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Abstract In this paper, a pinning impulsive control
scheme is adopted to investigate the synchronization
of fractional complex dynamical networks. An effec-
tive method has been applied to select controlled nodes
at each impulsive constants. Based on the Lyapunov
function method and the connection between the expo-
nential function and Mittag-Leffler function, sufficient
conditions for achieving exponential synchronization
of fractional complex networks have been derived.
Finally, numerical simulations are exploited to verify
the effectiveness of the theoretical results, and some
discussions about synchronization region are given.
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1 Introduction

Complex networks exist in many fields of sciences and
have been intensively studied over the past decades,
such as computer networks [1], telephone call graphs
[2], theWorldWideWeb [3], neural networks [4], elec-
trical power grids [5], genetic regulatory networks [6],
and metabolic networks [7]. In general, a complex
network is made up of a large number of intercon-
nected nodes. Every node of the network is a nonlin-
ear dynamic, which may have some complex dynamic
behaviors such as chaotic behavior and bifurcation
behavior.But,manycomplex systems in realworld can-
not be described by traditional integer-order differen-
tial equations, especially some problems about electro-
chemistry [8], diffusion [9], viscoelasticmaterials [10],
biological systems [11], and so on. Fractional-order
systems have attracted increasing attention in recent
years by their applications in many fields. Compared
with the classical integer-order complex network, there
are still many problems in the fractional-order complex
network to be solved since the most existing meth-
ods for the integer-order dynamic systems cannot be
directly extended to the fractional-order dynamic sys-
tems.

Synchronization has always been a hot research
topic in complex systems. There were some kinds of
synchronization have been investigated, such as lag
synchronization, which requires the states of response
system to synchronize with the past states of the drive
system [12]. The situation that the driver and response
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systems could be synchronized up to a scaling func-
tion is named projective synchronization [13]. When
a network can be divided into some groups, and cou-
pled nodes in the same cluster can be synchronized, but
there is no synchronization among different clusters,
the network is said to realize the cluster synchroniza-
tion [14]. Synchronization of fractional-order systems
has been studied in some papers recently. For example,
Chen has investigated synchronization of memristor-
based fractional-order neural networks in [15]; Bao
and Cao [16] have studied projective synchronization
of fractional-order memristor-based neural networks.
Note that there are some networks that cannot be
synchronized by their intrinsic structure. Then, con-
trol schemes have been developed to drive networks
synchronization. Impulsive control method has been
widely used in many areas; the main feature of impul-
sive control method is that the control action is exerted
on a plant only at some discrete instants; then, the con-
trolled network receives signals of control only in dis-
crete times, and the amount of conveyed information is
decreased. There were lots of results about impulsive
control for integer-order systems [17–19]. Impulsive
control of fractional systems just has few results [20–
22]. However, in previous studies, all of the nodes
should be controlled, when impulsive controllers are
added to the dynamical networks with state coupling.
Due to the large number of nodes in the real-world com-
plex networks, it is usually difficult to control all nodes
of network. Pinning control method is introduced [23–
25]. There were just a fraction of nodes would be con-
trolled under pinning control strategy. There were also
some results about the pinning scheme for fractional
complex networks [26,27]. It is naturally to ask: Can
the impulsive controllers just add for a small number
of the whole network? The impulsive pinning method
has been developed for the integer-order complex net-
works, recently [28–32]. To the best of our knowledge,
there are no results on the pinning impulsive control
for the fractional complex networks. In addition, as a
description for the speed of synchronization, exponen-
tial synchronization has been attracted lots of attentions
for integer-order complex networks, in which the speed
of synchronization is in exponential function [33–35].
But, exponential synchronization of fractional systems
has not been seen yet.

Motivated by the above, this paper will investigate
the exponential synchronization of fractional complex
networks. We consider a fractional-order complex net-

work whose node’s dynamic has been described by
α derivative. The fractional complex network will be
synchronized by impulsively controlling a small frac-
tion of nodes. At every impulsive moment, nodes with
a big deviation from the expected trajectory would
be controlled. Then, some criteria are given to judge
whether dynamical networks can be globally exponen-
tially forced to a desired orbit by impulsively control-
ling a small fraction of nodes. Exponential synchro-
nization of the general fractional complex network can
be reached under some conditions. The relationship
between synchronization region and the order α has
been discussed based on our synchronization criterion.
Under some certain parameters, one can result from
this paper that there will be a larger synchronization
region that can be obtained with increased order α.

