

‖ε∗‖
)
, and ψ(z(k)) = 1 + ‖S(z(k))‖. It is clear that

‖d‖ is bounded because θ is bounded due to the bound-
edness of yd(k) and ε∗.

For convenience of constraint effect analysis of the
input saturation, the following auxiliary design system
is given by

e(k + 1) =
{−k1e(k) + u, |e(k)| ≥ μ

0, |e(k)| < μ
(31)

where k1 = k2 + |η1(k)u|+0.5u2

e2(k)
> 0, k2 > 0, u

= u(k) − v(k) is the control input error, μ is a small
positive design constant; e(k) is a variable of the aux-
iliary design system introduced to ease the analysis of
the effect of the input saturation; and control law v(k)
with input saturation will be designed.

If we choose

u(k) = u∗(k) = −F∗
n(k) + yd(k + n) (32)

it is obvious that ηn(k + 1) = 0. Then, choose the
control command u∗(k) as
u∗(k) = λ(k)�(z(k)) (33)

λ(k) = c−1
min max(b2, θ2) (34)

�(z(k)) = ‖S(z(k))‖2 + ψ2(z(k)) (35)

Considering the input saturation effect, choose the
actual control law v(k) as follows:

v(k) = λ̂(k)�(z(k)) + e(k) (36)

and the updating algorithm as:

λ̂(k + 1) = λ̂(k) − �[�(z(k))η1(k + 1) + σ λ̂(k)]
(37)

where � and σ are positive design constants and λ̂(k)
is the estimate of λ(k).

Substituting (36) into (26), the error Eq. (26) is
rewritten as

ηn(k + 1) = F∗
n(k) − yd(k + n)

+ λ̂(k)�(z(k)) + e(k) + u (38)

Adding and subtracting u∗(k) on the right-hand side
of (38) and noting (32), we have

ηn(k + 1) = F∗
n(k) − yd(k + n) + λ̂(k)�(z(k))

+ e(k) + u − λ(k)�(z(k)) + u∗(k);
(39)

substituting (31) into (39) leads to

ηn(k + 1) = λ̃(k)�(z(k)) + e(k) + u (40)

Remark 1 For all discrete-time nonlinear systems in
form (1), only one HONN is used to approximate the
lumped unknown function at the last step, and the
designed controller only contains an actual control law
(36) and an adaptive law (37). And it can be observed
that the number of parameter updated online for whole
system (1) is reduced to only one. As a result, both
the complexity growing problem and the explosion of
learning parameters are eliminated drastically and the
structure of the controller is much simpler.

Remark 2 As pointed out in Remark 2 [24], the prin-
ciple of designing the NNs is to use as few neurons as
possible to approximate the unknown functions, which
implies that minimal inputs to the NNs are imposed. It
should be noted that in this paper, the number ofHONN
input variables updated online is decreased to n + 1,
where n is the number of state variables in whole sys-
tem.Meanwhile, the number of weights updated online
forHONN is also decreased drastically. Hence, the pro-
posed approach can alleviate the explosion of learning
parameters significantly by reducing the dimension of
the argument vector of the function to be approximated.

Remark 3 By fusion of the SNN approximation and
MLP technique, the approach proposed in this paper
can simultaneously eliminate the complexity grow-
ing problem and explosion of learning parameters,
which leads to a much simpler controller with minimal
learning parameters, computational burden is lighter,
and it is easy to be implemented in real applications.
In particular for higher-order systems, the superior-
ity of the controller design approach would be even
greater.

4 Stability analysis

The stability analysis of the closed-loop system is given
in this section.

