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Abstract In this paper, the nonlinear dynamic char-
acteristics of a rotor system supported by ball bear-
ings with pedestal looseness are analyzed. The model
of seven-degrees of freedom (DOFs) rotor system is
established by the Newton’s second law, which com-
prises a pair of ball bearings with pedestal looseness at
one end. Energy analysis of the original model states
that thefirst two-order proper orthogonalmodes occupy
almost all the energy of the system, and it demon-
strates that the reduced model reserves main dynam-
ical topological characteristics of the original one. A
modified proper orthogonal decomposition method is
applied in order to reduce the DOFs from seven to
two, and the reduced system preserves the bifurcation
and amplitude–frequency characteristics of the original
one. The harmonic balancemethod with the alternating
frequency–time domain technique is used to calculate
the periodic response of the reduced system.Moreover,
stability of the two-DOFs model is analyzed based on
the known harmonic solution by the Floquet theory.
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1 Introduction

Thepedestal looseness fault of rotor systemhas become
one of the special faults in rotor dynamics, attracting the
attention of researchers in many areas. Ji et al. [1] uti-
lized multi-scale method to analyze the vibration char-
acteristics of autonomous rotor-bearing system with
supporting looseness. An et al. [2] studied the fault
features of front and rear bearing pedestal looseness
of wind turbine, and the relevant experiments. Chu [3]
analyzed the periodic, chaos, quasiperiodic characteris-
tics of a rotor-bearing system with pedestal looseness.
Agnes and Paul [4] studied the chaotic responses of
the unbalanced rotor–stator systemwith both looseness
and rubs faults. The nonlinear finite element method
was applied to study the nonlinear characters of over-
hanging dual-disk rotor bearing for pedestal looseness
fault in ref. [5].Goldman andMuszynska [6] performed
experiments and analytical and numerical investiga-
tions on the unbalanced response of a rotating machine
with looseness pedestal at one end, and that model was
simplified as a bilinear form vibrating system. In ref.
[7], it presented a finite element model of a rotor sys-
temwith pedestal looseness stems froma loosened bolt,
analyzing the effects of the looseness parameters on its
dynamic characteristics.

The qualitative characters of the nonlinear fault
model were studied by a number of researchers in
many areas, for example, the stability of the unbal-
anced rigid rotor on lubricated journal bearings model
[8], the bifurcation, chaos, reliability sensitivity of rub–
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impact fault [9–11], the unsteady motion and nonlin-
ear instability analysis of the nonlinear oil-film model
[12] and so on. While the qualitative analysis of the
pedestal looseness system (piecewise linear system)
was studied by few researchers, such as the stability and
response of piecewise linear oscillators under multi-
forcing frequencies were analyzed in ref. [13], andKim
[14] did the stability and bifurcation analysis of oscil-
lators with piecewise linear characters. But almost no
one did the work about combining the stability analysis
of the pedestal looseness system with the order reduc-
tion method. As an effective order reduction method,
the modified POD method can ensure that the reduced
system reserves the dynamical characteristics of the
original one [15–17]. So it is essential to study the sta-
bility of the reduced systembased on themodified POD
method.

The motivation of this paper is to analyze the sta-
bility of two-DOFs model reduced from the seven-
DOFs pedestal looseness rotor-bearing model based
on the modified POD method. The number of DOF
of the reduced model is determined by the first few-
order POMs which occupy almost all the energy of
the system, and this energy judgment method is to
guarantee reliability of the reduced model. The effi-
ciency of the modified POD method is presented by
comparing the reduced system with the original one.
The stability of the reduced system is analyzed which
stands for the qualitative characteristics of the original
system.

2 Model of rotor pedestal looseness

For the rotor model with pedestal looseness at one end
shown in Fig. 1, the dynamical equation of seven-DOFs
model with ball bearings at both ends is established by
Newton’s second law, and the equation is expressed
as:
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Fig. 1 Rotor model with pedestal looseness at one end

m1 Ẍ1 + c1 Ẋ1 + k (X1 − X2) = FxL (X1, Y1 − Y4)

m1Ÿ1 + c1Ẏ1 + k (Y1 − Y2)

= FyL (X1, Y1 − Y4) − m1g

m2 Ẍ2 + c2 Ẋ2 + k (X2 − X3) + k (X2 − X1)