The rest of this paper is organized as follows: In
Sect. 2, some definitions and some lemmas are intro-
duced. In Sect. 3, the pinning impulsive controllers are
designed to make the fractional complex network real-
ize exponential synchronization. Numerical examples
are given to demonstrate the effectiveness of the pro-
posed pinning impulsive strategy in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2 Preliminaries

In this section, some definitions, lemmas, and some
well-known results about fractional differential equa-
tions are recalled. In addition, the mathematic model
of fractional complex network will be introduced.

2.1 Caputo fractional operator and Mittag-Leffler
function

Caputo fractional operator plays an important role in
the fractional systems, since the initial conditions for
fractional differential equations with Caputo deriva-
tives take the same form as for integer-order differ-
ential, which have well-understood physical mean-
ings [36]. Thus, we use Caputo derivatives as a main
tool in this paper. The formula of the Caputo fractional
derivative is defined as follows:

Definition 1 [36] The Caputo fractional derivative of
function x(t) is defined as

C D
α
0,t x(t) = 1

Γ (m − α)

∫ t

0
(t − τ)m−α−1x (m)(τ )dτ,

where m − 1 < α < m, m ∈ Z+.
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Let m = 1, 0 < α < 1, then

C D
α
0,t x(t) = 1

Γ (1 − α)

∫ t

0
(t − τ)−αx ′(τ )dτ.

For simplicity, denote Dαx(t) as the C Dα
0,t x(t). The

following properties of Caputo operators are specially
provided.

Lemma 1 [36] If w(t), u(t) ∈ C1[t0, b], and α > 0,
β > 0, then

(1) DαD−βw(t) = Dα−βw(t)

(2) Dα(w(t) ± u(t)) = Dαw(t) ± Dαu(t)

The Mittag-Leffler function is defined by

Eα,β(z) :=
∞∑
i=0

zi

Γ (αi + β)
,

where α > 0, β > 0, and Γ (.) is the Gamma function.
For short Eα(z) := Eα,1(z). The following properties
of Mittag-Leffler function will be used in the later.

Lemma 2 For 0 < α < 1 and x ∈ R, x > 0, Eα(x) is
a monotone increasing function [37].

Lemma 3 If 0 < α < 1, | argz |< π
2 , then for any

integer N∗ > 1, and z �= 0, the following asymptotic
expansion holds [37,38]:

Eα,β(z) = 1

α
z
1−β
α ez

1
α −

N∗∑
r=1

z−r

Γ (β−αr)
+O

(
1

ZN∗+1

)

as | z |→ +∞.

Lemma 4 For 0 < α < 1, t ∈ R, t > 0, we have

lim
t→+∞ Eα(t) � lim

t→+∞
1

α
et

1
α
.

Proof From Lemma 3, one has

lim
t→∞ Eα(t) ∼ lim

t→+∞

{
1

α
et

1
α −

∞∑
r=1

t−r

Γ (β − αr)

}
.

Noting that the second term of the right of above for-
mula is positive for all t > 0. Then, Lemma 3 could be
obtained.

Remark 1 The Mittag-Leffler function is the general-
ization of the exponential function. Lemma 4 has estab-
lished a relationship between Mittag-Leffler function
and exponential function as t → +∞, which is an
important result in the later analysis about the exponen-
tial synchronization of fractional complex network. It
is clear that when α = 1, Lemma 4 still holds, in which
the inequality will be converted into an equation.

Remark 2 Exponential synchronization for fractional
systems has not been studied yet, since exponential
function is difficult to be applied in fractional calcu-
lus. Mittag-Leffler function has been regarded as a
generalization of exponential function and has widely
been applied for the factional calculus [37–39]. Unfor-
tunately, it is difficult to extend some properties of
exponential function to Mittag-Leffler function. But
Lemma 4 can establish a connection between exponen-
tial function and Mittag-Leffler function; thus, expo-
nential function can be used in some analysis about
asymptotic behavior for fractional systems.

Lemma 5 [36] Let V (t) be a continuous function on
[t0,+∞) and satisfies

DαV (t) � θV (t),

where 0 < α < 1 and θ is a constant, then

V (t) � V (t0)Eα(θ(t − t0)
α).