Theorem 1 Consider the closed-loop system consist-
ing of the system (10), input saturation effect auxiliary
design system (31), the actual control (36), and the
adaptive law (37). Then, for any bounded initial con-
ditions, all the closed-loop system signals remain uni-
formly ultimately bounded, and the steady state track-
ing error converges to a neighborhood around zero by
appropriately choosing control parameters.
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Proof Choose the Lyapunov function candidate of the
closed-loop system as follows:

V (k) = η21(k)� +
∑n

i=2
η2i (k) + λ̃2(k)�−1 + e2(k)�

(41)

The first difference of (38) along (34) and (37) is
given by:

V (k) = [η21(k + 1) − η21(k)]� +
∑n

i=2
[η2i (k + 1)

− η2i (k)] + λ̃2(k + 1)�−1 − λ̃2(k)�−1

+ e2(k + 1)� − e2(k)� (42)

According to (15), (20) and (25), we have

ηi (k + 1) = ηi+1(k), i = 1, 2, . . . , n − 1 (43)

then the difference of the Lyapunov function as

V = η2n(k + 1) − η21(k)� − (1 − �)η22(k) − 2λ̃(k)

×[�(z(k))η1(k + 1) + σ λ̂(k)] + �[�(z(k))

×η1(k + 1) + σ λ̂(k)]2 + e2(k + 1)� − e2(k)�

= −γ̄ η21(k) − (1 − γ̄ )g21η
2
2(k) + λ̃2(k)�2(z(k))

+ e2(k)+u2+2λ̃(k)�(z(k))e(k) + 2ue(k)

+ 2λ̃(k)�(z(k))u − 2λ̃(k)�(z(k))η1(k + 1)

− 2σ λ̃(k)λ̂(k) + �2(z(k))�η21(k + 1)

+ σ 2�λ̂2(k) + 2σ λ̂(k)��(z(k))η1(k + 1)

− (1 − k21)�e
2(k) − 2�k1ue(k) + �u2

≤ − γ̄ η21(k) − (1−γ̄ )g21η
2
2(k)+λ̃2(k)�2(z(k))

+ e2(k)+u2+2λ̃(k)�(z(k))e(k)+2ue(k)

+ 2λ̃(k)�(z(k))u + 2λ̃(k)�(z(k))η1(k + 1)

− 2σ λ̃(k)λ̂(k) + �2(z(k))�η21(k + 1)

+ σ 2�λ̂2(k) + 2σ λ̂(k)��(z(k))η1(k + 1)

− (1 − k21)�e
2(k) + 2�k1ue(k) + �u2

Using the facts that

�2(k) < l, ��2(k) < γ̄ l,

2λ̃(k)�(z(k))e(k) ≤ lλ̃2(k) + e2(k),

2λ̃(k)�(z(k))u ≤ lλ̃2(k) + u2,

2e(k)u ≤ e2(k) + u2,

2λ̃(k)�(z(k))η1(k + 1) ≤ 1

γ̄
λ̃2(k) + γ̄ lη21(k + 1),

2σ λ̂(k)��(z(k))η1(k+1)≤ γ̄ lη21(k+1)+γ̄ σ 2λ̂2(k),

2λ̃(k)λ̂(k) = λ̃2(k) + λ̂2(k) − λ2(k),

2λ̃(k)�(z(k))e(k) ≤ e2(k) + lλ̃2(k),

2�k1ue(k) ≤ γ̄ k21e
2(k) + γ̄ u2,

we obtain

V (k)

≤−γ̄ η21(k)−(1−γ̄ − 3γ̄ l)g21η
2
2(k) − σ(1 − 2γ̄ σ )

×λ̂2(k) − (γ̄ − 3 − γ̄ k21)e
2(k) + β

where β = σλ2(k) + (3 + 2γ̄ )u2.
If we choose the design parameters as follows:

0 < γ̄ <
1

1+3l
, 0<σ <

1

2γ̄
, 0<k1 <

√
γ̄ −3

γ̄
<1,

(44)

then V ≤ 0 once the error η1(k) is larger than
√

β.
This demonstrates that the tracking error ηi (k), i =
1, 2, . . . , n is bounded andwill converge to the compact
set denoted by�η ⊂ R, where�η := {χ | χ ≤ √

β}.
Based on the boundedness of ηi (k), i = 1, . . . , n, we
can easily prove that e(k) is bounded.