= m2eω
2 cos (ωt)

m2Ÿ2 + c2Ẏ2 + k (Y2 − Y3) + k (Y2 − Y1)

= m2eω
2 sin (ωt) − m2g

m3 Ẍ3 + c3 Ẋ3 + k (X3 − X2) = FxR (X3, Y3)

m3Ÿ3 + c3Ẏ3 + k (Y3 − Y2) = FyR (X3, Y3) − m3g

m4Ÿ4 + cs Ẏ4 + ksY4

= −FyL (X1, Y1 − Y4) − m4g (1)

ks =
⎧
⎨

⎩

ks1 (Y4 > δ1)

0 (0 ≤ Y4 ≤ δ1)

ks2 (Y4 < 0)
cs =
⎧
⎨

⎩

cs1 (Y4 > δ1)

0 (0 ≤ Y4 ≤ δ1)

cs2 (Y4 < 0)

(2)

Fx =
Nb∑

i=1

Cb (x sin θi + y sin θi − r0)
3/2 · H (x sin θi

+ y sin θi − r0) cos θi

Fy =
Nb∑

i=1

Cb (x sin θi + y sin θi − r0)
3/2 · H (x sin θi

+ y sin θi − r0) sin θi (3)

θi = ω1 × t + 2π

Nb
(i − 1) , i = 1, 2, . . . , Nb.

ω1 = ω × r

R + r
. ω2 = ω1 × Nb (4)

In the above equations, each parameter represents as
follows:

m1,m3: lumped mass of rotor in the left and right
bearing. m2: equivalent mass of rotor in the disk.

m4: mass of pedestal looseness. H (·): Heaviside
function. Cb: Hertz contact stiffness.

c1, c2, c3: damping coefficient of rotor in the left
bearing, disk and right bearing. k: stiffness of elastic
shaft.
R: outer raceway radius. r : inner raceway radius. θi :
angle position of the i th ball. ω: rotation speed.
ω1: cage speed. ω2: frequency of ball passes. ks, cs :
support stiffness and damp. e: eccentricity.
δ1: maximum of loosing clearance. c: bearing clear-
ance. o1, o4: geometric centers of the left and right
bearings. o2: geometric center of the disk. o3: center
of gravity.

123



Stability analysis of reduced rotor pedestal looseness fault model 1613

The values of detailed parameters are expressed as:

k = 2 × 107 N/m,m1 = m3 = 4 kg,m2 = 30 kg,

m4 = 50 kg, δ = 0.55mm, e = 0.01mm, c = 0.005mm

ks1 = 7 × 107 N/m, ks2 = 2 × 109 N/m,

cs1 = 350N s/m, cs2 = 350N s/m,

c1 = c3 = 1050N s/m c2 = 2100N s/m,

R = 40mm, r = 64mm,

Nb = 8,Cb = 13.3 × 109 N/m

By nondimensionalizing Eq. (1), the dimensionless
form can be obtained, and the dimensionless transfor-
mation and the equation are expressed as:

τ = ωt, xi = Xi

c
, yi = Yi

c
, ẋi = dxi

dτ
, ẏi = dyi

dτ
,

ẍi = dẋi
dτ

, ÿi = dẏi
dτ

fx1 = FxL
m1cω2 , fy1 = FyL

m1cω2 , fx2 = FxR
m3cω2 ,

fy2 = FyR

m3cω2 , fys = FyL

m4cω2

ẍ1 + c1
m1ω

ẋ1 + k

m1ω2 (x1 − x2) = fx1 (x1, y1 − y4)

ÿ1 + c1
m1ω

ẏ1 + k

m1ω2 (y1 − y2)

= fy1 (x1, y1 − y4) − g

ω2c

ẍ2 + c2
m2ω

ẋ2 + k

m2ω2 (x2 − x3)

+ k

m2ω2 (x2 − x1) = e

c
cos τ

ÿ2 + c2
m2ω

ẏ2 + k

m2ω2 (y2 − y3)

+ k

m2ω2 (y2 − y1) = e

c
sin τ − g

ω2c

ẍ3 + c3
m3ω

ẋ3 + k

m3ω2 (x3 − x2) = fx2 (x3, y3)

ÿ3 + c3
m3ω

ẏ3 + k

m3ω2 (y3 − y2) = fy2 (x3, y3) − g

ω2c

ÿ4 + cs
m4ω

ẏ4 + ks
m4ω2 y4 = − fys (x1, y1 − y4) − g

ω2c
(5)

