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Abstract In this paper, a new sliding mode distur-
bance observer (SMDO) is developed using the termi-
nal sliding mode technique. The SMDO is employed
to estimate unknown external disturbances and model-
ing uncertainties in finite time. Based on the designed
SMDO, a boundary layer adaptive sliding mode atti-
tude control scheme is proposed for near-space vehi-
cles (NSVs). The designed attitude control scheme
can guarantee the satisfactory attitude tracking per-
formance of the multi-input and multi-output (MIMO)
attitudemotion for the NSV subject to the time-varying
disturbance. The rigorous stability of the closed-loop
system is proved using the Lyapunov method. Finally,
simulation results are presented to illustrate the effec-
tiveness the proposed control scheme.
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1 Introduction

Since the near-space vehicle (NSV) has larger flight
envelope, rapid flight speed and time-varying aerody-
namic characteristics, the efficient control schemes are
very significant to improve its safety and reliability
[1,2]. However, the study of such aircraft is quite dif-
ficult. First of all, the NSV system has serious nonlin-
ear characteristics and there exists a strong coupling
relationship between different channels. At the same
time, the aerodynamic parameters and the state vari-
ables always interact with each other which will further
increase the control design difficulty for the NSV [3].
On the other hand, it is necessary to fully consider the
parameter uncertainties and the external disturbances
in the flight control design stage of the NSV. Although
mostly important parameters are available from pro-
totype testing and simulated flight conditions [4], the
uncertainties caused by real flight environment cannot
be entirely taken into account. In addition, the tracking
control performance should be improved for the NSV
to meet the various task requirements.

Recently, many modern control strategies have been
applied to the control design of an NSV. In [5–7], an
NSV attitude controller was presented by combining
backsteppingmethodwith neural network and adaptive
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fuzzy control technology. The simulation result shows
that the developed control scheme can inhibit the influ-
ence of the parameter uncertainties and the external dis-
turbances. For the X-38 attitude control problem with
uncertainties and disturbances, a robust dynamic inver-
sion controller was designed to improve the robust-
ness of the closed-loop system in [9]. In [10], a glob-
ally convergent Levenberg–Marquardt (LM) algorithm
based on Takagi–Sugeno fuzzy training was proposed
for the NSV. In [11], a terminal sliding mode controller
combined with dynamic sliding mode was designed
based on nonlinear disturbance observer. However, the
desired tracking control performance needs to be fur-
ther improved for theNSV in the presence of parameter
uncertainties and external disturbances.

Slidingmode control has good adaptability and high
robustness for system disturbances and parameter per-
turbation. It had been successfully applied to industrial
control [12,13], such as ships [14,15], robotics [16].
At the same time, it is also widely used in the flight
control design. In [17], a vertical posture sliding mode
controller was successfully designed to improve the
robustness of the craft. In [18], a sliding mode con-
troller was designed for the helicopter vertical flight
dynamic, which ensured the helicopter vertical move-
ment and removed the chattering phenomenon. To fur-
ther reduce the chattering phenomenon of the sliding
mode control, the boundary layer technique will be
employed in this paper [19,20]. However, the boundary
layer width and the control gain are usually chosen as
the fixed values, which may lead to the degradation of
tracking control performance.

In order to further improve the tracking control per-
formance, the parameter uncertainties and unknown
disturbances should be fully considered and many
researches focus on this issue [21–23]. The disturbance
observer technology can be introduced to estimate the
unknown disturbance in the system, which is easily
applied to the practical engineering. The output of the
disturbance observer can be used to design the control
law to reject the effect of external disturbances. In [24],
a robust adaptive trajectory linearization control (TLC)
approachwas developed to improve the performance of
the current TLC by combining with a radial basis func-
tion neural network disturbance observer. The sliding
mode disturbance observer (SMDO) was successfully
used for motor control in [25,26]. In [27], a sliding
mode controller based on SMDO was proposed for the
missile to improve the control robustness. In [28], a

robust reconfigurable tracking control scheme based
on SMDOwas designed for the NSV. Thus, the SMDO
can be introduced in the robust control design of the
NSV to further enhance the disturbance rejection abil-
ity.

This work is motivated by the boundary layer adap-
tive sliding mode control scheme to follow the desired
trajectories of NSVs with unknown external distur-
bance and system uncertainty. The main contributions
of this paper are as follows:

(i) To eliminate the chattering phenomenon for the
NSV, the self-tuning laws of the boundary para-
meter and the control gain are designed using the
gradient descent method.

