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Abstract An analytical model is proposed for the
dynamic behavior analysis of a dielectric elastomer
(DE) membrane undergoing in-plane stretching. We
employ the neo-Hookean model for describing the
hyperelasticity feature of the DE membrane. The DE
membrane is assumed to elongate only in length direc-
tion. For better understanding the dynamic responses
of the DE membrane, both free and forced oscillations
of the nonlinear system are analyzed. The results show
that the system may display periodic oscillations in its
length, no matter the DE membrane is constrained by
linear or nonlinear cubic springs. It is found that quasi-
periodic oscillations of the DE membrane fairly occur
provided an in-plane harmonic force is applied. In addi-
tion, the response frequencies of the system are also
addressed.
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1 Introduction

Due to their outstanding material features like large
deformation, light weight, low cost, flexibility, chemi-
cal and biological compatibility [1–3], dielectric elas-
tormers (DEs) have been receiving increasing interest
for applications in electromechanical transducers, arti-
ficial muscles, adaptive optical elements, soft robots
and electromechanical resonators [4–8]. In general, the
DE membrane consists of a soft elastomeric mem-
brane sandwiched between two compliant electrodes.
As reported in the literature, the DE material is mostly
expected to perform under dynamic situations in appli-
cations, e.g., pumps, loudspeakers [9,10] and vibrotac-
tile display for mobile applications [11].

In the past decade, it has been reported that themate-
rial behavior ofDEs is strongly nonlinear in both geom-
etry and constitutive relations [12]. Some early studies
were concerned with the nonlinear modeling of DEs in
the static case [13,14]. Some of the work has focused
on the quasi-static deformation [15] by neglecting the
effect of inertia.

However, a DE is often subject to transient, har-
monic forces and/or time-dependent voltages in practi-
cal applications. For example, when a DE performs as
an electromechanical actuator, time-dependent exter-
nal loadings are inevitable. In such a case, the iner-
tia may play a significant role in the performance
of dynamic applications. Indeed, the dynamic behav-
ior of DEs has been frequently observed in experi-
ments when investigating, for example, frequency tun-
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ing [16], acoustic actuator [17] andvibrotactile displays
for mobile applications [11]. Therefore, the dynamical
problem of DEs is fast becoming a new paradigm in
nonlinear dynamics due to the fact that a number of
issues related to time-dependent behaviors of DEs are
still unsolved. Perhaps one of the most important new
features compared with other conventional materials
is that the DEs are usually subject to extremely large
deformation. This implies that such a dynamical sys-
tem is strongly nonlinear, and hence, the available ana-
lytical methods for analyzing the nonlinear dynamical
behavior of DEs are very limited.

Before presenting the objective of this work, it is
instructive to review some of the notable contribu-
tions on the dynamic analysis of DE membranes. Zhu
et al. [18,19] studied the resonant behavior of a pre-
stretched DE membrane and the nonlinear vibrations
of a DE balloon. They reported that for a DE bal-
loon subject to a combination of static pressure and
static voltage, the balloon may reach a state of equi-
librium. When the voltage is sinusoidal, the balloon
resonates at multiple frequencies of excitation. Yong
et al. [20] have analyzed the dynamic responses of a
thick-walled DE spherical shell. They found that the
spherical shell may be destroyed as the mean voltage
exceeds the critical mean voltage. It was also shown
that the spherical shell may undergo a nonlinear quasi-
periodic oscillation. Li et al. [21] explored the electro-
mechanical behavior of a tunable pure shear DE-based
resonator, showing that when actuating the resonator,
there is a safe operation range of system parameters
for failure prevention. Xu et al. [12] developed a the-
oretical model for studying the dynamics of a DE-
based actuator with stretching deformation. The equa-
tion of motion for the DE-based actuator was obtained
by the Euler-Lagrange equation. Soares et al. [22] pro-
posed a mathematical model for describing the nonlin-
ear dynamics of a radially pre-stretched hyperelastic
annular membrane with finite deformations. By ana-
lytically and numerically solving the linearized equa-
tions of motion, the vibration modes and frequen-
cies of the hyperelastic membrane were obtained, and
these normal modes were then used together with the
Galerkin’s approach to obtain reduced order models
for the nonlinear dynamical system. Sheng et al. [23]
used the Euler-Lagrange equation to characterize the
influence of temperature, excitation frequency and vis-
coelasticity on the dynamic electromechanical defor-
mation and stability of viscoelastic dielectrics. Li et al.