3 Mode energy analysis based on modified POD
method

In this section, the mode energy analysis method is
applied to estimate the number of DOFs of the reduced

system. Compared with the traditional POD method
[18–20], the modified one is more efficient for the
multi-DOFs rotor-bearing system. The basic construc-
tion process of the modified POD method can be
expressed as follows: obtaining a set of POMs by uti-
lizing POD from the transient process of the system,
taking the first two orders of the POMs to form the
projection space and projecting original system onto
this space. Nevertheless, the traditional POD method
considers to be the steady process of the system. The
transient time series contain the forced and free vibra-
tion information, involving more dynamical character-
istics than the steady time series with only forced vibra-
tion information. Based on the modified POD method,
the reduced system reserves the bifurcation and the
amplitude–frequency characters of the original one,
and the relative error of this method is less than 5%.
However, the reduced system loses most of the dynam-
ical characteristics of the original one based on the tra-
ditional POD method [16,17].

We apply the modified POD method to reduce the
original system, and then we calculate the eigenvalues
of the covariancematrix and confirm thefirst fewPOMs
associated with the first few largest POVs to occupy
the energy percentage of all nonnegative POVs, i.e.,
the physical interpretation of POM energy in the vibra-
tion is applied [21–26]. The mathematical construction
process of the modified PODmethod is introduced par-
ticularly in ref. [16].

For the time history of x3 shown in Fig. 2, the mod-
ified POD method is applied to truncate the transient
process of the system. Lu et al. applied this method
in 23-DOFs rotor system with pedestal looseness suc-
cessfully and verified the efficiency of the method
in ref. [16]. What is more, he explained the phys-
ical interpretation of the truncation of the transient
process [17].

Given the initial conditions that the integral step is
π/256, the displacement and the velocity are x3 =
y3 = 0.5, xi = yi = y4 = 0 (i = 1, 2), ẋi = ẏi =
ẏ4 = 0.001 (i = 1, 2) and ω = 1250 (rad/s). As is
shown in Fig. 2, the horizontal ordinate time history
of the right bearing is provided. If τ in formula (5) is
selected between 0 and 30π , the system is the tran-
sient process, and the system is in the periodic motion
state after 30π . According to the POM algorithm of
section 2.2 in ref. [16], the coordinate transformation
matrix utilized the signal of the transient process to
gain is:
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Fig. 2 Time history of x3 under initial conditions when ω = 1250 (rad/s)

V = 10−2
(−0.001 65.03 −5.820 39.01 −0.002 −0.090 64.93

−0.002 26.78 43.50 −81.86 −0.003 −0.520 26.25

)T

The POM associated with the largest POV is the
optimal vector to characterize the ensemble of snap-
shots. The POMwith the second largest POV restricted
to the space orthogonal to the first POM is also the
optimal vector to characterize the ensemble of snap-
shots, and so as follows. The energy contained in the
data can be expressed by the POVs of the covari-
ance matrix, i.e., the sum of the POVs, and the energy
percentage captured by the kth POM is expressed as
λk/
∑

i λi (λi ≥ 0) [27].
For the model in Sect. 2, we choose the first and

second POM associated with the largest POVs to
observe the energy percentage captured by the POMs.
Through numerical simulation, the transient time series
displacement information of all DOFs was obtained
in equal time interval, denoted by x1(t), x2 (t) , . . . ,

xm (t), wherem is the number of DOF.We gain n equal
time interval displacement series for each DOF, written
as xi = (xi (t1) , xi (t2) , . . . , xi (tn))T , i = 1, . . . ,m,
the time series form the matrix X = [x1, x2, . . . , xm],
and the order of X is n×m. Thus, we get the correlation
matrix T = 1

n X
T X with order of m × m. The eigen-

vectors of the correlation matrix are ϕ1, ϕ2, . . . , ϕm ,
which are called POMs, and the corresponding eigen-
values are denoted by λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0,
referred as POVs. We calculate the sum of eigenvalues
λ1, λ2 to get the energy of the first two POMs, and the
energy is denoted by s as follows.

s = (λ1 + λ2)
/ m∑

i=1

λi (6)

For the convenience of calculation, formula (5) is writ-
ten as (7) briefly:

Z̈ = −C Ż − K Z + F (7)

In formula (7), C is damping matrix, K is stiff-
ness matrix and F is force vector, which includes
Hertz contact force and external excitation force. Here,
Z = [z1z2 . . . z7]T corresponds to [x1y1 . . . x3y3y4]T
in the Eq. (5).