(ii) In order to improve the control performance and the
system convergence speed, a SMDO is designed
based on terminal sliding mode method.

(iii) The boundary layer adaptive sliding mode control
scheme is designed using outputs of the disturbance
observer to guarantee the high-precision attitude
control performance in the presence of unknown
external disturbance and system uncertainty.

The organization of the paper is as follows. Section
2 details the problem formulation. In Sect. 3, the
second-order slidingmode disturbance observer (SOS-
MDO) is designed. The boundary layer adaptive sliding
mode control scheme is proposed in Sect. 4 based on
the developed SOSMDO. Simulation studies are pre-
sented in Sect. 5 to demonstrate the effectiveness of the
developed boundary layer adaptive sliding mode con-
trol scheme, followed by some concluding remarks in
Sect. 6. For the description convenience of the control
design, the following notations are required.

Notations: Throughout this paper, for a vector, (•)c

denotes that take power operation of each element of
the vector (or only for a number); sgn(•) stands for sign
function; ‖•‖ represents Euclidean norm (or Frobenius
norm for amatrix); diag(•) represents a diagonalmatrix
constructed by the vector’s elements; specifically, for
χ = [χ1, . . . , χn ]T and W ∈ Rn×m , we have

(χ)c = [ (χ1)
c, . . . , (χn)

c ]T ;
sgn(χ) = [ sgn(χ1), . . . , sgn(χn) ]T ;
‖χ‖ =

√
χ2
1 + χ2

2 + · · · + χ2
n ;
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‖W‖ =
√∑n

i=1
∑m

j=1 w2
i j ;

diag(χ) =
⎡
⎢⎣

χ1 · · · 0
...

. . .
...

0 · · · χn

⎤
⎥⎦ .

2 Problem description

The attitude motion of the NSV was given in [29],
which can be described as the following generalMIMO
nonlinear system:

{
ẋ = F(x) + G(x)u + D(t, x, u)

y = x
(1)

where x ∈ Rn is the system state vector, y ∈
Rn is the system output vector, F(x) : Rn →
Rn is the system state function vector, G(x) =
[g1(x), g2(x), . . . , gn(x)] : Rn → Rn×n is the sys-
tem control gain matrix, D(t, x, u) = �F(x, u) +
d(t), D(t, x, u) is called as the compound disturbance
vector of the MIMO nonlinear system (1), d(t) ∈
Rn is the external unknown disturbance vector, and
�F(x, u) ∈ Rn is the system uncertainty. Each ele-
ment of F(x) and g1(x), g2(x), . . . , gn(x) is suffi-
ciently smooth functions.

In this paper, the control objective is that the out-
put of the MIMO system (1) can track the bounded
reference signal under the developed adaptive sliding
mode controller. For the desired tracking signal xd =
[ xd1, xd2, . . . , xdn ]T, the tracking error is defined as

e = y − xd = x − xd

= [ x1 − xd1, x2 − xd2, . . . , xn − xdn ]T (2)

Considering (1) and (2), we obtain

ė = ẋ − ẋd = F(x) + G(x)u + D(t, x, u) − ẋd (3)

In order to design a robust sliding mode adaptive
controller, the sliding mode surface is chosen as

σ = Ce (4)

where C = diag{c1, c2, . . . , cn} and ci > 0.
To proceed with the design of attitude control for the

NSV described by theMIMO nonlinear system (1), the
following assumptions are required:

Assumption 1 For the compound disturbance D in the
MIMO nonlinear system (1), there exists an unknown
positive constant L making ‖Ḋ(t, x, u)‖ ≤ L .

Assumption 2 All the states in the MIMO nonlinear
system (1) are measurable, and (CG(x))−1 is always
existing.

Lemma 1 [30–32] The high-order sliding mode dif-
ferentiator (HOSMD) is defined as

ϑ̇0 = ς0 = −ε0|ϑ0 − f (t)|n/(n+1)sgn(ϑ0 − f (t)) + ϑ1

.

.

.

ϑ̇i = ςi = ϑi+1 − εi |ϑi − ςi−1|(n−i)/(n−i+1)sgn(ϑi − ςi−1)

.

.

.