2.2 Model description

Considering the following fractional-order complex
dynamic network:

Dαxi (t) = f (xi (t)) + c
N∑
j=1

ai jΓ x j (t), (1)

where 0 < α < 1, N is the number of nodes, xi (t) =
(xi1(t), xi2(t), . . . , xin(t))T ∈ R

n(i = 1, 2, . . . , N )

is the state variables of the i th node, f :Rn → R
n

is a continuously vector value function, c is the cou-
pling strength, and Γ ∈ R

n×n is diagonal matrix with
positive diagonal elements. A = (ai j ) ∈ R

n×n is the
weight configuration matrix. If there is a connection
from node i to node j , then ai j = a ji > 0; otherwise,
ai j = a ji = 0, and the diagonal elements of matrix A
are defined by

aii = −
N∑

j=1, j �=i

ai j . (2)

Under the impulsive control, we can get the con-
trolled model as follows:
⎧⎪⎨
⎪⎩

Dαxi (t) = f (xi (t)) + c
∑N

j=1 ai jΓ x j (t), t �= tk

xi
(
t+k

) − xi
(
t−k

) = μ(xi
(
t−k

) − s(tk)), k ∈ N,

i ∈ P(tk)
(3)
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where μ is impulsive control gain and P(tk) is the
index set of pinning nodes at impulsive moment tk .
Let s(t) be a solution of the isolated dynamic sys-
tem: Dαs(t) = f (s(t)). Here, s(t) may be an equi-
librium point, a periodic orbit, or even a chaotic orbit.
In this paper, the objective trajectory that the nonlinear
dynamical network (1) will be forced to s(t).

Let ei (t) = xi (t)−s(t) for i = 1, 2, . . . , N .Accord-
ing to (2), c

∑N
j=1 ai jΓ s(t) = 0; then, the follow-

ing impulsively controlled dynamical network can be
obtained:{
Dαei (t)= f̃ (ei (t)) + c

∑N
j=1 ai jΓ e j (t), t �= tk

ei
(
t+k

) = (1 + μ)ei
(
t−k

)
, i ∈ P(tk)

(4)

where f̃ (ei (t)) = f (xi (t)) − f (s(t)) and the time
series {t1, t2, . . .} is a strictly increasing impulsive
instant satisfying limk→∞ tk = +∞. The selection of
pinning nodes would be given later.

Assumption 1 Throughout this paper, we always
assume that ei

(
t−k

) = ei (tk).

Assumption 2 The function f is Lipschitz continu-
ous. That is, there exists a positive constant F such that

‖ f (x) − f (y)‖ � F‖x − y‖, ∀x, y ∈ Rn . (5)

3 Main results

In this section, a pinning impulsive control scheme
is applied for reaching exponential synchronization of
fractional complex dynamical network (1).

Theorem 1 When μ ∈ (−2, 0), let ρ = 1 + l
N

(| 1 + μ | −1) ∈ (0, 1). Suppose that Assumptions 1
and 2 hold, and the average impulsive interval of the
impulsive sequence is less than T . Then, the controlled
dynamical network (1) can be globally exponentially
controlled to the objective trajectory s(t) by using our

pinning impulsive strategy, if ( ln(ρ)
T + δ

1
α ) < 0, where

δ = max1�i�N (F + λ
∑N

j=1 | a ji |) and λ is the
largest eigenvalue of Γ .

Proof Consider the following Lyapunov function:

V (t) =
N∑
i=1

‖ei (t)‖

Let sgn(ei (t)) = (sign(ei1(t)), sign(ei2(t)), . . . ,
sign(ein(t))), where

sign(ei j (t)) =

⎧⎪⎨
⎪⎩
1, ei j (t) > 0

0, ei j (t) = 0

− 1, ei j (t) < 0

For t ∈ (tk−1, tk], calculating the derivatives of V (t)
along the solutions of system (4), one has

DαV (t) =
N∑
i=1

Dα‖ei (t)‖ =
N∑
i=1

n∑
j=1

Dα | ei j (t) |

=
N∑
i=1

n∑
j=1

sign(ei j (t))D
αei j (t)

=
N∑
i=1

sgn(ei (t))D
αei (t)

=
N∑
i=1

sgn(ei (t))

⎛
⎝ f̃ (ei (t))+c

N∑
j=1

ai jΓ e j (t)

