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Abstract In this paper, we establish exact soliton
solutions for the Davey–Stewartson equation. The trial
equation method and the ansatz approach are used to
construct exact 1-soliton solutions of this equation. We
apply the trial equation method to establish solitary
waves soliton, dark soliton and singular solitary waves
soliton solutions. The Davey–Stewartson equation is
the well-known example of integrable equations in two
space dimensions, which arise as higher-dimensional
generalizations of the nonlinear Schrödinger equation.

Keywords Trial equationmethod ·Ansatz approach ·
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1 Introduction

Nonlinear partial differential equations (PDEs) are
encountered in various disciplines, such as physics,
mechanics, chemistry, biology, mathematics and engi-
neering [1–34]. The study of exact solutions of these
equations plays amajor role in the study of the propaga-
tion of waves. With the development of soliton theory,
many useful methods for obtaining exact solutions of
nonlinear PDEs have been presented. Some of them
are: ansatz method [1–5], tanh method [6,7], multiple
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exp-function method [8], transformed rational func-
tion method [9], first integral method [10], simplest
equationmethod [11,12], Kudryashovmethod [13,14],
modified simple equation method [15] and so on.

One of the most effective direct methods to develop
the traveling wave solution of nonlinear PDEs is the
trial equationmethod [16]. Themost complete descrip-
tion of this method was given in [17]. This method has
been successfully applied to obtain exact solutions for
a variety of nonlinear PDEs [17–19].

In this paper, we consider the Davey–Stewartson
(DS) equation [20–28]

iqt + 1

2
δ2(qxx + δ2qyy) + λ|q|2q − φxq = 0,

φxx − δ2φyy − 2λ(|q|2)x = 0. (1)

The parameter λ characterizes the focusing or defo-
cusing case. The Davey–Stewartson equation is the
well-known example of integrable equations in two
space dimensions, which arise as higher-dimensional
generalizations of the nonlinear Schrödinger equation
(NLSE) [20].

The nonlinear Schrödinger’s equation describes
numerous nonlinear physical phenomena in the field
of applied sciences such as solitons in nonlinear opti-
cal fibers, solitons in the mean-field theory of Bose-
Einstein condensates, rogue waves in oceanography.

Davey and Stewartson first derived their model in
the context of water waves, from purely physical con-
siderations. In the context, q(x, y, t) is the amplitude
of a surface wave packet, while φ(x, y, t) represents
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the velocity potential of the mean flow interacting with
the surface wave [20].

The Davey–Stewartson equations are also reduced
to Hamiltonian ODEs [23], and so exact solutions
could be furnished by the integrability [24] of finite-
dimensional Hamiltonian systems.

The aim of this paper is to find exact solutions of
the Davey–Stewartson equation by the trial equation
method and the ansatz approach.

2 Trial equation method

In this section, we outline the main steps of the trial
equation method [16–19] as following

Step 1. Suppose a nonlinear PDE

P (u, ut , ux , utt , uxt , uxx , ...) = 0, (2)

can be converted to an ordinary differential equation
(ODE)

Q
(
U,U ′,U ′′,U ′′′, ...

) = 0, (3)

using a traveling wave variable u(x, t) = U (τ ), τ =
x − vt , where U = U (τ ) is an unknown function, Q
is a polynomial in the variable U and its derivatives. If
all terms contain derivatives, then Eq. (3) is integrated
where integration constants are considered zeros.

Step 2. Take the trial equation

(
U ′)2 = F(U ) =

N∑

l=0

alU
l , (4)

where al , (l = 0, 1, ..., N ) are constants to be deter-
mined. Substituting Eq. (4) and other derivative terms
such asU ′′ orU ′′′ in Eq. (3) yields a polynomial G(U )

ofU . According to the balance principle, we can deter-
mine the value of N . Setting the coefficients of G(U )

to zero, we get a system of algebraic equations. Solv-
ing this system, we shall determine v and values of
a0, a1, ..., aN .

Step 3. Rewrite Eq. (4) by the integral form

± (τ − τ0) =
∫

dU√
F(U )

. (5)

According to the complete discrimination systemof the
polynomial, we classify the roots of F(U ) and solve
the integral equation (5). Thus, we obtain the exact
solutions to Eq. (2).

