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Abstract Global attitude stabilization of a rigid
spacecraft with unknown actuator delay time is an
important problem that has rarely been studied. In this
paper, first we investigate a Lyapunov-based controller
for attitude regulation of a rigid spacecraft with delayed
inputs. Simple conditions for global asymptotical sta-
bility are obtained by assuming that the true delay value
is unknown, but approximation of its upper bound is
available. It is also shown that a proper design of the
controller prevents the unwinding phenomenon. Then,
we extend the results for the system while taking dis-
turbance effects into account. Based on Lyapunov–
Krasovskii methodology, it is proven that the proposed
controller can drive the closed-loop trajectories to a
small region in the neighborhood of the origin in the
presence of external disturbances andmodel uncertain-
ties. Various numerical simulations are carried out to
illustrate the effectiveness of the proposed control sys-
tem.
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List of symbols

C Direction cosine matrix
ê Principal axis of rotation
f, g Generic functions
I 3 × 3 Identity matrix
J Nominal inertial matrix
Jr Real inertial matrix
P Positive definite controller gain matrix
�n n-Dimensional space of real vectors
�+ Set of nonnegative real numbers
T Actuator torque vector [T1, T2, T3]T

Td Disturbance torque
Tg Gravity gradient torque
t Time
V, v Lyapunov function (functional)
γ Positive scalar constant
κ K∞ Function
� Negative controller gain scalar
σ Modified Rodrigues parameter vector

[σ1, σ2, σ3]T

τ Time delay
Φ Principal rotation angle
ω Angular velocity vector, [ω1, ω2, ω3]T
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1 Introduction

The last few decades witness a significant interest on
developing the attitude control approaches for rigid
spacecrafts. This is motivated by its wide range of
applications, such as oil, mineral and gas exploration,
communication, risk management and weather fore-
casting [15, pp. 3–4]. Since spacecrafts have become
now often integrated with electric actuators such as
reaction wheels and control moment gyroscopes, they
are constrained evermore tightly by high accurate slew-
ing and pointing maneuvers of large-angle amplitude
specifications [36]. The increased emphasis placed on
efficient plant operation dictates the need for the non-
linear dynamics of spacecraft model for control system
synthesis and effective control to guarantee the satis-
faction of operational objectives.

Further complications arise from the fact that the
control system needs satisfactory performance in the
presence of external disturbances, model uncertainties,
measurement errors, actuators constraints and actuators
misalignments. Various nonlinear control algorithms
have been purposed to improve the closed-loop sys-
tem performance in these unwanted situations (see,
for instance [8,9,11,14,17–19,30,46–48]). Time delay
is one of the other salient features whose frequently
encountered co-presences in many practical systems
can lead to severe performance limitations, or even
causes the instability of closed-loop systems. Gener-
ally speaking, time delay may arise in the measure-
ments as a consequence of inherent operational limi-
tations of sensors, or communication delays, or such
time lag may be occurred in the actuators due to the
time takes to create control decisions and to execute
these decisions [36,41]. The latter case is the subject
of this article. More precisely, we study the nonlinear
control of spacecraft attitude dynamics with parametric
uncertainties and constant unknown delayed inputs.

Whereas the case of delay-free attitude control of
spacecraft, as mentioned before, has been well studied
and documented in the literature, the control of space-
craft in the presence of time delay has received rela-
tively little attention from the control community. The
problem of attitude regulation of a rigid spacecraft in
the presence of delayed input signals has been studied
for the first time in [1]. By adapting Rodrigues parame-
ters (RPs) to represent the orientation of the spacecraft
and employing a velocity-free controller, the sufficient
conditions for exponential stability of the system inside

a region of attraction have been obtained, whereas the
results reported therein are valid only for sufficiently
small time delays. Moreover, the delay must be pre-
cisely known in order to design the controller, which is
a restrictive condition.

In [12], by using modified RPs (MRPs) to represent
attitude oration and modifying the original complete-
type Lyapunov–Krasovskii (L–K) functional, a con-
trol law has been obtained. This method can relax
the restriction of requiring precise knowledge of time
delay; also, the authors of [12] attempted to maximize
the estimation of region of attraction by utilizing a sys-
tematic numerical optimization. Although the adopted
strategy in [12] can improve some drawbacks of [1],
since the controller is obtained based on the lineariza-
tion of the plant (more precisely, the plant is divided
into a nominal linear part and an additive nonlinear
perturbation satisfying the linear growth constrain), the
results obtained therein are still local, similar to [1,49];
i.e., the results are only valid for a small of operation
range. As the range of operation increases or system is
exposed to disturbances, the performance of the overall
system decreases or even instability may be occurred
due to the contribution of the nonlinear terms.

Using MRPs for attitude representation, based on
inverse dynamics approach, and assuming that known
constant time delay exists in only one of the actu-
ators, the authors of [36] developed a proportional-
integral-derivative (PID)-type control law where the
Hsu–Bhatt–Vyshnegradskii stability chart is used to
select the gains of the controller. Since in derivation
of the controller, it is assumed that the norm of MRPs
and its time derivation are small enough, the closed-
loop system is not globally stable. Attitude control in
the presence of time delay has also been investigated
in [38] and [4]. However, in contrast to the present
research, the delay is presented in measurements and
not in inputs.

Undoubtedly, global stabilization of nonlinear sys-
tems is one of the most imperative issues in nonlinear
control theory. Roughly speaking, instead of requiring
stability condition to hold in a neighborhood of the
equilibrium, we require that the plant is stable over a
wide range of conditions due to large process upsets or
large initial values.

The difficulty associated with the stabilization of a
spacecraft in the presence of delayed inputs is largely
due to the fact that the spacecraft system is inherently
nonlinear. Thus, stability analysis of such system is
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Global attitude stabilization of rigid spacecraft with unknown input delay 1625

a difficult problem, and its combination with delayed
inputs introduces extra challenge, especially if delay
itself is unknown. Moreover, the few existing control
frameworks for nonlinear systems are devoted to the
case in which the delay is involved in the input sig-
nals. In last two decades, some efficient but yet restric-
tive studies have appeared to deal with the control
of nonlinear systems with retarded inputs. Generally
speaking, these works can be divided into three cat-
egories. The first class of the control algorithms is
utilized predictor-based feedback control law to com-
pensate delay effects (see, for example [5,6,13,24–
26]). This method is essentially a nonlinear version
of the Smith predictor [25] which was extended to
nonlinear systems in [25] by Krstic. In the second
group of control algorithms, the controller is firstly
designed by neglecting delay. Then, conditions that
guarantee stability for the closed-loop system based
on Lyapunov, Razumikhin or small-gain theorems are
obtained (see [33,44]). Finally, the third class of con-
trol methodologies exploits certain characteristics of
the system to obtain a feedback law which guarantees
stability for the corresponding closed-loop system (see,
for instance [2,10,20,21,29,32,35]). However, these
insightful approaches are capable to interactwith delay,
but their scope is restricted to either known or small
delays, and to the best of our knowledge, the stabiliza-
tion of nonlinear systems in the presence of arbitrarily
long delay in which the delay value is unknown has
been remained open so far.

