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Abstract It is an important issue to estimate para-
meters of uncertain fractional-order chaotic systems
in nonlinear science. In this paper, fractional orders
as well as systematic parameters of fractional-order
chaotic systems are all considered as independent vari-
ables. Firstly, the parameter estimation problem is
transformed into a multi-dimensional function opti-
mization problem. And in the meantime, an effective
hybrid artificial bee colony algorithm is proposed to
deal with the parameter estimation problem. Numeri-
cal simulations are conducted on two typical fractional-
order chaotic systems to test the effectiveness of the
proposed method. The experiments’ results show that
the proposed approach for identification of uncertain
fractional-order chaotic systems is a successful and
promisingmethodwith higher calculation accuracy and
faster convergence speed.

Keywords Parameter identification · Fractional-
order chaotic systems · A hybrid artificial bee colony
algorithm

1 Introduction

During the past years, the applications of fractional
calculus in aspects of science and engineering
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[1–5] have been drawn increasing attentions. This hap-
pens because it has been recently found that sev-
eral physical problems, such as electrical capacitors
[6], viscoelastic material [7], economic systems [8],
transmission lines [9] and neurons [10], can be more
accurately described by fractional differential equa-
tions. And a number of numerical methods are avail-
able for numerical solutions of fractional differential
equations [4,11]. Therefore, in recent years, consid-
erable attentions have been attracted to make use of
the great potential of fractional calculus in physics
[3], electrical circuit theory [12] and control sys-
tems [13]. In particular, a significant role is played
in chaos control theory, where many control methods
have been devised for fractional-order chaotic systems
under the conditions of known fractional orders and
systematic parameters [14,15]. But unfortunately, in
the real world, the fractional orders and systematic
parameters of fractional-order chaotic systems can-
not be exactly known. Even worse, it is difficult to
achieve control and identify the parameters of the
fractional-order chaotic systems with unknown frac-
tional orders and systematic parameters. Therefore,
it is crucial for us to identify the fractional orders
and systematic parameters of the uncertain fractional-
order chaotic systems beforehand if the parameters are
unknown.

The process to get the exact values of unknown frac-
tional orders and systematic parameters for the uncer-
tain fractional-order chaotic systems is called system
inversion mechanism [16]. Up to now, there have been
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some approaches in system inversion of fractional-
order chaotic systems [16–20]. Among the above liter-
atures, two basic methods are mainly contained. One
is synchronization method [17], which is based on the
the stability analysis of fractional-order systems and
the control methods. This concept was firstly proposed
by Parlitz [21], and then, it has been extensively studied
in many other papers concerning the parameter iden-
tification of uncertain chaotic systems [22,23], but the
design of both the controller and the updating law of
parameter identification is still a hard task with tech-
niques and sensitivities depending on the considered
system. The other is the optimization method which
is a non-classical way using artificial intelligent algo-
rithms. In the second method, the unknown parameters
are considered as independent variables and parame-
ter estimation is converted into a function optimization
problem via a functional extrema model. Compared
with the first method, the optimization method is not
sensitive to the considered systems and easy to imple-
ment, and thus, it is more applicable. To the best of
our knowledge, facing to the second method, particle
swarm optimization [18,19] and differential evolution
[16,20] have been sufficiently investigated to identify
the uncertain fractional-order chaotic systems.

Recently, great interests have emerged in evolution-
ary algorithms, such as particle swarm optimization
(PSO) [24], genetic algorithm (GA) [25], differential
evolution (DE) [26] and artificial bee colony (ABC)
algorithm [27]. Particularly, the ABC algorithm is a
useful computation technique developed by Karaboga
in 2005 based on simulating the foraging behavior of
honeybee swarm.A set of experimental results on func-
tion optimization [28–30] show that ABC algorithm is
competitive with some population-based algorithms,
although it uses less control parameters than others,
such as PSO and DE. Actually, apart from the maxi-
mumcycle number (MCN) and population size number
(SN), a standard DE has at least two control parame-
ters (crossover rate, scaling factor) and a basic PSO
has three control parameters (cognitive and social fac-
tors, inertia weight). Also, limit values for the veloci-
ties vmax have a significant effect on the performance of
PSO.However, theABCalgorithmhas only one control
parameter (limit) apart from MCN and SN. Therefore,
with the nice characteristics, the ABC algorithm has
been applied to solve continuous, constrained, large-
scale, multi-modal and multi-dimensional optimiza-
tion problems in many different fields, such as training

neural networks [31], electrical engineering [32], con-
trol engineering [33] and image processing [34], etc.