ϑ̇n−1 = ςn−1 = ϑn − εn−1|ϑn−1 − ςn−2|(1/2)sgn(ϑn−1 − ςn−2)

ϑ̇n = −εnsgn(ϑn − ςn−1) (5)

where ϑi and ςi are states of the high-order sliding
mode differentiator (5) and εi are the design parame-
ters. If the parameters are properly chosen, the con-
clusions ϑ0 = f (t) and ϑi = ςi−1 = f (i)(t), i =
1, . . . , n are true in the absence of input noises after a
finite time ts of a transient process. Moreover, the cor-
responding solutions of the dynamic systems are Lya-
punov stable, i.e., finite-time stable.

3 Design of adaptive sliding mode controller based
on SMDO

3.1 Second-order sliding mode disturbance observer
design

In order to improve the tracking control performance,
the SMDO can be used to approximate the compound
disturbance to fully explore the dynamic characteristics
of the unknown disturbance. In [33,34], the traditional
SMDO method was used to reconstruct the distur-
bances. In [35], a super-twisting SMDO was designed
to approximate the system disturbances. However,
there are sign functions in the reconstructed items
and the discontinuous disturbance compensations are
bound to cause the chattering phenomenon. Therefore,
based on terminal sliding mode technique, a SOSMDO
by using the integral of sign in the reconstructed items
instead of sign function, can eliminate the unexpected
charting phenomenon. At the same time, the sliding
mode variable and its derivative will converge to zero
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in finite time. In this paper, the SOSMDO is designed
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 = x − z
ż = F(x) + G(x)u + D̂(t, x, u)

s1 = s0 + Aṡ0 + Bṡ
p
q
0

˙̂D =
[
A + p

q B diag

(
ṡ

p−q
q

0

)]−1

[ṡ0 + λ1s1 + λ2sgn(s1)] + (L̂ + ρ)sgn(s1)

(6)

where A = diag{a1, . . . , an}, ai > 0; B = diag{b1,
. . . , bn}, bi > 0; λ1 > 0; λ2 > 0; ρ > 0; 2q > p >

q > 0 and p, q are odd positive integers; and L̂ is the
estimated value of L. D̂ is the estimate output of the
disturbance observer. The disturbance estimation error
D̃ is defined as D̃ = D − D̂.

Considering (1) and (6), we obtain

ṡ0 = ẋ − ż

= F(x) + G(x)u + D(t, x, u)

−(F(x) + G(x)u + D̂(t, x, u))

= D(t, x, u) − D̂(t, x, u) (7)

Invoking (7), one has

s̈0 = Ḋ(t, x, u) − ˙̂D(t, x, u) (8)

Taking into consideration (6), we have

ṡ1 = ṡ0 + As̈0 + B

(
ṡ

p
q
0

)′

= ṡ0 + As̈0 + p

q
Bdiag

(
ṡ

p−q
q

0

)
s̈0

= ṡ0 +
(
A + p

q
Bdiag

(
ṡ

p−q
q

0

))
s̈0 (9)

Using the exponential reaching law to reach the slid-
ing surface in finite time, we have

ṡ1 = −λ1s1 − λ2sgn(s1) (10)

Invoking (6) and (8), (9) can be written as

ṡ1 = ṡ0 +
[
A + p

q
Bdiag

(
ṡ

p−q
q

0

)]

(
Ḋ(t, x, u) − ˙̂D(t, x, u)

)

= −λ1s1 − λ2sgn(s1) +
[
A + p

q
B diag

(
ṡ

p−q
q

0

)]

×(Ḋ(t, x, u) − (L̂ + ρ)sgn(s1)) (11)

In order to analyze the stability of the disturbance
estimate error, the Lyapunov function candidate is cho-
sen as

Vs = 1

2
s1

Ts1 + 1

2γd
L̃2 (12)

where γd is a positive design parameter, L̃ = L − L̂ ,

and ˙̃L = L̇ − ˙̂L = − ˙̂L .
Differentiating V and considering ṡ1, we have

V̇s = s1
T ṡ1 − 1

γd
L̃ ˙̂L

= s1
T
{
−λ1s1 − λ2sgn(s1)+

[
A+ p

q
B diag

(
ṡ

p−q
q

0

)]

×(Ḋ(t, x, u) − (L̂ + ρ)sgn(s1))

}
− 1

γd
L̃ ˙̂L

= −λ1s1
Ts1 − λ2

n∑

i=1

|s1i | +
n∑

i=1

(
ai + p

q
bi ṡ

p−q
q

0i

)