[24] presented an analysis of the nonlinear dynamics
of a DE as an electromechanical resonator configured
as a pure shear actuator. They have detected chaotic
behavior when the DE membrane is connected with
another elastic membrane oscillating simultaneously.
Sheng et al. [25] have constructed a dynamic model
of DE actuator by using thermodynamics in which the
Gent model was used to describe the extension limit of
the DE. Recently, Zhou et al. [26] considered the vis-
coelastic effect to investigate the frequency tuning of
a DE membrane resonator. It was found that not only
the applied voltage changes the natural frequency of
the resonator, but also the inelastic deformation con-
tributes to frequency tuning. It was also concluded
that the electrical loading rate may influence the actu-
ation process of the DE resonator, while it has little
effect on the final steady frequency tuned by the pre-
scribedvoltagewithin the safety range.Zhanget al. [27]
have studied the dynamic performance of a viscoelas-
tic DE under the conditions of equal-biaxial force, uni-
axial force and pure shear state, respectively. It was
observed that for the boundary conditions of an equal-
biaxial force or pure shear state, the DE membrane
may undergo a nonlinear quasi-periodic vibration; for
a DE membrane subject to a uniaxial force, how-
ever, an aperiodic motion would occur. Very recently,
Zhu [28] studied the dynamic instability of a mem-
brane of DE. It was demonstrated that pre-stretches
can improve DE-based actuators’ capabilities to resist
dynamic instability. Interestingly, it was shown that the
critical deformation at the onset of dynamic instabil-
ity can be much larger than that at the onset of static
instability.

The linear and nonlinear dynamics of DE-based
beams have also been studied by several investigators
in the past years. Feng et al. [3] developed an analytical
model to discuss the dynamic characteristics of a DE-
based microbeam resonator. The resonant frequencies
of the resonator were derived using Raleigh’s method
for small amplitude vibrations. It was found that high
voltage is beneficial for improving the sensitivity of the
resonator. However, high voltagemay put the resonator
at the risk of mechanical instability. Afterward, Feng et
al. [29] further investigated the dynamic performance
of DE-based microbeam resonators with the consider-
ation of gas damping under large amplitude vibrations.
It was shown that the initial pre-stretching stress and
the ambient pressure can significantly alter the resonant
frequency of the resonator.
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Fig. 1 a Reference state:
the DE membrane has
dimensions L1, L2 and L3,
without any external forces;
b mounted state: the DE
membrane is stretched and
fixed to a rigid frame and a
pair of slide tracks; c
spring-constrained state;
and d excited state: the DE
membrane is subjected to
boundary force stretching

(a) (b)

(d)(c)

Although the above studies have attempted to inves-
tigate the dynamical behavior of DE membranes or
beams, the literature on the nonlinear dynamics of this
type of structures is relatively limited. Many issues
related to dynamic responses are unsolved yet, as dis-
cussed by Li et al. [24]. Indeed, a further understand-
ing on the fundamental/basic dynamical behavior of
DE membranes is expected to be useful and helpful
for designs and applications of DE membranes. Con-
sequently, this motivates the current work.