In this paper, we adopt the third-class line approach
for developing a control law, and since the represen-
tation of orientation by MRPs has notable advantages,
including characterizing by a set of three parameters
(i.e., a minimal set), wide range of singularity-free
behavior and being free of ambiguity, then the attitude
of spacecraft is represented by MRPs in the present
paper.

We use the backstepping technique as the control
design approach to regulate the spacecraft attitude with
delayed inputs where delay is an unknown constant.
This control scheme allows the systematic design of
controllers for cascade-structured nonlinear systems.
The basic idea of backstepping is to design a controller
by following recursive procedure which interlaces at
each sequence the proper change of coordinates, and
then, the intermediate stabilizing feedback control laws
are developed by considering some of the state vari-
ables as virtual controls.

The contributions of this paper are stated as follows.

1. The backstepping method in [20,23,32,35] is
extended to uncertain nonlinear systems with
unknown delayed inputs; then, this strategy is
applied to the attitude stabilizing control problem.
By means of the Sepulchre–Janković–Kokotović
approach [40] and an operator of a new type which
is introduced in [34], the L–K functional is con-
structed and it is utilized to prove the stability of
the closed-loop system.

2. In comparison with the works of [1,12,36], for the
zero-disturbance case, the proposed backstepping
controller achieves global asymptotical attitude sta-
bilization. Furthermore, the controller also ensures
a shorter path stabilizing, i.e., the unwinding phe-
nomenon is avoided. This is due to the fact that the
virtual control law (control law for the kinemat-
ics subsystem) is obtained by minimizing a perfor-
mance index which includes quadratic penalty in
oration parameters and angular velocity.

3. While considering the influence of disturbances
(internal or external), the closed-loop attitude sys-
tem under the proposed controller is input-to-state
stable (ISS), namely, the trajectories of the attitude
control system remain bounded in the presence of
bounded disturbances.

The remaining parts of the paper are organized
as follows. Section 2 describes system modeling, the
problem formulation and some definitions. The con-
troller development and the closed-loop system stabil-
ity analysis are given in Sec. 3. In Sec. 4, extensive
numerical simulation results are reported, in which the
robustness to variations in time delay is demonstrated
and the controller performance is examined under the
influence of disturbances. Conclusions and directions
for future work are given in Sec. 5.

Notation

• For a vector x = [x1, x2, x3]T ∈ �3, the Euclid-
ean norm of x is expressed as ‖x‖. ‖x‖∞ denotes the
infinity norm of x . The operator Sx denotes a skew-
symmetric matrix acting on vector x and has the form

Sx =
[

0 −x3 x2
x3 0 −x1−x2 x1 0

]
.

• For a matrix M ∈ �n×n , the induced 2-norm,

expressed as‖M‖, is defined as‖M‖ =
√

λmax
(
MT M

)
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where λmax
(
MT M

)
denotes the maximal eigenvalue

of MT M .
• A continues function f : �+ → �+ belongs to
a class K∞ if it is strictly increasing, f (0) = 0 and
f (t) → ∞ as t → ∞. A continues function g : �+ ×
�+ → �+ is said to be a KL if for each fixed 
, the
mapping g (t, 
) isK∞ class function with respect to t ,
and for each fixed 
, the mapping g (t, 
) is decreasing
in 
 and g (t, 
) → 0 as 
 → 0.
• Throughout this paper, the argument of the functions
(functionals) will be omitted whenever no confusion
arises from the context.

2 Background and problem statement

2.1 Spacecraft attitude kinematics and dynamics

Let the unit vector e be the principal (right-hand) axis of
rotation associatedwith Euler’s theorem andΦ be prin-
ciple angle of such rotation. The MRP vector σ ∈ �3

can be defined in terms of principal rotation elements
(ê, Φ) as [39, p. 117]

σ = ê tan

(
Φ

4

)
. (1)

From Eq. (1), it is clear that the MRP representa-
tion has a singularity at 360◦; i.e., MRPs can be used
for describing eigenaxis rotations upto 360◦, which is
wide enough and can be encountered in whole attitude
maneuvers that considered in this study.

By employing MRPs to represent the attitude ora-
tion of the rigid body, the kinematics equation can be
expressed as [39, p. 122]

σ̇ (t) = B (σ ) ω(t) (2)

where ω ∈ �3 is the angular velocity prescribed in
the body-fixed frame and B ∈ �3×3 is Jacobin matrix
defined as

B (σ ) = 1

4

((
1 − ‖σ‖2

)
I + 2Sσ + 2σσ T

)
. (3)

Remark 1 The principal rotation angleΦ is not unique.
Suppose thatΦ is the shortest rotation about the princi-
ple axis will be performed to move from one reference

frame to another. It is obvious that this is not neces-
sary, since one can found the second rotation angle
ΦS = Φ − 2π such that the exact same orientation is
achieved by rotation through the angle ΦS [39, p. 96].
It is often the case and also in this paper, the magni-
tude of the principal rotation angle is simply chosen
to be |Φ| ≤ π . Hence, while one MRP set is chosen
corresponding to the shortest rotation, there is another
set, referred to as the shadow set, corresponding to a
principal rotationΦS , defined as σ S = ê tan

(
ΦS/4

) =
−σ/

(
σ T σ

)
[39, p. 119]. As discussed in [39, p. 120],

switching between original and shadow MRP sets and
choosing the switching surface as σ T σ = 1 provide a
singularity-free unique attitude description.