×
(
s1i Ḋi (t, x, u) − (L̂ + ρ) |s1i |

)
− 1

γd
L̃ ˙̂L

≤ −λ1s1
Ts1 − λ2

n∑

i=1

|s1i | +
n∑

i=1

(
ai + p

q
bi ṡ

p−q
q

0i

)

×(L |s1i | − (L̂ + ρ) |s1i |) − 1

γd
L̃ ˙̂L (13)

The adaptive law of L̂ is designed as

˙̂L = γd

(
n∑

i=1

(
ai + p

q
bi ṡ

p−q
q

0i

)
|s1i |

)
(14)

Substituting (14) into (13), we obtain

V̇s ≤ −λ1s1
Ts1 − λ2

n∑

i=1

|s1i |

−
n∑

i=1

(
ai + p

q
bi ṡ

p−q
q

0i

)
ρ |s1i | (15)

Since ai > 0, bi > 0, ρ > 0, p and q are positive
odds, we have

V̇s ≤ −λ1s1
Ts1 − λ2

n∑

i=1

|s1i | (16)

The differential term ṡ0 in the designed SOSMDO
(6) cannot be directly obtained by using derivative
method. Thus, according to Lemma 1, the HOSMD
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is employed to produce the corresponding derivatives
[30–32]. Then, the states z1 converge to ṡ0 in finite time
ts .

According to (10), we can conclude that if s1i (ts) �=
0 at the time point ts , the system states will reach the
sliding mode s1i = 0 within the finite time t1i , which
satisfies

t1i = 1

λ1

[
ln

(
|s1i (ts)| + λ2

λ1

)
− ln

(
λ2

λ1

)]
(17)

From (17), we know that the system states will
reach the sliding mode s1 = 0 within the finite time
tr1 = max(t11, . . . , t1n).When the slidingmode s1 = 0
is reached, the system dynamics is determined by the
following terminal sliding mode equation:

s1 = s0 + Aṡ0 + Bṡ
p
q
0 = 0 (18)

where s0i = 0 is the terminal attractor of the system
(18). From the time point ts+tr1 when s0i (ts+tr1) �= 0
transfer to the time point ts+tr1+t0i when s0i (ts+tr1+
t0i ) = 0, the spending time t0i satisfies the following
condition:

t0i ≤ (bi )
q
p

p

p − q
|s0i (ts + tr1)|1−

q
p (19)

Then, from the time point ts + tr1 when s0(ts +
tr1) �= 0 transfer to the time point ts + tr1 + tr0
when s0(ts + tr1 + tr0) = 0, the spending time tr0
is tr0 = max(t01, . . . , t0n) which is finite. The parame-
ters need to be properly chosen to let the convergence
time ts of HOSMD smaller than the convergence time
td = max(tr1, tr0) of SOSMDO.

Thus, we can obtain that the estimated value D̂ can
completely approximate the external disturbance D in
finite time and the disturbance estimation error D̃ has
the upper bound ‖D̃‖ ≤ βd with βd > 0.

Remark 1 Since ai > 0, bi > 0 and p, q are odd posi-

tive integers, we have ∇ = (A+ p
q B diag(ṡ

p−q
q

0 )) > 0.

It is apparent that ∇ is nonsingular and ∇−1 always
exists. Hence, the singular problem is avoided in the
designed disturbance observer (6) and we can adjust
the design parameters to improve the convergence
speed.

3.2 Design of adaptive sliding mode controller based
on SOSMDO

From the above analysis, we know that the estimate
error of the designed SOSMDO is convergent. Using
the output of the designed SMDO, the adaptive sliding
mode controller is designed as

u = −(CG(x))−1[CF(x) − Cẋd + C D̂ + κσ

+β̂d ‖C‖ sgn(σ )] (20)

where κ > 0 and β̂d is the estimated value of βd .
The adaptive law is chosen as

˙̂
βd = γD ‖C‖ ‖σ‖ (21)

where γD > 0 is a design parameter.
To analyze the stability of the whole closed-loop

system, consider a Lyapunov function candidate as

V = 1

2
σTσ + 1

2γD
β̃2
d + Vs (22)

where β̃d = βd − β̂d and ˙̃
βd = β̇d − ˙̂

βd = − ˙̂
βd .