In this study, we present a theoretical and numeri-
cal study aiming at exploring the nonlinear oscillations
of a DEmembrane undergoing in-plane stretching. The
width of the DEmembrane is clamped and mounted on
a pair of slide tracks (see Fig. 1). To analyze the basic
dynamics of the DE membrane, it is assumed that the
possible voltage across the membrane is absent. In par-
ticular, the nonlinear free oscillation of the DE mem-
brane without external time-dependent forces is inves-
tigated, as well as the forced oscillation due to exter-
nal harmonic forces, detailedly showing the dynamic
responses of the DE membrane system.

2 Problem formulation

The analytical model of DE membranes will be
described in this section. To focus on the fundamen-

tal/basic dynamics ofDEmembranes, the present study
is concerned with the nonlinear dynamic responses of
a DE membrane undergoing homogeneous deforma-
tion with in-plane stretch only. As discussed by several
researchers [24,30], in targeting application of vibra-
tion resonators, the natural rubber qualifies as ideal for
its fast response within the elastic range, large stress
and little viscoelastic dissipation; thus, we only focus
on elastic deformations in the modeling.

In this study, the dynamic responses of DE mem-
branes without electric loading will be investigated,
although much work has been devoted to some aspects
of DE membranes subject to electric loading. Obvi-
ously, a first better understanding on the basic dynamics
of DEmembranes without electric loading is necessary
and significant in order to further study the nonlinear
responses of DE membranes excited by electric load-
ing.

The DE membrane under consideration is shown in
Fig. 1. As plotted in Fig. 1a, theDEmembrane in its ref-
erence state has initial dimensions of length L1, width
L2 and thickness L3. Suppose that the membrane is
incompressible, of density ρ. It is worthwhile to point
out that in practice, the membrane of a dielectric elas-
tomer is generally sandwiched between two electrodes.
For the dielectric elastomer to deform substantially, the
electrodes are made of an even softer substance, with
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mechanical stiffnessmuch lower than that of the dielec-
tric elastomer. Therefore, the current work assumes the
electrodes to be of negligible mechanical stiffness. The
width of themembrane is devised to be fixed using rigid
clamps and then mounted on a pair of slide tracks, as
shown in Fig. 1b. Since the membrane elongates only
in length, such a deformation mode is well defined as
pure shear [31].

In some cases, the membrane may be subjected
to an in-plane mechanical force. In Fig. 1c, several
springs (linear or nonlinear) stretch the membrane to
keep it in tension. Such a spring force may be viewed
as a mechanical force which usually provides tensile
stretching. Here, we initially introduce a force P rep-
resenting the mechanical force (see Fig. 1d). In the fol-
lowing analysis, the three models shown in Fig. 1b–d
will be separately considered.

To describe the stretching behavior of the DE mem-
brane, we define λi (i = 1, 2, 3) as scaling factors for
the three directions. It is seen in Fig. 1b–d that λ2 = 1
is prescribed and λ3 = 1/(λ1λ2). For simplicity, we
denote λ = λ1 in the following analysis.

For aDEmembrane subjected to electric loading, the
dynamic behavior of theDEmembrane is characterized
by the density of the Helmholtz free energy as a func-
tion of the two independent variables,W (λ, D), where
D is the electric displacement of the membrane. In this
work, however, we focus on the dynamic response of
the DE membrane without any electric loadings. Thus,
the free energy density function is only associated with
the stretch ratio of λ.

To derive the formulation of the free energy den-
sity function, we employ the neo-Hookean model for
characterization of the hyperelasticity in the DE mem-
brane. Of course, various strain energy models are
available to describe the mechanical behavior of DE
membrane, e.g., Gent model and neo-Hookean model.
In this work, the DE membrane is supposed to be com-
posed of natural rubber as its key component, with a
stretch ratio below5 and no significant stiffening. Thus,
the neo-Hookean model is adequate for characteriza-
tion [24,32].

Then, according to the neo-Hookean model, the free
energy density function may be written as [24]

W (λ) = μ

2

(
λ2 + λ22 + λ−2λ−2

2 − 3
)

(1)

in which μ is the shear modulus of the elastomer.