Next, let J ∈ �3×3 be the spacecraft inertial matrix
consisting of principal moment of inertia. Let T (t) and
Td (t) denote control (actuator) torque and disturbance
torque, respectively. From Euler’s moment equation,
the dynamics model of rigid spacecraft motion with
delayed inputs can be founded as [39, p. 153]

ω̇ (t) = −J−1Sω Jω (t) + J−1T (t − τ) + J−1Td (t)

(4)

where τ ∈ �+ is the time delay.
Another issue that must be considered in the math-

ematical description of the spacecraft is a disturbance
model. A satellite orbiting the Earth is influenced by
various disturbances including internal torques (for
example, momentums caused by inner moving parts
of the spacecraft) or external torques (such as gravi-
tational torque, radiation torque, aerodynamic torque).
Since the satellites in all altitudes are highly affected by
the gravitational perturbation [15, p. 105], all external
disturbance torques are neglected, except the gravity
gradient torque Tg ∈ �3, which can be expressed as
[28, p. 121]

Tg = 3ω2
o Sc3 Jc3 (5)

with c3 = C exp
(−ωot Se2

)
e3, where ωo =

√
μg/r3c

is the orbital rate, μg denotes geocentric gravitational
constant, rc represents the distance of the satellite cen-
ter of mass from the Earth’s center, e2 = [0, 1, 0]T ,

e3 = [0, 0, 1]T and C ∈ �3×3 denotes the direction
cosine matrix in terms of MRPs which is given by [39,
p. 120]:
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Global attitude stabilization of rigid spacecraft with unknown input delay 1627

C (σ ) = I − 4
1 − ‖σ‖2(
1 + ‖σ‖2)2 Sσ + 8(

1 + ‖σ‖2)2 S2
σ . (6)

Also, the disturbance Td may be seen as an internal
disturbance. Since the mass properties of the space-
craft may be difficult to approximate with high enough
precision, Td can be interpreted as torque caused by
mismatch between the nominal inertial J and real one.

Two properties related to the described spacecraft
mathematical model are given next. These properties
will be used to develop the controller.

Property 1 The matrix B has the following properties
for all σ , ω ∈ �3 [39, p. 120]:

σ T B (σ ) ω = 1 + ‖σ‖2
4

σ T ω (7)

and

BT (σ ) B (σ ) =
(
1 + ‖σ‖2

4

)2

I. (8)

Property 2 For the inertial matrix of the spacecraft J ,
we have [15, p. 76]:

– J = J T > 0.
– The inertia matrix J , by definition, must respect
precise constraints among its elements. Namely,
there are constraints on the admissible values of
inertia moments. Suppose that J is expressed as

J = diag [J1, J2, J3] , Ji ∈ �+, i = 1, 2, 3.

It is possible to define 6 triangular inequalities that
relate the inertia moments, for example: J1 + J2 ≥
J3, J3 ≥ J1 − J2.

For the development of the control system, the fol-
lowing assumptions are made.

Assumption 1 The size of the unknown time delay
τ is bounded by a known constants τ̄ ∈ �+, that is,
0 ≤ τ ≤ τ̄ .

It should be emphasized that only the upper bound
of τ is required for analytical purposes, and its true
value is not necessary to be known, since it is not used
for controller design. As will be shown in next section,
a restriction on the delay size guaranties that the stabi-
lizing problem of aforementioned system always has a
solution.

Assumption 2 Both angular velocity (inertial mea-
surement) and attitude (noninertial measurement) are
assumed to be accessible for feedback control law. Fur-
thermore, we assume that these measurements are per-
fect, i.e., without bias, without noise and without delay.

2.2 Problem statement

The main objective of this paper is to design an atti-
tude stabilizing control law for a spacecraft system
described by Eqs. (2) and (4). Having an unknown
delay in inputs (actuators), the attitude must be asymp-
totically stabilized for any given initial values in the
absence of disturbances, namely, σ(t) → 0 and
ω(t) → 0 as t → ∞. Furthermore, under the proposed
control law, the attitude oration and angular velocity
should be driven to a small set containing the origin
in the presence of external disturbances and dynamic
model uncertainty in the spacecraft inertia matrix.

2.3 Technical preliminaries

Theorem 1 (Inverse Optimal Problem) Let dynamic
system which is affine in the control input be

ẋ = f (x) + g(x)u

where x ∈ �n denotes the system state, u ∈ �m is the
control input, and f and g are smooth functions.

Consider the cost functional given as

J =
∫ ∞

0
C (x, u) dt (9)

where C = Q(x)+uT R(x)u, Q(x) and R(x) are sym-
metric positive definite matrices for all x.

Given a control law u(x) and an associated Lya-
punov function V (x) for the controlled system, Q(x)

and R(x) can be obtained by solving

u = − 1

2
R−1

(
∂V

∂x
g

)T

(10)

Q = −
(

∂V

∂x

)
f − 1

2

(
∂V

∂x

)
gu. (11)

Moreover, the minimum value of the cost functional
is J ∗ = V (x (0)).
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Proof It is a straightforward extension of [27, Propo-
sition1] for the cost functional described by (9). The
proof is omitted here. ��
Definition 1 (Input-to-State Stability Concept) Con-
sider a general delayed system

ẋ = f (x(t + η), d(t), t) (12)

where f : �n ×�m ×�+ → �n , η ∈ [−τ̄ , 0] and τ̄ is
the maximum involved delay. This system is said to be
input-to-state stable (ISS) with respect to d if there is a
function β of classKL and function κ of classK∞ such
that for any bounded input d and any initial condition
x0, the corresponding solution x(t) exists for all t ≥ 0,
and satisfies

‖x(t)‖ ≤ β (‖x0‖∞, t) + κ (‖d‖∞) .

Furthermore, if the system (12) is ISS with respect to
d, there exist a functional v
 (x(t + η)) ∈ �+, and
functions κ
i ∈ K∞, i = 1, 2, . . . , 4, such that for all
η ∈ [−τ̄ , 0] and all trajectories x(t), we have

(i) κ
1(‖x(t)‖) ≤ v
 ≤ κ
2

(
supη∈[−τ̄ ,0] ‖x(t + η)‖);

(ii) v̇
 ≤ −κ
3(‖x‖) + κ
4(‖d‖).
The functional v
 is called an ISS Lyapunov–
Krasovskii functional (ISS-LKF see [31, p. 56] or
[37]).

3 Control design

The control design and closed-loop stability analysis
that follows are divided into two parts. First, we con-
sider the zero-disturbance case, in which the global
asymptotic convergence is guaranteed. Next, we study
the effect of disturbances on the nominal system.

By considering the fact that the attitude system in (2)
and (4) has a nonlinear cascade interconnected struc-
ture, stabilizing control law for such system can be
efficiently investigated by employing the backstepping
methodwhich consists of two steps. In the first step, the
angular velocity ω in (2) is regarded as a virtual con-
trol input and then a state feedback control is designed
to stabilize the kinematics subsystem. In the second
step, with in mind that the kinematics subsystem must
remain stable, the actual control T is designed to sta-
bilize the dynamics subsystem (4).

3.1 Disturbance-free case

Step one: Control of the Kinematics Subsystem
Consider the subsystem (2) with ω promoted to the
virtual control input. Let the control law be

ωdesire(t) = −Pσ(t) (13)

where P = PT ∈ �3×3 is a positive definite matrix.
We have the following lemma on the convergence of
σ .

