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Abstract In this paper, we establish exact soliton
solutions for the Davey—Stewartson equation. The trial
equation method and the ansatz approach are used to
construct exact 1-soliton solutions of this equation. We
apply the trial equation method to establish solitary
waves soliton, dark soliton and singular solitary waves
soliton solutions. The Davey—Stewartson equation is
the well-known example of integrable equations in two
space dimensions, which arise as higher-dimensional
generalizations of the nonlinear Schrédinger equation.
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1 Introduction

Nonlinear partial differential equations (PDEs) are
encountered in various disciplines, such as physics,
mechanics, chemistry, biology, mathematics and engi-
neering [1-34]. The study of exact solutions of these
equations plays a major role in the study of the propaga-
tion of waves. With the development of soliton theory,
many useful methods for obtaining exact solutions of
nonlinear PDEs have been presented. Some of them
are: ansatz method [1-5], tanh method [6,7], multiple
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exp-function method [8], transformed rational func-
tion method [9], first integral method [10], simplest
equation method [11,12], Kudryashov method [13, 14],
modified simple equation method [15] and so on.

One of the most effective direct methods to develop
the traveling wave solution of nonlinear PDEs is the
trial equation method [16]. The most complete descrip-
tion of this method was given in [17]. This method has
been successfully applied to obtain exact solutions for
a variety of nonlinear PDEs [17-19].

In this paper, we consider the Davey—Stewartson
(DS) equation [20-28]

. 1 2 2 2
iqr + 55 (Gxx +6 ny) +Algl"g — ¢rq =0,
Gxx — 82¢yy — 21(1g1*)x = 0. (1)

The parameter A characterizes the focusing or defo-
cusing case. The Davey—Stewartson equation is the
well-known example of integrable equations in two
space dimensions, which arise as higher-dimensional
generalizations of the nonlinear Schrodinger equation
(NLSE) [20].

The nonlinear Schrodinger’s equation describes
numerous nonlinear physical phenomena in the field
of applied sciences such as solitons in nonlinear opti-
cal fibers, solitons in the mean-field theory of Bose-
Einstein condensates, rogue waves in oceanography.

Davey and Stewartson first derived their model in
the context of water waves, from purely physical con-
siderations. In the context, g(x, y, t) is the amplitude
of a surface wave packet, while ¢ (x, y, t) represents
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the velocity potential of the mean flow interacting with
the surface wave [20].

The Davey—Stewartson equations are also reduced
to Hamiltonian ODEs [23], and so exact solutions
could be furnished by the integrability [24] of finite-
dimensional Hamiltonian systems.

The aim of this paper is to find exact solutions of
the Davey—Stewartson equation by the trial equation
method and the ansatz approach.

2 Trial equation method

In this section, we outline the main steps of the trial
equation method [16—19] as following
Step 1. Suppose a nonlinear PDE

P (u,us, vy, Ugr, Uyy, Uyy, ...) =0, ()

can be converted to an ordinary differential equation
(ODE)

Q(U, uv,u",u”,..) =0, 3)
using a traveling wave variable u(x,t) = U(r), 7 =
x — vt, where U = U(t) is an unknown function, Q
is a polynomial in the variable U and its derivatives. If
all terms contain derivatives, then Eq. (3) is integrated

where integration constants are considered zeros.
Step 2. Take the trial equation

ZalUl )

where a;, (I = 0,1, ..., N) are constants to be deter-
mined. Substituting Eq. (4) and other derivative terms
such as U” or U” in Eq. (3) yields a polynomial G(U)
of U . According to the balance principle, we can deter-
mine the value of N . Setting the coefficients of G(U)
to zero, we get a system of algebraic equations. Solv-
ing this system, we shall determine v and values of
ap, dl, ..., AN .
Step 3. Rewrite Eq. (4) by the integral form

dUu
JFUO)
According to the complete discrimination system of the
polynomial, we classify the roots of F(U) and solve

the integral equation (5). Thus, we obtain the exact
solutions to Eq. (2).

(U = FU) =

+(t—1) = ®)
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3 Soliton solutions

To find exact solutions of DS Eq. (1), first we make the
transformation

q(x,y, 1) = U)X HAri - g(x,y, 1) = V(1),

(6)
where T = iu (x +y — ct), we have a relation ¢ =

a8? + B8* and reduce system (1) to the following sys-
tem of ordinary differential equations

[ SICENE v n2s% 5 p
- —a282 4 g2t u - B (5 1) U
(y + ¢ + 2/3 3 +
+ AU —ipV'U =0, (7)
/
W —1)V" —2ix (Uz) =0 8)

Integrating Eq. (8) once with respect to T and setting
the constant of integration to be zero, we obtain

_ 2 ©)
G
Substituting (9) in Eq. (7), we have
M 2 282 4 "
?(S—I)U—k (8—1)U
.Y (52 n 1) U3 =0, (10)
where

M =2y +a?8% + B2s*.