For an oscillating DEmembrane, the inertia force in
every material element of its length is given by [24]

Fi = −d2λ

dt2
ρxL2L3dx (2)

Thus, the total work done by the inertial force may be
obtained by integrating Fi along the length, i.e.,

−ρL2L3
d2λ

dt2
δλ

∫ L1

0
x2dx = −ρL3

1L2L3

3

d2λ

dt2
δλ (3)

According to the variation principle, the variation
in the free energy of the DE membrane should equal
to the work done jointly by the mechanical force and
inertia force; thus

L1L2L3δW = PL1δλ − ρL3
1L2L3

3

d2λ

dt2
δλ (4)

or

∂W

∂λ
= P

L2L3
− ρL2

1

3

d2λ

dt2
(5)

Substituting Eq. (1) into Eq. (5), one obtains

d2λ

dt2
+ 3μ

ρL2
1

(
λ − λ−3λ−2

2

)
− 3P

ρL2
1L2L3

= 0 (6)

Defining the following two dimensionless parameters

T = t

√
3μ

ρL2
1

, F = 1

μL2L3
P (7)

Eq. (6) may be rewritten as

d2λ

dT 2 + g (λ) = 0 (8)

where g(λ) = (λ − λ−3λ−2
2 ) − F .

For the DE membrane system shown in Fig. 1b,
c, Eq. (8) governs the free oscillations of the DE
membrane since F does not explicitly contain a time-
dependent component in these two cases. For the sys-
tem plotted in Fig. 1d, however, forced oscillationsmay
occur if the external force F has a time-dependent har-
monic component superposed on a constant value.

123



Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching 1713

3 Free oscillation

The performance of the DEmembrane may be affected
by the mechanical boundary conditions of the system.
In static deformation, the strain in the DE membrane
with a fully fixed frame rises to over 100% in terms of
in-plane extension before breakdown [33]. However,
when the frame is replaced by amechanical weight, the
maximum strain may be up to 380% [31]. In dynamic
deformation, it was also reported that the dynamic per-
formances of DE membranes may vary greatly due to
the change of boundary conditions.

In the analysis of free oscillations, two types of
boundary conditions will be considered: (1) the DE
membrane has a free end shown in Fig. 1b and (2) the
movable end of the DE membrane is constrained by
linear/nonlinear springs.

3.1 Dynamic response of a DE membrane without
constrained springs

We first analyze the dynamics of the DE membrane
shown in Fig. 1b. In such a case, the equation ofmotion,
Eq. (8), may be reduced to

d2λ

dT 2 + λ − λ−3 = 0 (9)

It is clear that the natural frequency of the linearized
system of Eq. (9) is equal to 1. Solving Eq. (9), with a
set of selected initial conditions of stretch ratio, the non-

Fig. 2 Bifurcation diagramwhen the initial stretch ratio is varied
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Fig. 3 Nonlinear responses of the DE membrane for two differ-
ent initial stretch ratios: λ(0) = 0.5 or 4.5; a phase portrait, b
time history diagram and c power spectra diagram

linear oscillation of the DEmembranemay be obtained
in the time domain. In the following calculations, the
initial velocity of stretch ratio is fixed to be 0.
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Fig. 4 Bifurcation diagrams when the initial stretch ratio is varied; a linear spring with k1 = 1, and b cubic spring with k3 = 3

In the calculations, it is found that the initial length
of the membrane may affect the oscillation of the sys-
tem. We plot a bifurcation diagram in Fig. 2 to show
the detailed effect of initial stretch ratio on the oscilla-
tion amplitudes of the membrane. It is seen from this
figure that the membrane is usually undergoing peri-
odic motions when the initial stretch ratio λ(0) is suc-
cessively increased. When λ(0) = 1, the membrane
would keep static with λ(T ) = 1 since the static equi-
librium is λs = 1. For sufficiently small or large value
of λ(0), the oscillations are periodic with high oscilla-
tion amplitude, as may be observed in Fig. 2.