3 Soliton solutions

To find exact solutions of DS Eq. (1), first we make the
transformation

q(x, y, t) = U (τ )ei{αx+βy+γ t}, φ(x, y, t) = V (τ ),

(6)

where τ = iμ (x + y − ct), we have a relation c =
αδ2 + βδ4 and reduce system (1) to the following sys-
tem of ordinary differential equations

−
(

γ + 1

2
α2δ2 + 1

2
β2δ4

)
U − μ2δ2

2

(
δ2 + 1

)
U ′′

+ λU 3 − iμV ′U = 0, (7)

μ(δ2 − 1)V ′′ − 2iλ
(
U 2

)′ = 0. (8)

Integrating Eq. (8) once with respect to τ and setting
the constant of integration to be zero, we obtain

V ′ = 2iλ

μ(δ2 − 1)
U 2. (9)

Substituting (9) in Eq. (7), we have

M

2

(
δ2 − 1

)
U + μ2δ2

2

(
δ4 − 1

)
U ′′

−λ
(
δ2 + 1

)
U 3 = 0, (10)

where

M = 2γ + α2δ2 + β2δ4.

3.1 Application of the trial solution method

Balancing U ′′ with U 3 in Eq. (10), then we get N =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations
as follows:
U 3 Coeff.:

μ2δ2(δ4 − 1)a4 − λ(δ2 + 1) = 0, (11)

U 2 Coeff.:
3

4
μ2δ2(δ4 − 1)a3 = 0,

U 1 Coeff.:

M

2
(δ2 − 1) + μ2

2
δ2(δ4 − 1)a2 = 0,
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U 0 Coeff.:
1

4
μ2δ2(δ4 − 1)a1 = 0.

Solving the system (11) leads to the results

a1 = 0, a2 = − M

μ2δ2(δ2 + 1)
, a3 = 0,

a4 = λ

μ2δ2(δ2 − 1)
, (12)

where a0 is an arbitrary constant.
Substituting these results in Eqs. (4) and (5), we get

±(τ − τ0)

=
∫

dU
√
a0 −

(
M

μ2δ2(δ2+1)

)
U 2 +

(
λ

μ2δ2(δ2−1)

)
U 4

.

(13)

where a0 is an arbitrary real constant. Now, we discuss
two cases as follows:

Case 1: If we set a0 = 0 in Eq. (13) and integrating
with resect to U , we get the following exact soliton
solutions of Eq. (1):

Solitary waves soliton solution

q(x, y, t) = ±
√

M
(
δ2 − 1

)

λ
(
δ2 + 1

) sech

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y

−
{
αδ2 + βδ4

}
t
))

ei{αx+βy+γ t},

φ(x, y, t) = ±
√

4Mδ2

δ2 + 1
tanh

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y −

{
αδ2 + βδ4

}
t
))

(14)

Singular solitary waves soliton solution

q(x, y, t) = ±
√

M
(
1 − δ2

)

λ
(
δ2 + 1

) csch

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y

−
{
αδ2 + βδ4

}
t
))

ei{αx+βy+γ t},

φ(x, y, t) = ∓
√

4Mδ2

δ2 + 1
coth

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y −

{
αδ2 + βδ4

}
t
))

(15)

where

M = 2γ + α2δ2 + β2δ4.

These solitons are valid for

M
(
δ2 + 1

)
> 0.

Case 2: If we set a0 = M2

4μ2δ2(δ4−1)λ
in Eq. (13) and

integrating with resect toU , we get the following dark
soliton solution of Eq. (1)

q(x, y, t) = ±
√

M
(
δ2 − 1

)

2λ
(
δ2 + 1

) tanh

×
(

±
√

− M

2δ2
(
δ2 + 1

)
(
x + y

−
{
αδ2 + βδ4

}
t
) )

ei{αx+βy+γ t},

φ(x, y, t) = ±
√

− 2Mδ2

δ2 + 1

×
{
1

2
ln

{

tanh

(

±
√

− M

2δ2
(
δ2 + 1

)

×
(
x + y −

{
αδ2 + βδ4

}
t
))

+ 1

}

−1

2
ln

{

tanh

(

±
√

− M

2δ2
(
δ2 + 1

)

×
(
x + y −

{
αδ2 + βδ4

}
t
))

− 1

}

− tanh

(

±
√

− M

2δ2
(
δ2 + 1

)

(
x + y −

{
αδ2 + βδ4

}
t
))}

(16)

where

M = 2γ + α2δ2 + β2δ4.