Lemma 1 Given the kinematics subsystem in (2), the
controller in (13) ensures that the MRP vector σ expo-
nentially converges to zero for all initial conditions
σ(0).

Proof Following Tsiotras [45], a Lyapunov function is
defined as

v0(t) = 2 ln
(
1 + ‖σ‖2

)
. (14)

Differentiation of v0 with respect to time and substi-
tution of the attitude kinematics from Eq. (2) yield
v̇0 = 4

1+‖σ‖2 σ
T Bω. Applying the virtual control law

(13) and using identity (7) in the Property 1, we have
v̇0 = σ T ω = −σ T Pσ . This proves that the control law
makes σ = 0 a global exponential stable equilibrium
in the sense of Lyapunov. ��
The proposed control law (13) not only has a simple
structure (linear in the attitude vector σ ), but also has a
certain optimality property which is illustrated below.

Property 3 Considering the kinematics subsystem (2),
the control law (13) is optimal with respect to the cost

J = 1

2

∫ ∞

0

(
σ T (t)Pσ(t) + ωT (t)P−1ω(t)

)
dt.

(15)

Proof The optimality property of the proposed kine-
matics control law was derived in [45] when the con-
trol gain P is a scalar positive constant. We present an
alternative way to show its optimality.

Since the control law and the Lyapunov function
are available, instead of solving the Hamilton–Jacobi–
Bellman (HJB) equation for finding the optimal control
law, we seek a meaningful cost functional that is min-
imized by available controller. This route is known as
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Global attitude stabilization of rigid spacecraft with unknown input delay 1629

inverse optimal control approach which is easier than
the direct one.

To this end, with combination of Theorem 1 and
identity (7) in Property 1, we are able to rewrite control
law ωdesire as

ωdesire = − 1

2
R−1

[(
∂

∂σ
2 ln

(
1 + ‖σ‖2

))
B

]T

= − 1

2
R−1 4

1 + ‖σ‖2
(
σ T B

)T

= − 1

2
R−1σ (16)

which immediately results R = 1/2P−1. An analo-
gous approach can be presented to calculate weighting
matrix Q. Definition of Q in Theorem 1 implies that

wehave Q = −1/2
(

∂V0
∂σ

)
Bωdesire = 1/2σ T Pσ . This

completes the proof. ��
It should be emphasized that since the control law

for kinematics subsystem is obtained by minimizing a
linear quadratic regulator (LQR)-type cost functional,
it possesses certain robustness properties (see [27] for
more details), and it ensures a shorter path stabilizing,
i.e., the trajectories of the closed-loop system travels a
shorter path in the state space to return to the desired
attitude [7]. This means that we overcome the unwind-
ing problem which can waste control effort by causing
the spacecraft to rotate through large angles, while a
small angle of the opposite rotational direction is ade-
quate to bring the system to rest [7]. Therefore, by
using control law (13), the principle angle Φ remains
in 0 ≤ |Φ| ≤ 180◦, i.e., we do not need to switch
the shadow set; consequently, form Eq. (1), the corre-
sponding MRP vector σ is bounded to unit magnitude
or less, that is ‖σ‖ ≤ 1. In what follows, this property
aids the control design and analysis.

Step two: Control of the full rigid body model
Let the auxiliary variable α ∈ �3 be defined as

α = ω − ωdesire. (17)

The dynamics equation (4) in term of α is trans-
formed to

α̇(t) = Ξ(σ, α) + J−1T (t − τ) (18)

where

Ξ = −J−1Sα−Pσ J (α−Pσ)+P B[α−Pσ ], Ξ ∈�3.

(19)

Weuse the actual control input T to driveα to zero. If
α goes to zero, ω will tend to the desired value ωdesire

and then the kinematics subsystem (2) is asymptoti-
cally stable as shown in Lemma 1, namely, σ → 0 and
eventually ω → 0; hence, the entire system will be
stabilized.

To aid the subsequent control design and analysis,
we show that the function Ξ is bounded under the
condition of bounded state. For the sake of simplic-
ity, assume that the feedback gain P is a diagonal
matrix, that is P = dig[P1, P2, P3]. Furthermore, P̄
and P denote maximal and minimal eigenvalues of P ,
respectively.

The application of Euclidean norm together with the
triangular inequality and Properties 1 and 2 yields (see
Appendix 2 for more details):

‖Ξ‖ ≤ γ1‖σ‖ + γ2‖α‖, ∀σ, α ∈ �3 (20)

where γ1 = 1.5P̄2 and γ2 = 2.5P̄ + ‖α‖∞.
Next theorem presents a state feedback controller

that achieves the global asymptotic attitude regulation.

Theorem 2 Consider the rigid spacecraft described
by Eqs. (2) and (4) with the virtual law (13). Suppose
there is no disturbance i.e., Td(t) = 0, and Assumptions
1 and 2 are satisfied. Let the control law be

T (t) = Je�τ̄
(
�α + ω̇desire + J−1Sω Jω

)
. (21)

If a negative scalar constant � and a symmetric pos-
itive definite matrix P are selected such that the follow-
ing conditions hold

� > 2.5P̄ + ‖α(0)‖∞ − 1

2.1τ̄
(22)

P̄ <
4

21τ̄
− 0.4‖α(0)‖∞ (23)

P̄2

P
<

1

1.5
√
5.01τ̄

(24)

then, the closed-loop system is uniformly globally
asymptotically stable (UGAS).

Proof See Appendix 3.

Remark 2 The dependency of � on τ̄ is illustrated in
condition (22). As it is expected, the admissible value
for � shrinks as the time delay increases. From condi-
tions (22) and (23), it is observed that as τ → ∞, there
are no such values for � and P which meet our goal.
Therefore, the necessity of Assumption 1 is clarified.
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Remark 3 It is convenient to simply choose the matrix
P = pI in the virtual controller, where p is a positive
constant.

3.2 With disturbances

In Theorem 2, we have presented the state feedback
control law that solves the regulating problem for the
spacecraft attitude system (2) and (4) without exter-
nal disturbances. One may come to a quick conclusion
that since the zero-disturbance system is UGAS, when
disturbance impacts are taken into account, the system
is ISS. But as shown in [43], this is not true for non-
linear systems in general, and the disturbance Td may
destabilize the system.

In the next theorem, we consider the case where
there is additive disturbance in the input T of Eq. (4).

Theorem 3 Suppose that Assumptions 1 and 2 are
satisfied. The spacecraft attitude system described by
Eqs. (2) and (4) in closed-loop with the control law
described by Eqs. (13) and (21) is ISS.

Proof See Appendix 4.