The adaptation dynamic (37) can be written as

λ̃(k + 1)= λ̃(k)−�[�(z(k))η1(k + 1)+σ λ̃(k)+σλ∗]
= λ̃(k) − �[�(z(k))η2(k) + σ λ̃(k) + σλ∗]
= (1 − σ�)λ̃(k) − ��(z(k))η2(k) + σ�λ∗

Similar to the proof in [9,10], since η2(k) is bounded,
so λ̃(k), or equivalently of λ̂(k), is bounded in a com-
pact set denoted by�λ. Based on above analysis, it can
be seen that V (k), λ̂(k), ηi (k) and e(k) are bounded;
hence, xi (k) are bounded for i = 1, 2, . . . , n. Thus, all
signals of the closed-loop system are uniformly ulti-
mately bounded. ��

5 Simulation examples

In this section, two simulation examples and simulation
comparisons with the literature [9,30] are provided to
illustrate the effectiveness and merits of the proposed
adaptive NN control approach.

Example 1 Consider the discrete-time nonlinear strict-
feedback systems with input saturation as follows:

x1(k + 1) = 0.7x21 (k) + x2(k),

x2(k + 1) = u(k),

yk = x1(k), (45)

The initial condition for system state is x(0) =
[0.5 0]T , and the adaptive laws are λ̂(0) = 0.1. Other
controller parameters are l = 12, � = 0.001, σ =
0.5, k1 = 0.01, μ = 0.01. The input constraints
are umin = umax = 0.6. The reference signal is
yd(k) = sin(kπ/20)/2.
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Fig. 1 yd (red trajectory) and y (black trajectory) of Example 1

Fig. 2 Control input u(k) of Example 1

The simulation results are presented in Figs. 1, 2,
and 3. Figure 1 shows the output yk and the reference
signal yd(k), and it can be seen that the fairly tracking
performance is obtained. Figure 2 gives the control sig-
nal of the closed-loop system. Figure 3 illustrates the
trajectory of estimation of parameter.

Example 2 Consider the discrete-time nonlinear strict-
feedback systems in presence of input saturation as fol-
lows:

x1(k + 1) = x21 (k)

1 + x21 (k)
+ x2(k),

x2(k + 1) = x1(k)

1 + x21 (k) + x22 (k)
+ u(k),

yk = x1(k), (46)

The initial condition for system state is x(0) =
[0 0]T , and the adaptive laws are λ̂(0) = 0.1. Other

Fig. 3 The parameter trajectory of Example 1

Fig. 4 yd (red trajectory) and y (black trajectory) of Example 2

Fig. 5 Control input u(k) of Example 2
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Fig. 6 The parameter trajectory of Example 2

controller parameters are l = 13, � = 0.001, σ = 1,
k1 = 0.01, μ = 0.01. The input constraints are
umin = umax = 4. The reference signal is yd(k) =
sin(kπ/20)/2 + sin(kπ/10)/2.

The simulation results are presented in Figs. 4, 5,
and 6. By comparing our simulation results with those
in [9,30], it can be seen fromFig. 4 that the better track-
ing performance for output yk relative to the reference
signal yd(k) and the control magnitude of u(k) in our
paper are much smaller. Figures 5 and 6 illustrate the
control signal of the closed-loop system and the trajec-
tory of estimation of parameter.

6 Conclusion

This paper investigates the adaptive backstepping
control for a class of discrete-time nonlinear strict-
feedback systems with input saturation based on SNN
approximation and MLP technique. The proposed
approach is able to eliminate the complexity growing
problem and alleviate the explosion of learning para-
meters inherent in conventional adaptive control design
procedure. And an auxiliary design system is incorpo-
rated into the control scheme to overcome the problem
of input saturation constraints. The designed controller
contains only one actual control law and one adap-
tive law, the numbers of input variables and weights
of neural network updated online are decreased dras-
tically, and the number of parameter updated online
for whole system is reduced to only one. As a result,
the adaptive mechanism with much simpler controller
structure and minimal learning parameterization is

achieved, and the computational burden is lighter. It
is shown via Lyapunov theory that all signals in the
closed-loop system are uniformly ultimately bounded
(UUB) and that the tracking error converges to a small
neighborhood of zero by choosing the control parame-
ters appropriately. Finally, simulation results via two
examples are employed to illustrate the effectiveness
and merits of the proposed scheme. Future research
will be concentratedon the applicationofSNNapproxi-
mation and MLP technique for uncertain discrete-time
nonlinear systems in presence of input saturation in
pure-feedback formandmultiple-inputmultiple-output
(MIMO) systems.
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