After utilizing nonlinear transient POD method to
deal with the seven-DOFs rotor system with bear-
ing loose, the transient process displacement informa-
tion for each DOF is derived at the speed of ω =
1250 (rad/s), denoted by z1 (t) , z2 (t) , . . . , z7 (t);
each DOF produces equal time interval displacement
series with 7680 points, which can be written as the
format zi = (zi (t1) , zi (t2) , . . . , zi (t7680))T , i =
1, . . . , 7, and these time series form the matrix ϒ =
[z1, z2, . . . , z7], and the order of ϒ is 7680 × 7. The
correlation matrix is T = 1

7ϒ
Tϒ . The first two orders

of the correlation matrix is V , the original model is
reduced to two-DOFs model, and the energy s =
(λ1 + λ2)/

∑7
i=1 λi ≈ 99.99%.

As is analyzed above, the first two POMs of the
seven-DOFs rotor model occupy almost all the energy
of the original system, and we reduce the original
system to the two-DOFs one based on the modified
POD method. The equation of the reduced model is
expressed as formula (8).

P̈ = −C2 Ṗ − K2P + F2 (8)

When the damping matrix, stiffness matrix and
the external excitation matrix are C2, K2 and F2,
respectively, the followings are the coefficients of the
matrixes:
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C2 =
(
c11 c12
c21 c22

)

, K2 =
(
k11 k12
k21 k22

)

,

F2 =
(

f1 + fω1 + g1
f2 + fω2 + g2

)

.

These parameters are given in Appendix 1.

4 Efficiency of order reduction method

In order to show the efficiency of the modified order
reduction method, this section highlights the dynam-
ical behaviors of the original system and the reduced
system. We therefore analyze the phase portraits, tra-
jectories of orbit of shaft center, bifurcations diagrams
and amplitude–frequency curves. Comparison of the
original system with the reduced system shows that
the reduced system preserves the dynamical topolog-
ical structures of the original system by applying the
modified POD method.

As is shown in Figs. 3 and 4, they reflect the
comparison of the phase portraits and trajectories of
orbit of shaft center between the original system and
the reduced one. On the one hand, the comparison
shows that the reduced system reserves the dynam-
ical characteristics of the original system. On the
other hand, it verifies the efficiency of order reduction
method.

Figure 5a shows when ω ∈ (0, 876), the system is
in the state of periodic motion. The bifurcation occurs
when ω = 876, and the system is in the region of
complex motion when ω ∈ (876, 1032). The jump-
ing phenomenon arises when ω = 1032 and ω ∈
(1068, 1200), complex motion occurs in the system.
ω ∈ (1200, 1260), inverse period-doubling bifurcation
occurs. When ω ∈ (1260, 1392), the system is in the
state of periodic motion again. After ω = 1392, the
system is in the complex motion once more. Figure 5b
demonstrates that the bifurcation points and proper-
ties of the reduced system keep almost the same as
the original system. The reduced systemmaintains pri-
mary bifurcation characteristics and topological struc-
tures of the original system. As a result, the bifurcation
point can be found accurately by the modified POD
method.

Similarly, as is shown in Fig. 6, by using the mod-
ified POD method, the reduced system reserves the
amplitude–frequency character of the original system.
Moreover, the reduced model basically retains the
dynamical topological structures of the original model.
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03x

.
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Fig. 3 Phase portraits of shaft center o2(ō2) for the original and
reduced systemwhenω = 1250 (rad/s). a Phase portrait of shaft
center o2 for the original system. b Phase portrait of shaft center
ō2 for the reduced system

From what has been discussed above, the reduced
system maintains most of dynamical characteristics
of the original system by applying the modified POD
method, such as the phase portrait, trajectory of orbit
of shaft center, bifurcation and amplitude–frequency
characters.