4 Simulation and comparison results

In order to evaluate the performance of the pro-
posed attitude stabilization control strategy, a set of
numerical simulation scenarios have been carried out
using the rigid spacecraft system, where the physi-
cal parameters of the system are taken from [1,12];
that is, the inertia matrix of the satellite is J =
diag [1000, 500, 700] Kgm2, the satellite is moving in
a circular orbit with inclination 40◦ and altitude of
400 km, which yields an orbital angular velocity of
ωo = 0.0649◦/s.

4.1 Nominal performance

At first, the effectiveness of the proposed control
scheme is examined indisturbance-free scenario.Using
the rotation sequence 1–2–3 for direction cosinematrix
[39, p. 759], the initial Euler angles of the satellite
are taken to be (φ, θ, ψ) = (125◦, 65◦, 55◦), yield-
ing the initial MRP vector σ(0) = [0.3507, 0.3612,

−0.1552]T . It is noteworthy to mention that for stabi-
lizing the spacecraft with the specified initial value, we
need 111.1262◦ eigenaxis rotation angle about princi-
pal axis ê = [0.6657, 0.6857,−0.2945]T . Such angle
of rotation illustrates the capability of the controller
to achieve large-angle attitude maneuvers of the space-
craft. The initial angular velocity of the satellite is taken
to be ω(0) = [0.01, −0.02, 0.01]T rad/s. We assume
that the maximum time delay τ̄ is 750ms. So, accord-
ing to Theorem 2, the gain parameters must be chosen
such that p < 0.254 and � > −0.334.

From the proof of Lemma 1, the role of the gain
parameter p becomes clear in the controller opera-
tion. It can be accounted as the decay rate of exponen-
tial stable subsystem, so its value determines the time
required for σ to converge to the origin. If p increases,
the system states tend to zero faster, but ω and subse-
quently T take higher values. The same statement is
also true for |�|. The gain � appears as a scaling factor
on the input control T , so higher |�| values serve to
much larger control magnitudes. However, this implies
a faster response. Thus, a trade-off between the system
speed response andmagnitude of the control action can
be realized. Hence, for an acceptable performance, we
must properly select these parameters to tune the con-
troller. By several trials an observing the simulation
responses, these parameters are chosen to be p = 0.11
and � = −0.1.

Figure 1 shows the time histories of MRPs, angu-
lar velocity, auxiliary variable α and actuator effort T
when the actual time delay is τ = 500ms. In addition,
since the MRPs bear no physical meaning from the
practical viewpoint, we also show the spacecraft atti-
tude responses using associated Euler angles in Fig. 2.
As it is observed, after approximately 200 s, the satellite
settles.

To illustrate the conservatism in the selection of the
upper bound for the delay time, a simulation is per-
formed under the given conditions using various time
delays. Figure 3 depicts the results of such simulation.

Hereafter, we observe that for actual delay τ ≥
10.2 s, the closed-loop system is not stable anymore.
The first 250 s of simulation results for τ = 10.2 s are
plotted in Fig. 4.

Some points can be extracted from Figs. 1, 2, 3, 4:
(1) since ‖σ‖ < 1 for all situations, it is confirmed that
the MRP vector travel a minimum path to reach the
origin, i.e., the unwinding phenomenon is avoided; (2)
because the controller of the kinematics subsystem is
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Fig. 1 Simulation results
for τ = 500ms and
τ̄ = 750ms
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Fig. 2 The time responses of the Euler angles for τ = 500ms
and τ̄ = 750ms

optimal, MRPs are robust against the variation of sys-
tem condition; (3) when the length of delay increases,
the controller torque also increases; this is due to the
fact that the amount of errors build over delay inter-
val increase as time delay τ increases. This leads to
large control torque demands; (4) as expected, the sim-
ulation results also confirm that the auxiliary variable
α takes maximum value in the starting point; (5) we
observe that the actual delay length τ that causes insta-
bility is relatively large compared to τ̄ ; indeed, we find
our results very conservative. This is in part caused by
the nature of the L–K functional methods, but it is also
due to the conservativeness introduced in the proce-

dures that are performed to obtain the inequality (20).
So, this issue needs further investigations to reduce the
conservativeness.

4.2 Uncertainty scenario

In order to clearly demonstrate the robustness of the
resulted closed-loop system with respect to external
disturbance and uncertainties in the spacecraft para-
meters, a simulation is conducted by considering grav-
ity gradient torque Tg which is introduced in Eq. (5)
and the constant mismatch in the inertia matrix of the
spacecraft, simultaneously. All simulation parameters
are selected the same as the first simulation except
the actual time delay, which is assumed here to be
τ = 634ms.

As we previously alluded, the mismatch in the iner-
tial matrix can be caused by a variety of circum-
stances, e.g., fuel consumption, instruments/structure
deployment and pre-launch imprecision. Hence, with-
out going into the details of possible nature of this mis-
match, we assume that the real inertial matrix Jr is
given by

Jr =
⎡
⎣ 939.1205 −160.6458 −26.5661

−160.6458 573.6174 −42.7836
−26.5661 −42.7836 687.2621

⎤
⎦ . (25)
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Fig. 3 Norm of MRP
vector ‖σ‖, angular velocity
‖ω‖ and control torque ‖T ‖
for different τ and
τ̄ = 750ms
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Fig. 4 Norm of MRP vector ‖σ‖, and angular velocity ‖ω‖ for
τ = 10.2 s and τ̄ = 0.75 s

Note that the real inertia matrix Jr has been used in the
place of the nominal one in the spacecraft dynamics
(4). Meanwhile, the inertia matrix used by the con-
trollers remains the nominal one. Now, we apply the
proposed controller. The simulation results are illus-
trated in Fig. 5, fromwhich we conclude that the space-
craft reaches the demanded oration with high accu-
racy less than 2.0394e−4 and 2.2053e−5 rad/s for
MRPs and velocity, respectively. Also, the discrepancy
between the nominal plant variables and their perturbed
ones is presented in Fig. 6, where δ denotes the mis-
match between the same variables in two different con-
ditions. For example, δσ equals to σ in nominal case
minus σ in perturbed situation, etc. The results illus-
trate that all σi andωi , i = 1, 2, 3 evaluations are close
to their nominal values. So the suggested controller is
capable of rejecting the disturbances.

4.3 Comparison with other controllers

Finally, the proposed algorithm is compared to the con-
troller presented in [12]. Toward this end, the system
parameters are taken from [12] as

σ(0) = [0, 0.0014,−0.0014]T τ̄ =0.0125 s Td(t)=0
ω(0) = [0.001, 0, 0]T τ = 0.012 s.