Differentiating V yields

V̇ = σTσ̇ − 1

γD
β̃d

˙̂
βd + V̇s (23)

Considering (3) and (4), we have

σ̇ = Cė = C(ẋ − ẋd)

= CF(x) + CG(x)u − Cẋd + CD(t, x, u) (24)

Substituting (20) into (24), we obtain

σ̇ = CF(x) + CG(x){−(CG(x))−1[CF(x) − Cẋd

+C D̂ + κσ + β̂d ‖C‖ sgn(σ )]}
−Cẋd + CD(t, x, u)

= C(D − D̂) − κσ − β̂d ‖C‖ sgn(σ )

= C D̃ − κσ − β̂d ‖C‖ sgn(σ ) (25)

Invoking (25), (23) can be written as

V̇ = σTσ̇ − 1

γD
β̃d

˙̂
βd + V̇s

= σT[C D̃ − κσ − β̂d ‖C‖ sgn(σ )]
− 1

γD

˙̂
βd β̃d + V̇s

≤ ‖C‖ ‖σ‖ βd − κσTσ − β̂d ‖C‖
n∑

i

|σi |
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− 1

γD
γD ‖C‖ ‖σ‖ β̃d + V̇s

≤ ‖C‖ ‖σ‖ (βd − β̂d − β̃d) − κσTσ + V̇s

≤ −κσTσ (26)

From (26), we have

V̇ ≤ −κ

n∑

i=1

σi
2 (27)

Thus, V̇ is negative semi-definite which means V
is a nonincreasing function of time, that is, the sliding
mode surface σi is bounded and the tracking error ei is
also bounded. Thus, the control objective is achieved
under the designed adaptive sliding mode controller
based on SMDO.

4 Design of boundary layer adaptive sliding mode
controller based on SOSMDO

Due to the existence of sign function in the adaptive
sliding mode controller (20) based on SOSMDO, it
will cause the chattering phenomenons.Boundary layer
technique can be employed to eliminate the chatter-
ing phenomenons in traditional sliding mode control
in [19,20]. However, the boundary layer width and the
control gain are usually chosen as the fixed values in
[36], and they may not guarantee a desired tracking
performance. Based on the gradient descent method,
the self-tuning laws of β̂d and λ̂ are designed with the
sliding mode surface σ which lead to the self-tuning of
β̂d and λ̂ in order to reduce the tracking error e. The
boundary layer adaptive sliding mode control law is
designed as

u = −(CG(x))−1u0 (28)

where u0 = CF(x)−Cẋd +C D̂+κσ +‖C‖ φ(λ̂, σ )

β̂d , φ(λ̂, σ )=
[
φ1(λ̂, σ1), φ2(λ̂, σ2), . . . , φn(λ̂, σn)

]T
,

and κ > 0. φi (λ̂, σi ) = 1−exp(−λ̂σi )

1+exp(−λ̂σi )
is a continuous

function in [−1, 1]. The parameter λ̂ determines the
steepness of the continuous function φi (λ̂, σi ). There-
fore, it eliminates the chattering and reduces the error
effectively by using the time-varying boundary layer
width and control gain. In order to stabilize the closed-
loop system, the appropriate adaptive law should be
chosen to make σTσ̇ < 0. The new parameter adaptive
laws are designed as

˙̂
βd = ηφ(λ̂, σ )T((CG(x))−1)T

(
∂x

∂u

)T

CTσ (29)

˙̂
λ = γ β̂dϕ(λ̂, σ )T((CG(x))−1)T

(
∂x

∂u

)T

CTσ (30)

where ϕ(λ̂, σ ) =
[

σ1 exp(−λ̂σ1)

(1+exp(−λ̂σ1))
2 ,

σ2 exp(−λ̂σ2)

(1+exp(−λ̂σ2))
2 , . . . ,

σn exp(−λ̂σn)

(1+exp(−λ̂σn))
2

]
. γ and η are positive design parame-

ters. In practical application, if the sampling time is
small, ∂x

∂u can be replaced by �x
�u .