⎞
⎠

�
N∑
i=1

⎛
⎝‖ f̃ (ei (t))‖ + c

N∑
j=1

| ai j | ‖Γ e j (t)‖
⎞
⎠

�
N∑
i=1

⎛
⎝F + λ

N∑
j=1

| a ji |
⎞
⎠ ‖ei (t)‖

Using the constants δ and λ which have been given in
Theorem 1, DαV (t) � δV (t). From Lemma 1, V (t) �
Eα(δ(t − tk−1)

α)V (t+k−1), for t ∈ (tk−1, tk].
For a coupled dynamical network without control-

ling, there must be different orbits among nodes, which
implies that there exists a different deviation from the
expected trajectory s(t). Naturally, the farthest nodes
from s(t) should be controlled first. Therefore, those
nodes with a big deviation from the expected trajec-
tory s(t) will be pinned in this paper. Apparently,
the distance between xi (t) and s(t) can be described
by the norm values of all synchronization errors at
impulsive moments ei (tk)(i = 1, 2, . . . , N ). Thus,
at impulsive moment tk , the index set of pinning
nodes P(tk) is defined as follows: For the vectors
e1(tk), e2(tk), . . . , eN (tk), one can reorder the states
of the nodes such that ‖ep1(tk)‖ � ‖ep2(tk)‖ �
· · · ‖epN (tk)‖. Suppose that we choose l(l < N ) nodes
of network (1) for controlling; then, the index set
of l controlled nodes P(tk) is defined as P(tk) =
{p1, p2, . . . , pl}. Let α(tk) = min{‖ei (tk)‖ : i ∈
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P(tk)} and β(tk) = max{‖ei (tk)‖ : i /∈ P(tk)}. It
is easy to find that β(tk) � α(tk) from our pinning
strategy.

Thus, for any k ∈ N, we yield

V
(
t+k

) =
n∑

i=1

∥∥ei (t+k
)∥∥

=
∑

i∈P(tk )

∥∥ei (t+k
)∥∥ +

∑
i /∈P(tk )

∥∥ei (t+k
)∥∥

=
∑

i∈P(tk )

| 1 + μ | ∥∥ei (t−k
)∥∥ +

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

= | 1 + μ |
∑

i∈P(tk )

∥∥ei (t−k
)∥∥ + ρ

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

+ (1 − ρ)
∑

i /∈P(tk )

∥∥ei (t−k
)∥∥

�| 1 + μ |
∑

i∈P(tk )

∥∥ei (t−k
)∥∥ + ρ

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

+ (1 − ρ)(N − l)β(tk)

�| 1 + μ |
∑

i∈P(tk )

∥∥ei (t−k
)∥∥ + ρ

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

+ (1 − ρ)(N − l)α(tk)

�| 1 + μ |
∑

i∈P(tk )

∥∥ei (t−k
)∥∥ + ρ

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

+ (ρ− | 1 + μ |)lα(tk)

�| 1 + μ |
∑

i∈P(tk )

∥∥ei (t−k
)∥∥ + ρ

∑
i /∈P(tk )

∥∥ei (t−k
)∥∥

+ (ρ− | 1 + μ |)
∑

i∈P(tk )

∥∥ei (t−k
)∥∥

� ρ

n∑
i=1

∥∥ei (t−k
)∥∥

= ρV (t−k )

Then, for t ∈ (t0, t1], V (t) � Eα(δ(t − t0)α)V
(
t+0

)
,

which leads V (t1) � Eα(δ(t1 − t0)α)V
(
t+0

)
and

V (t+1 ) � ρV (t1) � ρEα(δ(t1 − t0)α)V
(
t+0

)
.

Similarly, for t ∈ (t1, t2], V (t) � Eα(δ(t− t1)α)V (t+1 )

� ρEα(δ(t − t1)α)Eα(δ(t1 − t0)α)V
(
t+0

)
.

In general, for t ∈ (tk, tk+1], V (t) �
∏k

i=1 Eα(δ(ti −
ti−1)

α)ρk Eα(δ(t − tk)α)V
(
t+0

)
.

Let ξ(t0, t) be the number of impulsive times of the
impulsive sequence on the interval (t0, t). Hence, for
any t ∈ R, we obtain

V (t) �
ξ(t0,t)∏
i=1

Eα(δ(ti − ti−1)
α)ρξ(t0,t)

× Eα(δ(t − tξ(t0,t))
α)V

(
t+0

)
.

Since the average impulsive interval of the impulsive
sequence is less than T , there exists a positive integer
N0 such that

ξ(t0, t) � t − t0
T

− N0.