3.1 Application of the trial solution method

Balancing U” with U? in Eq. (10), then we get N =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations
as follows:

U3 Coeff.:

u282(8* — Dag — (82 + 1) =0, (an
U? Coeff.:

5;}52(54 — a3 =0,

U Coeff.:

%(52 -+ “;52(54 — Day =0,
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U° Coeff.: 4MS2
1 o(x,y, ) =F coth
ZM252(54—1)611=0- 82 +1

Solving the system (11) leads to the results M = M (x +y— {a32 + /354} t)

M 52 (62 + 1)
= 0’ = = O’
@ “C=Trrerrn (15)
A where
@ =, (12)

where ag is an arbitrary constant.
Substituting these results in Eqs. (4) and (5), we get

+(t — 19)
dUu

M 2 A 4
/“0 = (i) U2 + (i) U

13)

where ag is an arbitrary real constant. Now, we discuss
two cases as follows:

Case 1: If we set ap = 0 in Eq. (13) and integrating
with resect to U, we get the following exact soliton
solutions of Eq. (1):

Solitary waves soliton solution

P M (82 —1) N
qx,y, 1) = msec

b(x,y, 1) =+ MO oh
X, y,t) = an
Y 241
M
X x + —{a82+ 84}t)
(]F 32(52+1)( Y P

Singular solitary waves soliton solution

<

1—42)
2+1)

(

qx,y,t)== csch

>
>

_ {a62 T ﬂ84} t) )ei{ax+ﬁy+yt}’

These solitons are valid for
M (52 + 1) - 0.

Case 2: If we set ag = Mﬁ in Eq. (13) and
integrating with resect to U, we get the following dark
soliton solution of Eq. (1)

qlx,y,t) ==

x( + —L( +
2w+ VY

dpx,y, 1) ==+ —822M—82
Vo2 +1
1 M
X [5 ln{tanh(:l: —m
x (x Fy— {a82+/384} z)) n 1]
1 M
—5 1n{tanh(:|: —m
x (x+y— {a82+,384}t)) - 1]
M

—tanhf + [— ——
n ( 257 (52 + 1)

(v+y- {a82+ﬂ84}t))] (16)
where
M =2y + a?8% + 5%

Equation (16) is valid when
M (82 +1) <o.
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3.2 Application of the ansatz approach

This subsection will utilize the ansatz approach to solv-
ing DS equation. Solitary waves soliton and singu-
lar solitary waves soliton solutions to Eq. (1) will be
obtained by the aid of ansatz method.

3.2.1 Solitary waves soliton solution

For solitary waves soliton, the hypothesis is
U(t) = A sech?’ Br. a7

The value of the unknown exponent p will fall out dur-
ing the course of derivation of the soliton solutions.
Also A and B are constants. Substituting Eq. (17) in
Eq. (10) leads to

M
(82—
5

M262
+5— (54 — 1) {AszzsechpBr

1) Asech? Bt — (82 + 1) A3 sech®” Bt

—Asz(p +1) sechp+zBr} =0. (18)

By virtue of balancing principle, on equating the expo-
nents 3p and p + 2, from (18), gives

=1 (19)

Next, from (18) setting the coefficients of the linearly
independent functions to zero implies
sech! coeff.:

M u?8?

2 (s 1) Ag (34

7 (F-1)a+
sech? coeff.:

_a (52+1) A3 —

- 1) AB =0,  (20)

11252 (54 - 1) AB? =0.

Solving the above equations yields

M (52 —1) M
O ) R SN PR
ey

Using Eq. (9), we have the following solitary waves
soliton solution of Eq. (1):

@ Springer

p#+w g)wwwwm,

¢(x,y,t) = ‘/ tanh
( / 81;4+1 xX+y—- a32+/354}t))

(22)

where

M =2y +a?8% + B2s*.

3.2.2 Singular solitary waves soliton solution

For singular solitary waves soliton, the hypothesis is
U(t) = A csch”t. (23)

The value of the unknown exponent p will fall out dur-
ing the course of derivation of the soliton solutions.
Also A and B are constants, while c is the speed of the
soliton. Substituting Eq. (23) in Eq. (10) leads to

M
—i—? (82 — 1) A csch’ Bt — X (82 + 1) A3 csch’? Bt

262
8
—i—MT (54 — 1) {Asz2 csch’t

FABp(p+ 1) csch”+2t} —0.
(24
From (24), the balancing principle yields
p=1. (25)

Next, from (24) setting the coefficients of the linearly
independent functions to zero implies

M (1—62) M
———, B=% [-—————.
A(82+1) 82u% (82 +1)

(26)
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Using Eq. (9), we get the following singular solitary
waves soliton solution of Eq. (1):

1 — 32
qx,y,t) = csch

M
82 x+y

—-{a824—ﬁ54}t) eilox+By+yrl

4M62
o(x,y,t) = coth
/ 52 x+y-— a62+,884})
(27)
where

M =2y + o?8% + p25*.

4 Conclusions

In this paper, the trial equation method and the ansatz
approach have been applied to obtain the exact solu-
tions of the DS equation. The results show that these
methods are powerful tools for obtaining the exact solu-
tions of complex nonlinear partial differential equa-
tions. It may be concluded that these methods can be
easily extended to all kinds of complex nonlinear par-
tial differential equations.
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