In order to analyze the stability of the closed-loop
system, consider the following Lyapunov function can-
didate:

V = 1

2
σ T σ (31)

Differentiating V , we have

V̇ = ∂V

∂σ

∂σ

∂e

∂e

∂x

∂x

∂u

(
∂u

∂β̂d

∂β̂d

∂t
+ ∂u

∂λ̂

∂λ̂

∂t

)

= ∂V

∂σ

∂σ

∂e

∂e

∂x

∂x

∂u

∂u

∂β̂d

∂β̂d

∂t
+ ∂V

∂σ

∂σ

∂e

∂e

∂x

∂x

∂u

∂u

∂λ̂

∂λ̂

∂t

(32)

Let us define

V̇1 = ∂V

∂σ

∂σ

∂e

∂e

∂x

∂x

∂u

∂u

∂β̂d

∂β̂d

∂t

= σTC
∂x

∂u

∂

∂β̂d

[
−(CG(x))−1(CF(x)

−Cẋd + C D̂ + κσ + ‖C‖ φ(λ̂, σ )β̂d)
] ∂β̂d

∂t

= ‖C‖ σTC
∂x

∂u

[
−(CG(x))−1φ(λ̂, σ )

] ∂β̂d

∂t
(33)

Substituting ˙̂
βd into (33), we obtain

V̇1 = ‖C‖ σTC
∂x

∂u

[
−(CG(x))−1φ(λ̂, σ )

]

×
[
ηφ(λ̂, σ )T((CG(x))−1)T

(
∂x

∂u

)T

CTσ

]

= −η ‖C‖
[
σTC

∂x

∂u
(CG(x))−1φ(λ̂, σ )

]

×
[
σTC

∂x

∂u
(CG(x))−1φ(λ̂, σ )

]T

= −η ‖C‖ ν2 ≤ 0 (34)

where ν1×1 = σTC ∂x
∂u (CG(x))−1φ(λ̂, σ ).
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And, we define

V̇2 = ∂V

∂σ

∂σ

∂e

∂e

∂x

∂x

∂u

∂u

∂λ̂

∂λ̂

∂t

= σTC
∂x

∂u

∂

∂λ̂

{
−(CG(x))−1[CF(x)

−Cẋd + C D̂ + κσ + ‖C‖ φ(λ̂, σ )β̂d ]
} ∂λ̂

∂t

= ‖C‖ σTC
∂x

∂u

[
−2(CG(x))−1ϕ(λ̂, σ )β̂d

] ∂λ̂

∂t
(35)

Substituting ˙̂
λ into (35), we have

V̇2 = ‖C‖ σTC
∂x

∂u

[
−2(CG(x))−1ϕ(λ̂, σ )β̂d

]

×
[
γ β̂dϕ(λ̂, σ )T((CG(x))−1)T

(
∂x

∂u

)T

CTσ

]

= −2γ ‖C‖ β̂2
d

[
σTC

∂x

∂u
(CG(x))−1ϕ(λ̂, σ )

]

×
[
σTC

∂x

∂u
(CG(x))−1ϕ(λ̂, σ )

]T

= −2γ ‖C‖ β̂2
dυ

2 ≤ 0 (36)

where υ1×1 = σTC ∂x
∂u (CG(x))−1ϕ(λ̂, σ ).

Taking into consideration (34) and (36), we obtain

V̇ = V̇1 + V̇2 ≤ 0 (37)

Thus, V is a nonincreasing function of time. This
gives the same stability result obtained in Sect. 3.2.

5 Simulation study

In this section, the proposed SOSMDO-based bound-
ary layer adaptive sliding mode controller is used to
the attitude control of the NSV and simulation results
are given to illustrate the effectiveness. The nonlinear
MIMO attitude motion equations of the NSV are given
as follows [37]:

α̇ = q − tan β(p cosα + r sin α) + 1

mV cosβ

−L + mg cos γ cosμ − Tx sin α + Tz cosα) (38)

β̇ = −r cosα + p sin α + 1

mV
(Y cosβ

+mg cos γ sinμ − Tx sin β cosα + Ty cosβ

−Tz sin β sin α) (39)

μ̇ = secβ(p cosα + r sin α) + (Y + Ty) tan γ cosμ

cosβ + (Tx sin α − Tz cosα)(tan γ sinμ + tan β)

−g cos γ cosμ tan β + 1

mV

[
L(tan γ sinμ + tan β)

−(Tx cosα − Tz sin α) tan γ cosμ sin β
]

(40)

ṗ = 1

Ix Iy Iz − I 2xy Iz − I 2xz Iy

[
(lA + lT )Iy Iz

+ (mA + mT )Ixy Iz + (nA + nT )Ixz Iy

+
(
I 2xy Iz − Iy I

2
z + I 2y Iz − I 2xz Iy

)
qr

+
(
Iy Iz Ixz − Ixz I

2
y + Ix Iy Ixz

)
pq

− Ixy Ixz Iy(q
2 − p2) + (

Iy Iz Ixy + Ix Iz Ixy

− I 2z Ixy
)
pr − Ixz Ixy Iz(p

2 − r2)
]