5 Stability analysis

Based on the analysis above, the reduced system basi-
cally keeps the dynamical characteristics of the original
system, so the reducedmodel is able to replace the orig-
inal one to research the qualitative characters. In this
section, we will study the stability of the two-DOFs
reduced system to replace the seven-DOFs original sys-
tem.We will introduce the HB-AFTmethod to dispose
the equation of motion (8) and discuss the results of
stability analysis.
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Fig. 4 Trajectories of orbit of shaft center of o2(ō2) for the orig-
inal and reduced system when ω = 1250 (rad/s). a Trajectory
of orbit of shaft center of o2 for the original system. b Trajectory
of orbit of shaft center of ō2 for the reduced system

5.1 Harmonic balance method

First, we change the form of formula (8) as (9), so as to
apply the HB-AFT method. Equation (9) is expressed
as:

P̈ + C Ṗ + K P = F
(
Ṗ, P, ω, τ

)
(9)

where C is the damping matrix, K is the stiffness
matrix, P is the displacement vector, ω is the rotat-
ing frequency, t is the time and F

(
Ṗ, P, ω, τ

)
is the

vector containing all the efforts acting on the system.
For simplicity, F

(
Ṗ, P, ω, τ

)
will be written as F .

We assume that the harmonic excitation causes a
harmonic response [28], and P (τ ) can be written as a
Fourier series up to the uth term:

P (τ ) = B0 +
u∑

k=1

[Bk cos(kωτ) + Ak sin(kωτ)] (10)
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Fig. 5 Bifurcation diagrams. a Bifurcation diagram for the orig-
inal system. b Bifurcation diagram for the reduced system

Similarly, the forcing term F can also be expanded as
a Fourier series:

F = C0 +
u∑

k=1

[Ck cos(kωτ) + Dk sin(kωτ)] (11)

The Fourier series representation of Eqs. (10) and (11)
is put into Eq. (9), and the terms of same frequency are
balanced. For the constant terms, the balance leads to

K B0 = C0 (12)

For the i th sine term, the result of the balance is

(
K + ω2

)
Ai − (iω)CBi = Di (13)

For the i th cosine term, the result of the balance is

− (iω)CAi +
(
K + ω2

)
Bi = Ci (14)
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Fig. 6 Amplitude–frequency curves. a Amplitude–frequency
curve for the original system. b Amplitude–frequency curve for
the reduced system

The following system of equations of order (4u + 2) is
obtained by gathering all the harmonics together,which
is expressed as:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

1

. . .


i
. . .


u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B0

�1
...

�i
...

�u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0

�1
...

�i
...

�u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (15)

where


i =
(
K + ω2 − (iω)C
(iω)C K + ω2

)

�i =
(
Ai

Bi

)

�i =
(
Di

Ci

)

(16)

(
M
O

)T

=
(
B0 B1 A1 · · · Bu Au

C0 C1 D1 · · · Cu Du

)T

(17)

whereM and O represent the coefficients of harmonics
of displacements and nonlinear restore forces, respec-
tively.

Taking M as an unknown variable, using Eqs. (10–
14), the fixed point M can be found by the iteration
method. The Newton–Raphson method is applied for
the iteration, which is

J (i)
(
M (i+1) − M (i)

)
+ h(i) (18)

where J is the Jacobian matrix, J = ∂h/∂M .
The values of O, J in each step of iteration could be

obtained by the AFT technique after the process of har-
monic balance.We apply inverse discrete Fourier trans-
formmethod to obtain the discrete values of Px (τ ) and
Py (τ ) based on a supposed M , which can be expressed
as:

P (n) = B0 +
u∑

k=1

[

Bk cos

(
2πkn

N

)

− Ak sin

(
2πkn

N

)]

(19)

where n = 0, . . . , N . Here, x (n) , y (n) denote the
sampled points at the nth discrete time, that is to say,
x (n
T ) , y (n
T ) and 
T = 2π/N , whereN is the
number of samples in the time domain.

Based on the Eqs. (9) and (19), we discrete the non-
linear restoring force Fx (x, y, τ ) , Fy (x, y, τ ) into:

[
Fx (n)

Fy(n)

]

=
[
Fx (x (n) , y(n), 2πn/N )

Fy(x (n) , y(n), 2πn/N )

]

(20)

The discrete values of Fx (x, y, τ ) , Fy (x, y, τ ) in fre-
quency can be obtained to use the DFT as O , which
is

C0 = 1

N

N−1∑

n=0

[
Fx (n)

Fy (n)

]

(21)

Ck = 2

N

N−1∑

n=0

[
Fx (n)

Fy (n)

]

cos

(
2πkn

N

)