Note that since in this scenario, the value of τ̄ is
changed and it takes a different value from the first and
the second simulations, again we tune the proposed
control parameters to satisfy the conditions (22)–(24)
of Theorem 2. Adopting an analogous approach pre-
sented in the first scenario, the controller gains are
changed to p = 4.5 and � = −1.25 (note that however,
the controllerwith previous gains is still able to stabilize
the system, but to have a fair performance comparison
between our approach and the control law extracted in
[12], the controller parameters are changed).

The results of such comparison are reported inFig. 7.
It can be observed that the plant behavior under the
proposed control strategy is comparable with the con-
troller presented in [12] and there is no considerable
difference between both schemes in the convergence
rate, the magnitude of control effort and the accuracy.

For the sake of completeness, we also compare our
control approach with the controller proposed in [1]
where therein the time delay is considered as a known
constant and RP is used to represent the attitude ora-
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Fig. 5 Simulation results in
the presence of
disturbances: MRP vector
σ , angular velocity ω,
gravity gradient torque Tg
and control input T for
τ = 634ms and τ̄ = 750ms
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Fig. 6 The discrepancy
between related parameters
in two different conditions:
nominal case and perturbed
situation for τ = 634ms
and τ̄ = 750ms
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tion. The major difference between our proposed strat-
egy and the works done in [1,12] is the allowed max-
imum rotation angle. For same delay, in [1] and [12],
the maximum principle rotation angles are restricted to

0.0036 rad and 0.0274 rad, respectively. This implies
that these strategies are only able to stabilize the space-
craft in a small neighborhood of the origin. However,
in our approach, there is not such a restriction, and the
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Fig. 7 Performance
comparison of our approach
(solid line) and the
controller presented in [12]
(dashed line) for
τ = 0.012 s and
τ̄ = 0.0125 s
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Table 1 The performance comparison of different controllers

Controller Maximum
allowable
rotation angle

Possess robustness
property

Controller in [1] 0.206◦ No

Controller in [12] 1.57◦ No

Proposed controller 180◦ Yes

introduced controller can stabilize the spacecraft for
any arbitrary rotation; i.e., according to Theorem 2,
our approach is global. Furthermore, we prove that
our approachpossesses robustness properties; however,
neither the controller [1] nor the approach [12] owns
such features. The performance comparison of three
different controllers is summarized in Table 1.

5 Conclusions

In this paper, a backstepping method for stabilizing
the rigid spacecraft attitude with unknown constant
delayed inputs has been investigated. The adopted
scheme has the advantages in not only uniformly glob-
ally asymptotically stabilizing the system but also
achieving an ISS property to the closed-loop system.

Furthermore, it is shown that the intermediate (vir-
tual) control law is inverse optimal with respect to a
meaningful cost functional that consists of penalties
on the system states. The benefits of the inverse opti-
mal approach are that it implies robustness properties
against model uncertainties and external disturbances,
while avoiding unwinding phenomenon. Numerical
simulation results show that the proposed strategy can
efficiently stabilize the system even in the presence
of disturbances. Reducing conservatism and extend-
ing our results for unknown time-varying delays, while
the angular velocity is unmeasurable are the topics for
future research.
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ciated Editor and the anonymous reviewers for their insightful
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Appendix 1: Some useful inequalities

In what follows, we recall some well-known inequali-
ties.

Jensen’s inequality: For any positive scalar γ and a
real-valued function f such that the considered inte-
grations are well defined, we have
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(∫ γ

0
f (η) dη

)2

≤ γ

∫ γ

0
f 2(η) dη. (26)

Cauchy–Schwarz inequality: Let x, y ∈ �. The
Cauchy–Schwarz inequality says that

‖x + y‖2 ≤ (‖x‖ + ‖y‖)2. (27)

Young’s inequality: Let 1 < p, q < ∞ satisfy the
constraint 1/p + 1/q = 1, and x, y ∈ �+. Then

xy ≤ 1

p
x p + 1

q
yq .

An elementary case of Young’s inequality is

xy ≤ 1

2ε2
x2 + ε2

2
y2, ε ∈ �.

From above inequalities, one can immediately fol-
low that

(x + y)2 ≤ 401

400
x2 + 401y2. (28)

(x + y)2 ≤ 2x2 + 2y2. (29)

(x + y)2 ≥
(
1 − 1

ε2

)
x2 + (1 − ε2)y2. (30)

Appendix 2: Extracting upper bound of ‖Ξ‖

Let rewrite Ξ as

Ξ = Ξ1 + Ξ2 (31)

where

Ξ1 = − J−1Sα−Pσ J (α − Pσ) (32)

Ξ2 =P B(α − Pσ), Ξ1, Ξ2 ∈ �3. (33)

Ξ1 can expand to

Ξ1 = −diag

[
J3 − J2

J1
,

J1 − J3
J2

,
J2 − J1

J3

] 4∑
j=1

Ξ1 j

(34)

where

Ξ11 = diag [α2, α3, α1] [α3, α1, α2]
T

Ξ12 = −diag [P2, P3, P1] diag [σ2, σ3, σ1] [α3, α1, α2]
T

Ξ13 = −diag [P3, P1, P2] diag [σ3, σ1, σ2] [α2, α3, α1]
T

Ξ14 = diag [P2, P3, P1] diag [P3, P1, P2]

diag [σ2, σ3, σ1] [σ3, σ1, σ2]
T .

Property 2 implies ‖diag
[

J3−J2
J1

, J1−J3
J2

, J2−J1
J3

]
‖ ≤

1. On the other hand, Property 3 deduces ‖σ‖ ≤ 1.
Hence, considering these inequalities and successive
application of the triangular inequality, from (34), we
obtain

‖Ξ1‖ ≤ (‖α‖∞ + 2 P̄
) ‖α‖ + P̄2‖σ‖. (35)

Also Ξ2 satisfies

‖Ξ2‖ ≤ ‖P Bα‖ + ‖P (B Pσ) ‖

≤ P̄
1 + ‖σ‖2

4

(‖α‖ + P̄‖σ‖)

≤ 1

2
P̄

(‖α‖ + P̄‖σ‖) (36)

where Eq. (8) in Property 1 is used to drive (36).
Finally, combining (35) and (36) yields (20).