Note that ρ ∈ (0, 1); thus,

V (t) �
ξ(t0,t)∏
i=1

Eα

(
δ(ti − ti−1)

α
)
ρ

t−t0
T −N0

× Eα

(
δ(t − tξ(t0,t))

α
)
V

(
t+0

)

=
ξ(t0,t)∏
i=1

Eα

(
δ(ti − ti−1)

α
)
ρ−N0e

lnρ
T (t−t0)

× Eα(δ
(
t − tξ(t0,t))

α
)
V

(
t+0

)
.

Due to (t − t0) > t − tξ(t0,t), then from Lemma 2,

V (t) �
ξ(t0,t)∏
i=1

Eα

(
δ(ti − ti−1)

α
)
ρ−N0e

lnρ
T (t−t0)

×Eα

(
δ(t − t0)

α
)
V

(
t+0

)
.

One can follow from Lemma 4 that limt→∞ Eα(δ(t −
t0)α) � limt→∞ 1

α
eδ

1
α (t−t0). Let

M0 =
∏ξ(t0,t)

i=1 Eα (δ(ti − ti−1)
α) ρ−N0

α
,

η = (
ln(ρ)
T + δ

1
α ), then V (t) � M0eη(t−t0)V

(
t+0

)
as

t → ∞. Since η < 0, we can conclude that the whole
dynamical network (4) can be globally exponentially
stabilized under the impulsive controller. It means that
the network (1) can be exponentially controlled to the
objective trajectory s(t). This completes our proof.

Remark 3 Impulsive synchronization for fractional
chaotic systems and hyperchaotic systems has been
studied in Refs. [17,18], respectively. But both of
them have converted the fractional-order systems into
integer-order onebyusing someapproximate approach.
Then, the integer-order systems have been investigated
actually. This paper has studied the fractional systems,
based on some theories of fractional calculus, such as
Lemma 5, and the synchronization criterion for the net-
work (1) has been derived.

Remark 4 Under impulsive control, asymptotical syn-
chronization for fractional systems has been researched
in Refs. [17–19]. Based on Lemma 4, exponential syn-
chronization for fractional complex network has been
guaranteed in this paper by a pinning impulsive con-
troller.
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Corollary 1 Suppose that Assumptions 1 and 2 hold,
and the average impulsive interval of the impulsive
sequence is less than T . When μ ∈ (−2, 0), let
δ = max

1� j�N
(F + λ

∑N
j=1 | a ji |), and λ is the largest

eigenvalue of Γ . Then, the dynamical network (1) can
be globally exponential synchronization to the objec-
tive trajectory s(t), if one of the following inequations
could be satisfied:

(1) T < − ln
(
1 + l

n (| 1 + μ | −1)
)

α
√

δ

(2) − e−T α√
δ − 1
l
n

− 2 < μ <
e−T α√

δ − 1
l
n

(3)
l

n
>

e−T α√
δ − 1

| 1 + μ | −1

Remark 5 From Theorem 1, where δ and α are deter-
mined by the complex dynamic network itself, T, μ,
and l

n are depended on the pinning impulsive con-
trollers. The criterion canbe easily judgedwithout large
computation.

Remark 6 Fractional calculus could be seen as a gen-
eration of integer calculus. Based on Remark 1 and the
proof of Theorem 1, the synchronization criterion of
bothTheorem1 andCorollary 1 are suitable for the case
of α = 1. Noting that, according to the three inequa-
tions of the Corollary 1, every parameter of controllers
is influenced by the order α when others are certain.
More discussion will be given in the simulation.

4 Numerical simulations

In this section, a numerical example is given to show
the effectiveness of the proposed results, and the con-
nection of synchronization region will be given later. In
the end, the connection of controllers’ parameters and
order α will be discussed. The algorithms to simulate
the fractional-order complex networks without control
can be seen in Ref. [23].

4.1 Exponential synchronization under pinning
impulsive control

Taking the fractional-order Newton–Leipnik’s system
as node of network (1), that is

−0.3
−0.2

−0.1
0

0.1
0.2

−0.4
−0.2

0
0.2

0.4
−0.3

−0.2

−0.1

0

0.1

s2(t)

s 3(
t)

s1(t)

Fig. 1 Chaotic behavior of fractional-order Newton–Leipnik’s
system

f (xi (t)) =
⎛
⎜⎝

− axi1 + xi2 + 10xi2xi3

− xi1 − 0.4xi2 + 5xi1xi3

− 5xi1xi2 + bxi3

⎞
⎟⎠ ,

where α = 0.998. When a = 0.4, b = 0.175, the sys-
tem has a double-scrolling chaotic attractor as shown
in Fig. 1.