(22)

Dk = 2

N

N−1∑

n=0

[
Fx (n)

Fy (n)

]

sin

(
2πkn

N

)

(23)

where k = 1, . . . u.
By means of Eqs. (10–12), (19–23), the elements of

Jacobian J in Eq. (18) can be deduced into:
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∂Cx0

∂Bx0
= 3

2N
C̄b

N−1∑

n=0

Nb∑

i=1

G (δi (n))0.5 cos2 θ̄i,n

∂Cx0

∂By0
= 3

2N
C̄b

N−1∑

n=0

Nb∑

i=1

G (δi (n))0.5 sin θ̄i,n cos θ̄i,n

...

∂Dyk

∂Ax j
= 3

N
C̄b

N−1∑

n=0

Nb∑

i=1

×
[
G (δi (n))0.5 sin θ̄i,n cos θ̄i,n

]
sin

2π jn

N
sin

2πkn

N

∂Dyk

∂Ayj
= 3

N
C̄b

N−1∑

n=0

Nb∑

i=1

×
[
G (δi (n))0.5 cos2 θ̄i,n

]
sin

2π jn

N
sin

2πkn

N
(24)

where k, j = 1, . . . , u, δ̄i (n) = x (n) cos θ̄i,n +
y (n) sin θ̄i,n − r0, θ̄i,n = 2π (i − 1) /Nb + 2πn/N .

M can be obtained by iterations of Eq. (18) in proper
accuracy by combining the process of harmonic bal-
ance with AFT. For a supposed M0, O0 and J 0 are
obtained from Eqs. (19), (21–23), (24); and iterating
Eq. (18), we can get M1; continue the two steps, until
the norm of M (m) − M (m−1) is less than an allowed ε.

5.2 Brief introduction to Floquet theory

For the stability analysis of the reduced piecewise lin-
ear system, we need to analyze the stability of peri-
odic solutions obtained by HB-AFT so that to make
a systematic study on the bifurcation characteristics
of the system. In this research, the Floquet theory is
employed [29], and the method proposed by Hsu is
applied to approximate the monodromy matrix. Based
on the characteristics of HB-AFT, the specific process
to analyze the stability is studied in ref. [30], and a brief
introduction is listed here.

Let U = [x, x ′, y, y′]T = [p1, p2, p3, p4]T , Eq.
(9) can be transformed into

F (τ,U (τ )) = U ′ (τ ) (25)

And define A (τ,U (τ ))as

A (τ,U (τ )) = ∂F

∂U
=

⎛

⎜
⎜
⎝

0 1 0 0
A21 A22 A23 0
0 0 0 1
A41 0 A43 A44

⎞

⎟
⎟
⎠

(26)

where the parameters in Eq. (26) are expressed in
Appendix 2.

Based on the Eq. (25), 
U is given to perturb the
assumed equilibrium U∗ and then get


U ′ = F
(
τ,U∗ + 
U

)
(27)

The stability of U∗ can be obtained by the linear
stability of 
U in the following system


U ′ = ∂F
(
τ,U∗) /∂U∗ · 
U = A

(
τ,U∗ (τ )

)

U

(28)

In ref. [31], the approximating monodromy matrix
is expressed as formula (29) according toHsu’smethod

M̄ = ψ (T ) =
1∏

n=N

exp (An
T )

=
1∏

n=N

⎛

⎝I +
n j∑

j=1

(An
T ) j

j !

⎞

⎠ (29)

In the nth time interval, substituting the time-varying
matrix A (τ,U (τ )) with An , we can get the equation

An = 1


T

∫ τn

τn−1

A
(
τ,U∗ (τ )

)
dτ (30)

5.3 Results and discussion

The two-DOFs rotor-bearing system is shown in Eq.
(9), and the parameters are presented in Sect. 2 and
Appendix. Both the damping term C and the stiff-
ness term K are piecewise linear. Similarly, the stud-
ied reduced system is a parametrical excited system,
T = 2π/ω is the excited period, and ω is the rotat-
ing angular velocity of balls. The harmonic terms,
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whose coefficients less than ε, are ignored and not pre-
sented as following. We assign u = 36 [in Eq. (10)],
ω = 1250 (rad/s) ε = 10−18, N = 144 [in Eq. (19)].
The reduced model is a piecewise linear system, and
the parameters of stiffness and damping are given in
Appendix. The analytical approximation of the period-
1 solution obtained by the HB-AFT method is:

x (t) = 2.230126813 × 10−5

+ 7.134694212 × 10−7 cos (ω2t)