Appendix 3: Proof of Theorem 2

Before proving Theorem 2, we introduce a function
which plays a key role in the proof. Our approach
lies on the application of an operator of new type that
leads to develop a delay compensation control law. This
algorithmmay be seen as classical reduction technique
[3] but as pointed in [34], there is a major difference
between classical reduction approach and algorithms
based on application of this operator. By this consider-
ation, the functionO(σ, α) : �3×�3 → �3 is defined
by [21,22,34,35]

O = α(t) +
∫ t

t−τ

e�(t−τ−η) J−1T (η) dη (37)

and using Leibniz’s rule, its time derivative is obtained
as

Ȯ = α̇ + e−�τ J−1T (t) − J−1T (t − τ)

+ �

∫ t

t−τ

e�(t−η−τ) J−1T (η) dη. (38)
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By substituting dynamics Eq. (18) and the control law
(21) in Eq. (38), and also by adding and subtracting �α

to the referenced equation, we have

Ȯ = Ξ + J−1T (t−τ)+e−�τ J−1T (t)− J−1T (t−τ)

+ �

∫ t

t−τ

e�(t−η−τ) J−1T (η) dη + �α − �α

= �O −
(
1 − eτ̄−τ

) [
�α − Ξ

]
. (39)

By the virtue of Krasovskii theorem (see [42, Theorem
3.7] or [16, Theorem 3.6]) and thanks to the negativ-
ity of � which is guaranteed by conditions (22) and
(23), one can find that O is a solution of exponentially
stable system with Lyapunov functionOTO. Thus, the
existence of γ3 ∈ �+ such that

ȮTO ≤ −γ3‖O‖2 (40)

is guaranteed. This featurewill be used inwhat follows.
Using Sepulchre–Janković–Kokotović approach

[40] with the function O, the L–K functional is con-
structed as

v(σ, α) = v0 +
5∑
1

vi (41)

where

v1(σ ) = 1

2τ̄

∫ t

t−τ̄

∫ t

λ

σ T (η)Pσ(η) dη dλ

v2(α) = γ4

∫ t

t−τ̄

∫ t

λ

‖α(η)‖2 dη dλ

v3(σ ) = γ5

∫ t

t−τ̄

σ (η)T Pσ(η) dη

v4(α) = γ5

∫ t

t−τ̄

‖α(η)‖2 dη

v5(σ, α) = 1 + 802τ̄ γ4

2γ3
‖O‖2

in which γ4 = (
22.545τ̄ 3 P̄4/P

)−1
and γ5 ∈ �+ is a

constant which will be defined further ahead.
The derivatives of vi , i = 0, 1, . . . , 5 are obtained

as

v̇0 = −σ(t)T Pσ(t) + σ T (t)α(t) (42)

v̇1 = 1

2
σ(t)T Pσ(t) − 1

2τ̄

∫ t

t−τ̄

σ (η)T Pσ(η) dη (43)

v̇2 = γ4τ̄‖α‖2 − γ4

∫ t

t−τ̄

‖α(η)‖2 dη (44)

v̇3 = γ5

[
σ(t)T Pσ(t) − σ(t − τ̄ )T Pσ(t − τ̄ )

]
(45)

v̇4 = γ5

[
‖α(t)‖2 − ‖α(t − τ̄ )‖2

]
(46)

v̇5 = 1 + 802τ̄ γ4

γ3
ȮTO. (47)

To show negativity of v, we shall establish the
inequalities obtain from Eqs. (42)–(44) and (47).

Since ‖σ(t)‖2 ≤ 1/Pσ(t)T Pσ(t) for all t > 0, we
get

v̇0 ≤ −σ(t)T Pσ(t) + ‖σ(t)‖‖α(t)‖

≤ −σ(t)T Pσ(t) +
√

1

P
σ(t)T Pσ(t)‖α‖. (48)

Definition of function O allows us to have the fol-
lowing inequality

‖α(t)‖ ≤
∫ t

t−τ

e�(t−τ−η)‖J−1T (η)‖ dη + ‖O‖

≤ sup
τ

[∫ t

t−τ

e�(t−η+τ̄−τ)‖ [
Ξ(η) − �α

] ‖ dη
]

+ ‖O‖.

This inequality together with the inequality (20) and
the negativity of � implies that

‖α(t)‖ ≤
∫ t

t−τ̄

e�τ̄‖ [
Ξ(η) − �α

] ‖ dη + ‖O‖

≤
∫ t

t−τ̄

(γ1‖σ(η)‖ + γ6‖α(η)‖) dη + ‖O‖
(49)

where γ6 =γ2 − �.
Using Jensen’s inequality (26) in conjunction with

Cauchy–Schwarz inequality (27), andYoung’s inequal-
ities which are specialized for our needs, namely (28)
and (29), we conclude

‖α(t)‖2 ≤
(∫ t

t−τ̄

(γ1‖σ(η)‖ + γ6‖α(η)‖) dη + ‖O‖
)2

≤ 401

400

(∫ t

t−τ̄

(γ1‖σ(η)‖ + γ6‖α(η)‖) dη
)2

+ 401‖O‖2

≤ 401

400
τ̄

∫ t

t−τ̄

(γ1‖σ(η)‖ + γ6‖α(η)‖)2 dη
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+ 401‖O‖2

≤ 401

200
τ̄

∫ t

t−τ̄

(
γ 2
1 ‖σ(η)‖2 + γ 2

6 ‖α(η)‖) dη

+ 401‖O‖2

≤ 401

200
τ̄

∫ t

t−τ̄

(
γ 2
1

P
σ T (η)Pσ(η)+γ 2

6 ‖α(η)‖2
)

dη

+ 401‖O‖2. (50)

Consequently, by combining (50)with (44),wededuce
that the following inequality holds

v̇2 = γ4

(
−τ̄‖α‖2 −

∫ t

t−τ̄

‖α(η)‖2 dη + 2τ̄‖α‖2
)

≤ γ4

(
−τ̄‖α‖2+

(
4.01τ̄ 2γ 2

6 −1
) ∫ t

t−τ̄

‖α(η)‖2 dη

+ 4.01τ̄ 2
γ 2
1

P

∫ t

t−τ̄

σ T Pσ dη + 802τ̄‖O‖2
)

.

(51)

The functional v is chosen such that its time deriv-
ative along the trajectories is negative definite. Hence,
this implies that a value for the ‖α(t)‖∞ occurs over
the initial condition interval, i.e.,‖α(t)‖∞ = ‖α(0)‖∞.
Bearing this point in mind, the condition (22) imposes
that 4.01τ̄ 2γ 2

6 − 1 ≤ −0.4τ̄ 2γ 2
6 . Combining (51) and

the previous inequality, we get

v̇2 ≤ γ4

(
− τ̄‖α‖2 − 0.4τ̄ 2γ 2

6

∫ t

t−τ̄

‖α(η)‖2 dη

+ 4.01τ̄ 2
γ 2
1

P

∫ t

t−τ̄

σ T Pσ dη + 802τ̄‖O‖2
)
.