Equation (16) is valid when

M
(
δ2 + 1

)
< 0.
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3.2 Application of the ansatz approach

This subsection will utilize the ansatz approach to solv-
ing DS equation. Solitary waves soliton and singu-
lar solitary waves soliton solutions to Eq. (1) will be
obtained by the aid of ansatz method.

3.2.1 Solitary waves soliton solution

For solitary waves soliton, the hypothesis is

U (τ ) = A sechp Bτ. (17)

The value of the unknown exponent p will fall out dur-
ing the course of derivation of the soliton solutions.
Also A and B are constants. Substituting Eq. (17) in
Eq. (10) leads to

+M

2

(
δ2 − 1

)
Asechp Bτ − λ

(
δ2 + 1

)
A3 sech3pBτ

+μ2δ2

2

(
δ4 − 1

) {
AB2 p2sechp Bτ

−AB2 p(p + 1) sechp+2Bτ
}

= 0. (18)

By virtue of balancing principle, on equating the expo-
nents 3p and p + 2, from (18), gives

p = 1. (19)

Next, from (18) setting the coefficients of the linearly
independent functions to zero implies

sech1 coeff.:

M

2

(
δ2 − 1

)
A + μ2δ2

2

(
δ4 − 1

)
AB2 = 0, (20)

sech3 coeff.:

−λ
(
δ2 + 1

)
A3 − μ2δ2

(
δ4 − 1

)
AB2 = 0.

Solving the above equations yields

A = ±
√

M
(
δ2 − 1

)

λ
(
δ2 + 1

) , B = ±
√

− M

δ2μ2
(
δ2 + 1

) .

(21)

Using Eq. (9), we have the following solitary waves
soliton solution of Eq. (1):

q(x, y, t) = ±
√

M
(
δ2 − 1

)

λ
(
δ2 + 1

) sech

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y

−
{
αδ2 + βδ4

}
t
))

ei{αx+βy+γ t},

φ(x, y, t) = ±
√

4Mδ2

δ2 + 1
tanh

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y −

{
αδ2 + βδ4

}
t
)
)

(22)

where

M = 2γ + α2δ2 + β2δ4.

3.2.2 Singular solitary waves soliton solution

For singular solitary waves soliton, the hypothesis is

U (τ ) = A cschpτ. (23)

The value of the unknown exponent p will fall out dur-
ing the course of derivation of the soliton solutions.
Also A and B are constants, while c is the speed of the
soliton. Substituting Eq. (23) in Eq. (10) leads to

+M

2

(
δ2 − 1

)
A cschp Bτ − λ

(
δ2 + 1

)
A3 csch3p Bτ

+μ2δ2

2

(
δ4 − 1

) {
AB2 p2 cschpτ

+AB2 p(p + 1) cschp+2τ
}

= 0.

(24)

From (24), the balancing principle yields

p = 1. (25)

Next, from (24) setting the coefficients of the linearly
independent functions to zero implies

A = ±
√

M
(
1 − δ2

)

λ
(
δ2 + 1

) , B = ±
√

− M

δ2μ2
(
δ2 + 1

) .

(26)
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Using Eq. (9), we get the following singular solitary
waves soliton solution of Eq. (1):

q(x, y, t) = ±
√

M
(
1 − δ2

)

λ
(
δ2 + 1

) csch

×
(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y

−
{
αδ2 + βδ4

}
t
)

)

ei{αx+βy+γ t},

φ(x, y, t) = ∓
√

4Mδ2

δ2 + 1
coth

(

∓
√

M

δ2
(
δ2 + 1

)
(
x + y −

{
αδ2 + βδ4

}
t
)
)

(27)

where

M = 2γ + α2δ2 + β2δ4.

4 Conclusions

In this paper, the trial equation method and the ansatz
approach have been applied to obtain the exact solu-
tions of the DS equation. The results show that these
methods are powerful tools for obtaining the exact solu-
tions of complex nonlinear partial differential equa-
tions. It may be concluded that these methods can be
easily extended to all kinds of complex nonlinear par-
tial differential equations.
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