− 6.213875901 × 10−8 sin (ω2t)

+ 4.315942659 × 10−8 cos (2ω2t)

− 4.951881057 × 10−9 sin (2ω2t)

− 2.474912408 × 10−9 cos (3ω2t)

− 6.286192369 × 10−10 sin (3ω2t)

− 8.922238611 × 10−11 cos (4ω2t)

+ 1.770234142 × 10−10 sin (4ω2t)

where ω2 = ωr
R+r · Nb.

Figure 7 represents the phase portrait of the periodic-
1 solution, and the four-order Runge–Kutta (R–K)
method has a good agreementwith theHB-AFT results.
As is shown in Fig. 8, the horizontal and vertical ordi-
nate is time and displacement, respectively, and the cal-
culation based on the HB-AFT has a fast convergence
rate and a large convergent region [in Eq. (29)]. In this
figure, giving the initial iterative values M (0) = [0]
except M (0) (1) = 1, the HB-AFT goes through 5th
iterative and arrives at a solution close to R–K integra-
tion corresponding to the fine line markers.

The HB-AFT method is used to analyze the global
periodic characteristics of the system, takingω as a con-

0.41 0.42 0.43 0.44 0.45
-1.08

-1.07

-1.06

-1.05

-1.04

R-K
HB-AFTx

x

.

Fig. 7 Phase portrait of the periodic-1 solution when ω =
500 rad/s

x

1.23 1.24 1.25 1.26
0.41

0.42

0.43

0.44

0.45

t/s

HB-AFT
R-K

Fig. 8 Convergence of HB-AFT results and R–K results

trol parameter and searching the periodic-1 solutions
between 800 to 1280 rad/s with a step size of 6 rad/s.
The methods in Sects. 5.1 and 5.2 are applied to ana-
lyze the stability of the obtained period-1 solutions. The
results in Sect. 4 have indicated that the reduced system
reserves the dynamical characters of the original one.
So we study the vibration properties of the looseness
direction owns more complex movement form, which
contains more bifurcation behaviors that can reflect the
stability characteristics of the original system. Figure 9
shows that the leading multipliers are inside the unit
circle at ω =800–872 rad/s, and the periodic-1 solu-
tions are stable. The corresponding periodic-1 solutions
are unstable when ω changes from 880 to 1254rad/s
and for the leading multipliers are less than −1. Until
ω = 1260 rad/s, the solutions change from unstable to
stable, and the leading multipliers come back to unit
circle from negative real axis. Table 1 further indicates
that the bifurcation occurs when ω varies from 878 to
879rad/s and 1256 to 1257rad/s, which is basically
consistent with the numerical results in Fig. 9.

6 Conclusions

In this paper, the stability of the two-DOFs system
reduced from the seven-DOFs pedestal looseness sys-
tem has been analyzed. The method of POM energy
analysis has been applied to confirm the number of
DOF of the reduced system, and the modified POD
method has been applied to reduce the original system
to a two-DOFs one. It is shown that the reduced system
reserves most dynamical characters of the original one.
Finally, by combining the treatment of the HB-AFT

123



1620 K. Lu et al.

800 850 900 950 1000 1050 1100 1150 1200 1250
-3

-2

-1

0

1

2

3

4

5

6

7

(rad/s)

p 3

Fig. 9 Bifurcation diagrams versus parameter ω and the bifurcation locations of period-1 motion obtained by HB-AFT with Floquet
theory

Table 1 Leadingmultipliers of period-1 solutions in the velocity
range of period-doubling bifurcation developing

�/(rad/s) 877 878 879 880

Leading multipliers −0.728 −0.932 −1.096 −1.129

�/(rad/s) 1255 1256 1257 1258

Leading multipliers −1.201 −1.074 −0.942 −0.898

method with the Floquet theory, the movement char-
acteristics stability of the two-DOFs system is studied.
Further studies on this subject are being carried out by
the present authors in two aspects: One is to study the
dynamical characters of the ball bearings deeply and
the other is to lucubrate the singular bifurcation analy-
sis of the reduced system.
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Appendix 1