The phase portrait, time history diagram and power
spectra (PS) diagram for two typical values of λ(0) are
presented in Fig. 3. Of particular interest is that the
oscillation frequency for λ(0) = 0.5 is equal to that for
λ(0) = 4.5, although their oscillation amplitudes are
different.

It is also observed from Fig. 3c that the dimension-
less oscillation radian frequency is ω = 2π f ≈ 2 ( f
is the frequency of the system), at which the maximum
amplitude appears. The nonlinear oscillation frequency
is much higher than the natural frequency. Actually, the
oscillation frequency may be analytically calculated.
The dimensionless oscillation frequency takes the
form

ω2 = ∂g(λ)

∂λ

∣∣∣∣
λ=λs

(10)

at the static equilibrium λs . Thus, one may solve
Eq. (10) by using g(λ) = λ − λ−3 and obtains

ω =
(
1 + 3λ−4

s

)1/2
(11)

For the DE membrane shown in Fig. 1b, it is obvious
that λs = 1, thus leading to ω = 2.

3.2 Dynamic response of a DE membrane
with constrained linear/nonlinear springs

In this subsection, we will focus on the dynamic
response of a DE membrane with constrained linear
or nonlinear springs. As illustrated in Fig. 1c, several
springs stretch the membrane to keep it in tension.
Denoting the stiffness of the linear spring by k1 and
the stiffness of the cubic spring by k3, the variable P
in Eq. (6) may be given by

P = k1 [d − (λ − 1)L1] (12)

for a linear spring case and

P = k3 [d − (λ − 1)L1]
3 (13)

for a cubic spring case. In Eqs. (12) and (13), d is the
initial elongation strain of the springs. In this paper, the
value of d is selected from the literature and defined by
L1/d = 0.1 [24].

Typical results of the bifurcation diagrams for the
linear spring case and cubic spring case are plotted in
Fig. 4a, b, respectively. It is immediately seen that these
two bifurcation diagrams are similar as that shown in
Fig. 2 for a DE membrane without springs. However,
the static equilibrium positions in Fig. 4a, b are found
to be λs ≈ 1.36 and λs ≈ 2.17, respectively, which are
different from that shown in Fig. 2. These two static
equilibria may be also analytically predicted.
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Fig. 5 Phase portraits of the nonlinear responses of theDEmem-
brane for various k1 and λ(0); a λ(0) = 0.5, b λ(0) = 1, and c
λ(0) = 4
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Fig. 6 Phase portraits of the nonlinear responses of theDEmem-
brane for various k3 and λ(0); a λ(0) = 0.5, b λ(0) = 1, and c
λ(0) = 4
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Fig. 7 Bifurcation diagram when the excitation frequency is
varied and λ(0) = 1.5, f0 = 1 and a = 0.2

Since the response of the DE membrane is periodic,
during an oscillation period there is a minimum value
and a maximum value of λ(T ). For example, when
k1 = 1 and λ(0) = 0.5, the minimum value of λ(T )

is found to be λmin = 0.5 and the maximum value of
λ(T ) is equal to λmax = 2.95. As may be expected, the
minimum and maximum values of λ(T ) are related to
several system parameters, i.e., λ(0), k1 and k3. Typical
results for six sets of system parameters are shown in
Figs. 5 and 6. From these two plots, it is readily figured
out that when λ(0) is smaller than the static equilibrium
value, the minimum value of λ(T ) would be equal to
λ(0) (see, for example, the result of k1 = 6 shown in
Fig. 5c and the result of k3 = 15 shown in Fig. 6c). If,
however, the initial stretch ratio λ(0) is larger than the
static equilibrium value, the maximum value of λ(T )

would be equal to λ(0) (see, for example, the result of
k1 = 2 shown in Fig. 5c and the result of k3 = 10
shown in Fig. 6c).