(52)

Next, we need to extract an inequality for v̇5 which
is useful for our purpose. This is immediately done by
considering the inequality (40), so

v̇5 ≤ − (1 + 802τ̄ γ4) ‖O‖2. (53)

Consequently, combining the inequalities (43), (45),
(46), (48), (52), and (53) together and with some stan-
dard algebraic manipulations, we conclude that, for all
t ≥ 0

v̇ ≤ −1

2
σ T Pσ +

√
1

P
σ T Pσ‖α‖ − γ4τ̄‖α‖2

− 0.4τ̄ 2γ4γ
2
6

∫ t

t−τ̄

‖α‖2 dη

−
(

1

2τ̄
− 4.01τ̄ 2γ4

γ 2
1

P

) ∫ t

t−τ̄

σ T Pσ dη − ‖O‖2

+ v̇3 + v̇4.

The above inequality can be rewritten as

v̇ ≤ −
[√

σ T Pσ ‖α‖
]
N

[√
σ T Pσ ‖α‖

]T

− 0.4τ̄ 2γ4γ
2
6

∫ t

t−τ̄

‖α‖2 dη

− 50

501τ̄

∫ t

t−τ̄

σ T Pσ dη − ‖O‖2

+ v̇3 + v̇4, (54)

where N =
⎡
⎣

1
2 − 1

2
√

P

− 1
2
√

P
γ4τ̄

⎤
⎦.

It is clear that the first term of the right-hand side of
the inequality (54) is negative definite, if N is positive
definite matrix, i.e., we have

1

2
τ̄ γ4 − 1

4P
> 0 → P̄4

P2 <
1

1.525.01τ̄ 2
(55)

which implies that the inequality in condition (24)
must be satisfied. Furthermore, it is easy to prove that
there exists a positive constat γ5 such that
λ(N ) > 2γ5 (for instance 4γ5 = 0.5 + τ̄ γ4 −√
0.25

(
1 + P

) + τ 2γ 2
4 − τγ4); so

−
[√

σ T Pσ ‖α‖
]
N

[√
σ T Pσ ‖α‖

]T ≤
− 2γ5

(
σ T Pσ + ‖α‖2

)
.

Thus, by recalling the inequality (54), we conclude that
for all t ≥ 0, the following inequality holds

v̇ ≤ − γ5σ
T Pσ − γ5‖α‖2 − 0.4τ̄ 2γ4γ

2
6

∫ t

t−τ̄

‖α‖2 dη

− 50

501τ̄

∫ t

t−τ̄

σ T Pσ dη − ‖O‖2. (56)

Notice that, however, we prove the negativity of v̇

along the trajectories, but still we are not allowed to
apply L–K theorem [31, Theorem2.6]. For utilizing this
theorem and establishing the uniformly asymptotically
stability of the closed-loop system, we also need to
show that there exist κi ∈ K∞, i = 1, 2 such that
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κ1(‖σ T , αT ‖) ≤ v (σ, α)

≤ κ2

(
sup

−τ̄≤s≤0
‖σ T (t + s), αT (t + s)‖

)
.

(57)

To this end, since

v1≤ 1

2τ̄
τ̄ sup

λ∈[t−τ̄ ,t]

[∫ t

λ

σ T Pσ dη

]
= 1

2

∫ t

t−τ̄

σ T Pσ dη

and

v2 ≤ γ4τ̄ sup
λ∈[t−τ̄ ,t]

[∫ t

λ

‖α‖2 dη
]

= γ4τ̄

∫ t

t−τ̄

‖α‖2 dη

from the definition of v, the following inequality is
concluded

v ≤v0 +
(
1

2
+ γ5

) ∫ t

t−τ̄

σ T Pσ dη

+ (τ̄ γ4 + γ5)

∫ t

t−τ̄

‖α(η)‖2 dη

+ 1 + 802τ̄ γ4

2γ3
‖O‖2 (58)

which guarantees the existence of κ2 ∈ K∞ such that
v ≤ κ2.

The only thing that remains to be shown is a exis-
tence of κ1 which satisfy (57).

The definition of the functional v implies that

v ≥ v0 + v3 + v4 + v5.

Considering above inequality, through lengthy but
simple calculations and similar procedure which was
done to obtain Eq. (50) with utilizing inequality (30),
we obtain

v ≥ v0+v3+v4+ 1 + 802τ̄ γ4

γ3

[(
1 − ε2

)
‖α‖2 + Υ

]

(59)

where

Υ = 2τ
(
1 − 1/ε2

)
e2�(τ̄−τ)

[(
2γ 2

2 + �2
) ∫ t

t−τ

‖α‖2 dη + 2γ 2
1 /P

∫ t

t−τ

σ T Pσ dη

]

and ε ∈ (−1, 1).

we observe that theΥ is a negative functional which
is not suitable for our purpose, but this problem is
solved efficiently by proper selecting of ε and consid-
ering v3 and v4 functionals (at this point, the reason of
introducing two functionals v3 and v4 in v is clarified).
So, it follows that

v ≥ v0 + 1 + 802τ̄ γ4

γ3

(
1 − ε2

)
‖α‖2 ∀t ≥ 0. (60)

Since the right-hand side of (60) is a positive definite
radially unbounded function, we are able to state that
there exists κ1 such that κ1 ≤ v. Therefore, according
to the L–K theorem, we prove that the origin of the
attitude system with control law (21) is UGAS. This
completes the proof.

Appendix 4: Proof of Theorem 3

To show that the resulting closed-loop system with the
proposed control law is ISS with respect to the distur-
bance Td, we just need to show that the functional (41)
is an ISS-LKF for the considered system.

Recalling that what we have done in the proof of
Theorem 2, from (56), we conclude that

v̇ ≤ − γ5σ
T Pσ − γ5‖α‖2 − γ7

∫ t

t−τ̄

‖α‖2 dη

− 50

501τ̄

∫ t

t−τ̄

σ T Pσ dη−‖O‖2+γ8OT J−1Td(t).

where γ7 = 0.4τ̄ 2γ4γ 2
6 and γ8 = (1 + 802τ̄ γ4) /γ3.

By the inequality

γ8OT J−1Td(t) ≤ 1/2‖O‖2 + γ 2
8 /2‖J−1Td‖2

it follows that for all t ≥ 0, we have v̇ ≤ −Γ (x, α) +
γ 2
8 /2‖J−1Td‖2 where

Γ = γ5σ
T Pσ + γ5‖α‖2 + γ7

∫ t

t−τ̄

‖α‖2 dη

+ 50

501τ̄

∫ t

t−τ̄

σ T Pσ dη + 1

2
‖O‖2.

The positive definiteness of Γ implies that there
exists a class K∞ function κ3 such that v̇ ≤ −κ3 +
γ 2
8 /2‖J−1Td‖2. This inequality and the positive def-

initeness condition (57) imply that v is an ISS-LKF.
Finally, from Definition 1, we deduce that the system
is ISS with respect to Td .
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