(41)

q̇ = 1

Ix I 2y Iz − Iz Iy I 2xy − I 2y I
2
xz

{−(lA + lT )Ixy Iy Iz

+ (mA + mT )
(
Ix Iy Iz − 2Iz I

2
xy − Iy I

2
xz

)

− Ixy Iy Ixz(nA + nT ) − Ixy
(
Iy Iz Ixz + Ix Iy Ixz

− I 2y Ixz
)
pq − [

Ixy + Ixy
(
Ixy Iz

2 − Ix Iz Ixy

− Iy Iz Ixy
)]
qr +

(
Iy I

2
xy Ixz + Ixz− I 2xy Iz

)
(p2−r2)

+ [
Iz − Ix − Ixy

(
Ixy I

2
z − Ix Iz Ixy − Iy Iz Ixy

)]
pr

}

(42)

ṙ = 1

Ix Iy Iz − I 2xy Iz − I 2xz Iy

[
(lA + lT )Iy Ixy

+ (mA + mT )Ixy Ixz +
(
Ix Iy − I 2xy

)
(nA + nT )

+
(
Iy I

2
xz + I 2x Iy − Ix I

2
xy − Ix I

2
y − Iy I

2
xy

)
pq

+
(
I 2y Ixz − Iy Iz Ixz + I 2xy Ixz − Ix Iy Ixz + Ixz I

2
xy

)
qr

+ Ixy I
2
xz(p

2 − r2) + (Iz Ixy Ixz − Ix Ixy Ixz

− Iy Ixy Ixz)pr +
(
Ix Iy Ixy − I 3xy

)
(p2 − q2)

]
(43)

where α is the angle of attack; β is the side slip angle;μ
is the roll angle; p is the roll angular rate; q is the pitch
angular rate; r is the yaw angular rate; L is the lift; Y is
the lateral force; V is the flight speed; m is the mass of
the NSV; g is the acceleration of gravity; γ is the flight
path angle; Ix , Iy and Iz are the moments of inertia
around the body axis; Ixy, Iyz and Izx are the products
of inertia; T is the engine thrust, with Tx , Ty and Tz
being the components of T in body coordinates; lA,mA

and nA are the components of the air torque in body
coordinates; and lT ,mT and nT are the components of
the thrust moments in body coordinates.

123



1678 M. Chen, J. Yu

Based on the singular perturbation theory, the atti-
tude motion dynamic (38–43) of the NSV is divided
into the slow loop (Ω) and the fast loop (ω). Then, we
obtain the following affine nonlinear equations:

Ω̇ = fs(Ω) + gs(Ω)ω + Ds(t,Ω)

y = Ω (44)

ω̇ = f f (ω) + g f (ω)M + D f (t, ω)

y = ω
(45)

where Ω = [α, β, μ]T is the vector of the attitude
angles; ω = [p, q, r ]T is the vector of the attitude
angular rates; y is the output of the NSV; M is the
designed actual control input vector; fs (Ω) and f f (ω)

are the state function vectors; gs (Ω) and g f (ω) are the
system matrices; Ds (t,Ω) = � fs (Ω) + ds (t) and
D f (t, ω) = � f f (ω) + d f (t) are the compound dis-
turbances, with � fs (Ω) and � f f (ω) being the mod-
eling errors, and ds (t) and d f (t) being the unknown
external disturbances. The specific expressions of
fs (Ω) = [

fα, fβ, fμ
]T

, f f (Ω) = [
f p, fq , fr

]T,
gs, g f are [37]:

fα = 1

MV cosβ
(−L + Mg cos γ cosμ − Tx sin α)

(46)

fβ = 1

MV
(−Tx sin β cosα+Y cosβ

+Mg cos γ sinμ) (47)

fμ = 1

MV
(Tx sin α tan γ sinμ + Tx sin α tan β

−Tx cosα tan γ cosμ sin β + L tan γ sinμ

+L tan β + Y tan γ cosμ cosβ

−Mg cos γ cosμ tan β) (48)

f p = (Iy − Iz)

Ix
qr + 1

Ix
(− İx p + lb) (49)

fq = (Iz − Ix )

Iy
pr + 1

Iy
(− İyq + mb) (50)

fr = (Iy − Ix )

Iz
pq + 1

Iz
(− İzq + nb) (51)

gs =
⎡
⎣

− tan β cosα 1 tan β sin α

sin α 0 − cosα

secβ cosα 0 secβ sin α

⎤
⎦ (52)

g f =
⎡
⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦

−1

(53)

where lb,mb, nb are the basic moment variables.