A small-world network with N = 100 nodes will
be considered in this simulation. The small-world net-
work is generated by taking initial neighboring nodes
k = 4 and the edge adding probability p = 0.1. The
coupling matrix A is defined as follows: If there is a
connection between nodes i and j , then ai j = a ji = 1;
otherwise, ai j = a ji = 0, aii are defined in (2). The
coupling strength c = 5, the inner coupling matrix

Γ =
⎛
⎝ 0.1 0 0

0 0.2 0
0 0 0.3

⎞
⎠, and then λ = 0.3. Now, we

take special values of μ = −0.9, T = 0.01, l = 20,
and then l

N = 0.2. By some simple calculations, we
can obtain that ρ = 0.82 ∈ (0, 1), and F = 11, then
δ = 13.8. One has (

ln(ρ)
T + δ

1
α ) = −4.01 < 0. Then,

the synchronization region described by the parameters
of systems and controllers is shown in Fig. 2.

The trivial point s(t) = 0 is taken as the objec-
tive trajectory in this example. Figure 3 presents the
numerical process for the synchronization control. All
initial values of the dynamical network are uniformly
randomly selected from [−10, 10].

4.2 The connections between controllers’ parameters
and the order α

With different μ, Fig. 4 displays the synchronization
region about T and order α. From Fig. 4, the synchro-
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Fig. 2 Synchronization region of the small-world coupled
dynamical network (1) under the pinning impulsive controller
(4)
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Fig. 3 State variables of the small-world coupled dynamical
network (1) under the pinning impulsive controller (4)

nization region about T is increased as the order α from
0 to 1, which embodies the memory property of frac-
tional systems.

When T = 0.01, l
N = 0.2, the synchronization

region of impulsive gain μ and α is shown in Fig. 5. It
is obvious that a bigger α results in a larger synchro-
nization region.

Now, under certain μ and T = 0.01, Fig. 6 shows
the synchronization region about l

N and order α. In
Ref. [23], pinning controllers have been designed for a
general fractional complex network, which concluded
that the control performance is better with decreasing
fractional-order α. Surprisingly, under certain impul-
sive gain, from Fig. 6, one can easily see that the syn-
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Fig. 4 Estimation of the synchronization region about T and
order α
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Fig. 5 Estimation of the synchronization region about μ and
order α

chronization region is larger with increasing fractional-
order α. Maybe the control performance and the syn-
chronization region are not equivalent [40].

Remark 7 From above cases, the order α has a great
influence on the design of our pinning impulsive con-
trollers. From the definition of fractional Caputo oper-
ator, the memory property can be expressed by the
(t − τ)(α−1) in the integrand. When α tends to be
1, the fractional Caputo operator can be degenerated
into integer-order systems [36], in which the memory
property will disappear. Thus, a larger synchronization
region can be obtained with a bigger α.

Whenwe setα = 0.99, under some certain values of
l
N , the synchronization region about T and μ is shown
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Fig. 7 Estimation of the synchronization region about T and μ

in Fig. 7. From Fig. 7, when we controlled all nodes in
the network and set μ = −1, the T could be infinity,
because the error states of the whole network become
zero immediately after the impulsive controller. Which
can match the statement “If x∗ is an equilibrium of
fractional-order system Dαx(t) = f (x(t)) and there
exists a time instant T > 0 such that x(T ) = x∗, then
x(t) = x∗ holds for all t � T ” has been mentioned in
some previous papers [41–43].

5 Conclusions and discussion

This paper presents a pinning impulsive controlmethod
to synchronize a fractional complex network. By build-
ing the a relationship between the asymptotic behav-

ior of exponential function and Mittag-Leffler func-
tion, and the appropriate pinning strategy, exponen-
tial synchronization for the fractional complex net-
work has been obtained. Those nodes with a big devi-
ation from the expected trajectory will be pinned at
some moments in this paper. Based on the conditions
in the main results, some discussions of synchroniza-
tion region about the parameters of controllers have
been given in the end of the paper. There is a larger
synchronization region for the fractional complex net-
work when the system’s order α increased to 1, which
can show the memory property of fractional-order sys-
tems. At last, the effectiveness of the presented results
has been illustrated by numerical simulations.
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