4 Forced oscillation

This section presents the nonlinear forced oscillation of
theDEmembrane bymeans of the bifurcation diagram,
phase portraits, time history diagrams andPSdiagrams.
For that purpose, we write the equation of motion as

d2λ

dT 2 + λ − λ−3 = f0 [1 + a sin(ΩT )] (14)

in which f0 is the forcing amplitude, Ω is the forcing
frequency and a is generally small.

The effect of forcing frequency on the dynamical
behavior of the system will be examined. Throughout
the numerical simulation, f and a are chosen as f0 = 1
and a = 0.2. The initial stretch ratio is fixed to be
λ(0) = 1.5.

The bifurcation diagramof the dynamic responses of
the DE membrane is depicted in Fig. 7. This plot illus-
trates that as the excitation frequency is increased grad-
ually from Ω = 0, the responses of the DE membrane
dramatically evolve. At Ω ≈ 0.65, 1.55 or 2.7, the
maximum amplitudes of the oscillation change sharply.
Indeed, in the vicinity of each value of these three exci-
tation frequencies, the oscillation traces display much
difference when Ω is gradually increased. In Fig. 7,
the three excitation frequencies (Ω ≈ 0.675, 1.55 and
2.7) at which three peak amplitudes occur are associ-
ated with the resonances of the nonlinear dynamical
system. It may be readily found that the natural fre-
quency of the linearized system of Eq. (14) is about
ω0 ≈ 1.35. At about Ω = 0.675 and 2.7, the super-
harmonic and sub-harmonic resonances of the system
would occur. The peak amplitude at about Ω = 1.55
(slightly larger than ω0) is due to the occurrence of
the primary resonance of system (14). When the sub-
harmonic, super-harmonic or primary resonances are
excited, the amplitude of the elastomer becomes rela-
tively large.

To better understand the dynamic responses of the
system, several phase portraits, time history diagrams
and PS diagrams are plotted in Fig. 8 for various exci-
tation frequencies. It is clearly seen from this figure
that the oscillations of the system are quasi-periodic,
which are significantly different from those of the DE
membrane without any harmonic forces.

In each PS diagram of Fig. 8, it may be found that
there is a certain peak amplitude at which the frequency
is proximately equal to the excitation frequency. For
example, in Fig. 8c, the PS curve contains a peak ampli-
tude with Ω = 2.5, which is the same as the exci-
tation frequency. However, each PS curve in Fig. 8
also contains many other frequencies at which peak
amplitudes occur. From a nonlinear dynamics point
of view, it is difficult to theoretically predict the val-
ues of these frequencies in such a strongly nonlinear
system.
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Fig. 8 Nonlinear forced responses of the DE membrane for various Ω when λ(0) = 1.5, f0 = 1 and a = 0.2; a Ω = 0.7, b Ω = 1.5,
c Ω = 2.5, and d Ω = 4.5

5 Conclusions

The nonlinear oscillations of a DE membrane under-
going in-plane stretching have been investigated in this

paper numerically, based on the neo-Hookean model
for characterization of the hyperelasticity. The width
of the membrane is set to be fixed using rigid clamps
and then mounted on a pair of slide tracks. The nonlin-
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ear differential equation of motion was derived based
on energy consideration.

Examining the nonlinear free oscillations of the sys-
tem revealed that the effect of initial stretch ratio on the
amplitude of periodic oscillations is remarkable. The
nonlinear oscillation frequency is much higher than
the linear natural frequency of the system. Moreover,
the static equilibrium of the system may be changed
in the presence of linear/or nonlinear springs. In the
case of forced oscillation of the system with harmonic
excitations, it is found that the DE membrane is usu-
ally undergoing quasi-periodic oscillations. This work
is envisaged to be helpful for the design and applica-
tions of soft structures based on DE membranes.
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