Fig. 1 Control schematic of the NSV

The control schematic of the developed boundary
layer adaptive sliding mode control scheme for the
NSV is shown in Fig. 1.

In order to verify the effectiveness and superiority,
the proposed control schemes are used in the attitude
control simulation for the NSV. In addition, we com-
pare our developed control scheme with the boundary
layer adaptive sliding mode controller without SMDO
as well.

The initial values of the simulation study are chosen
as V0 = 2200m/s, H0 = 21,000m, α = 1◦, β =
1◦, μ = −1◦, p = q = r = 0 rad/s, and λ̂(0) =
β̂d(0) = 1. The desired flight attitudes are chosen as

αN =
{
2 t ≤ 5
5 t > 5

, μN = 0.5 sin(5t) + 3 sin(t), βN =
{
0 8k ≤ t ≤ 4(2k + 1)
2 4(2k + 1) ≤ t ≤ 8(k + 1)

, k = 0, 1, 2, . . . ...

Suppose that there are +20% and −20% uncer-
tainties on aerodynamic coefficients and aerodynamic
moment coefficients, respectively. On the other hand,
the unknown external disturbance moment vector
�M = [�M1,�M2,�M3]T is given by

�M1 = 3 × 106 Nm,�M2 = (sin(t) + 2) × 106 Nm,

�M3 =
{
2 × 106 Nm 0 ≤ t ≤ 10
4 × 106 Nm 10 ≤ t ≤ 20

.

The design parameters of the attitude controller are
chosen as γ = η = 2, r = 1.5, κ = 5,C =
diag{2, 4, 3}, ε0 = 3, ε1 = 5, K = diag{4, 4, 4},
A = 30 diag{2, 2, 2}, B = 20 diag{4, 4, 4}, λ1 = 3,
λ2 = 2, γd = γD = 0.4, ρ = 0.1, p = 5, q = 3.

The simulation results of the attitude control are
shown in Fig. 2 for the NSV under the traditional adap-
tive sliding mode controller based on SOSMDO. Due
to the existence of sign function in the traditional adap-
tive sliding mode controller, there is a serious chatter-
ing in the control plots that leads to the degradation of
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Fig. 2 Curves of attitude angles, attitude angular rates and
torques with the adaptive sliding mode controller based on SOS-
MDO
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Fig. 3 Curves of attitude angles, attitude angular rates and
torques with boundary layer adaptive sliding mode controller
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Fig. 4 Curves of attitude angles, attitude angular rates and
torques with boundary layer adaptive sliding mode controller
based on SOSMDO
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Fig. 6 Curves of disturbance estimation error

the control precision form Fig. 2. Through Fig. 3, we
can note that the chattering phenomenon is suppressed
by using the developed boundary layer adaptive sliding
mode controller. However, there is a tracking error as
well and it will affect the flying qualities of the NSV.
With the boundary layer adaptive sliding mode control
based on SOSMDO designed in this paper, the atti-
tude control simulation results of the NSV are shown
in Fig. 4. Compared with Fig. 2, it eliminates the chat-
tering phenomenon in the traditional slidingmode con-
troller, while improving the control precision and forc-
ing the tracking error to approach zero. Furthermore,
according to Figs. 5 and 6, the real-time online com-
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pensation for the compound disturbance could effec-
tively improve the control precision and the disturbance
estimation error is relatively small compared with the
input moment. The tracking errors are also close to
zero. Simulation results show that in the case of distur-
bance, SOSMDO can effectively compensate for the
compound disturbances and the system control perfor-
mance and robustness are further enhanced with the
boundary layer adaptive sliding mode controller based
on SOSMDO.

6 Conclusion

In this paper, a boundary layer adaptive sliding mode
controller based on SOSMDO has been derived to
achieve high-precision attitude control for the NSV.
The traditional large-gain adaptive method is difficult
to balance the system robustness and control preci-
sion. The SOSMDO can effectively compensate the
compound disturbances, and the developed boundary
layer adaptive sliding mode controllers can eliminate
the chattering phenomenon and force the tracking error
to zero. Finally, simulation results illustrate that the
proposed control scheme can achieve satisfactory per-
formance under the disturbance environment.
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