G = g

ω2c
, M1 = m1cω

2, M3 = m3cω
2, M4 = m4cω

2

k11 = 10−7
(

1.5348
k1
m1

− 0.88997
k1
m2

+ 1.4140
k2
m2

− 2.6370 × 10−6 k2
m3

+2.9447 × 10−5 k3
m3

+ 3.8241
ks
m4

)

k12 = 10−7
(

6.4076
k1
m1

− 4.0730
k1
m2

− 3.1074
k2
m2

+ 1.9730 × 10−5 k2
m3

+ 1.1909 × 10−5 k3
m3

+ 1.5463
ks
m4

)

k21 = 10−7
(

0.63198
k1
m1

+ 1.7027
k1
m2

− 3.1327
k2
m2

− 2.2678 × 10−5 k2
m3

+ 2.5325 × 10−4 k3
m3

+ 1.5463
ks
m4

)

k22 = 10−7
(

2.6385
k1
m1

+ 9.7827
k1
m2

+ 7.7564
k2
m2

+ 1.6968 × 10−4 k2
m3

+ 1.0242 × 10−4 k3
m3

+ 0.62523
ks
m4

)

c11 =
(

0.42286
c1
m1

+ 0.15553
c2
m2

+ 8.9684 × 10−7 c3
m3

+ 0.42160
cs
m4

)

c12 =
(

0.17412
c1
m1

− 0.34460
c2
m2
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+ 4.8792 × 10−6 c3
m3

+ 0.17048
cs
m4

)

c21 =
(

0.17412
c1
m1

− 0.34460
c2
m2

+ 4.8792 × 10−6 c3
m3

+ 0.17048
cs
m4

)

c22 =
(

0.71697
c1
m1

+ 0.85934
c2
m2

+ 2.6545 × 10−5 c3
m3

+ 6.8932 × 10−2 cs
m4

)

f1 = −1.0045 × 10−6

M1
f1x + 0.65028

M1
f1y

− 5.0023 × 10−6

M3
f2x − 9.4701 × 10−4

M3
f2y

− 0.64931

M4
fsy

f2 = −2.5013 × 10−5

M1
f1x + 0.26776

M1
f1y

− 4.3012 × 10−5

M3
f2x − 5.120 × 10−3

M3
f2y

− 0.26255

M4
fsy

f1x = fx (−1.0013 × 10−6 p1

− 2.5022 × 10−5 p2, 0.65028p1 + 0.26776p2

− 1.0013 × 10−6 ṗ1

− 2.5022 × 10−5 ṗ2, 0.65028 ṗ1 + 0.26776 ṗ2)

f1y = fy(−1.0013 × 10−6 p1

− 2.5022 × 10−5 p2, 0.65028p1 + 0.26776p2

− 1.0013 × 10−6 ṗ1

− 2.5022 × 10−5 ṗ2, 0.65028 ṗ1 + 0.26776 ṗ2)

f2x = fx (−5.8151 × 10−2 p1

+ 0.43501p2, 0.39006p1 − 0.81860p2

− 5.8151 × 10−2 ṗ1

+ 0.43501 ṗ2, 0.39006 ṗ1 − 0.81860 ṗ2)

f2y = fy(−5.8151 × 10−2 p1

+ 0.43501p2, 0.39006p1 − 0.81860p2

− 5.8151 × 10−2 ṗ1

+ 0.43501 ṗ2, 0.39006 ṗ1 − 0.81860 ṗ2)

fsy = fy(−5.0012 × 10−6 p1 − 4.3024 × 10−5 p2,

− 9.4733 × 10−4 p1 − 5.1520 × 10−3 p2

− 5.0012 × 10−6 ṗ1 − 4.3024 × 10−5 ṗ2,

− 9.4733 × 10−4 ṗ1 − 5.1520 × 10−3 ṗ2)

g1 = −1.68866G, g2 = 0.29344G

fω1 = −0.0581516b cos τ + 0.39006b sin τ,

fω2 = 0.43501b cos τ − 0.81860 sin τ

Appendix 2

A21 = −3C

2

Nb∑

i=1

G (δi (n))0.5 cos2 θ̄i,n,

A22 = A44 = −C,

A23 = A41 = −3C

2

Nb∑

i=1

G (δi (n))0.5 sin θ̄i,n cos θ̄i,n

A43 = −3C

2

Nb∑

i=1

G (δi (n))0.5 sin2 θ̄i,n .
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