As mentioned above, the ABC algorithm is a com-
petitive population-based algorithm which has many
wonderful properties [29,30]. Due to its easy imple-
mentation and quick convergence, nowadays, the ABC
algorithm has received a lot of attentions and wide
applications in different continuous optimization prob-
lems [31–36]. Particularly, in Ref. [35], a hybrid
Taguchi-chaos of multi-level immune and the ABC
algorithm is employed to identify the integer-order
Lorenz system. In Ref. [36], a novel ABC algorithm
with space contraction is presented for unknown para-
meter identification and time delays of integer-order
chaotic systems. However, as far as we know, for the
parameter identification of uncertain fractional-order
chaotic systems, little research has been done through
the ABC algorithm. And this application area is rela-
tively new for the ABC algorithm in contrast with that
of PSO [18,19] and DE [16,20].

However, so far, there is no specific algorithm to
achieve the best solution for all optimization prob-
lems. Namely, as far as most algorithms are concerned,
it is difficult to simultaneously balance the ability
of exploitation and exploration for all the optimiza-
tion problems. In other words, most algorithms are
difficult to have a better performance in the aspects
of convergence speed and convergence precision for
all optimization problems at the same time. There-
fore, in this paper, to further enhance the exploration
and the exploitation abilities, a hybrid artificial bee
colony (HABC) algorithm is put forward. In the pro-
posed HABC algorithm, to enhance the global conver-
gence, when producing the initial population and scout
bees, both chaotic system and opposition-based learn-
ing method are employed. At the same time, to keep
the ability of exploitation and exploration well bal-
anced, two new searching equations are proposed to
generate the new candidate solutions. In addition, the
ratio between employed and onlooker bees is changed
to have a better searching performance. The HABC
algorithm is further used for parameter identification of
uncertain fractional-order chaotic systems via a func-
tional extrema model. Numerical simulations are per-
formed on two typical fractional-order chaotic systems
and statistically compared with some typical exist-
ing ABC-based algorithms and some other population-
based algorithms. As a result, compared to some ABC-
based algorithms and other typical population-based
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algorithms, the simulation results demonstrate the good
performance and the superiority of the HABC algo-
rithm. Thus, it can be a promising candidate for para-
meter estimation of uncertain fractional-order chaotic
systems.

The rest of the paper is organized as follows. In
Sect. 2, some preliminaries are introduced, includ-
ing the Caputo fractional-order derivative and the
standard ABC algorithm. Section 3 gives a prob-
lem formulation. The HABC algorithm is proposed
in sufficient details in Sect. 4. Simulations in Sect. 5
are made to estimate two typical fractional-order
chaotic systems. Finally, conclusions are drawn in
Sect. 6.

2 Preliminaries

2.1 Caputo fractional-order derivative

There are several definitions of fractional-order deriv-
atives. The three best-known definitions are the
Grunwald–Letnikov, Riemann–Liouville and Caputo
definitions [4]. In particular, Caputo fractional-order
derivative owns same initial conditions with classical
integer-order derivatives, which is well understood in
physical situations and more applicable to real-world
problems. Thus, we introduce the Caputo fractional-
order derivative in this paper.

Definition 1 (Caputo fractional-order derivative) The
Caputo fractional-order derivative of order α > 0 for a
function f (t) ∈ Cn+1([t0,+∞), R) is defined as

t0D
α
t f (t) = 1

�(n − α)

∫ t

t0

f (n)(τ )

(t − τ)α+1−n
dτ, (1)

where �(·) denotes the gamma function and n is a pos-
itive integer such that n − 1 < α ≤ n.

The Laplace transform of the Caputo fractional-
order derivative is

L {
t0D

α
t f (t); s} = sαF(s) −

n−1∑
k=0

sα−k−1 f (k)(t0),

n − 1 < α ≤ n.

whereL{·} denotes the Laplace transform, s is the vari-
able in Laplace domain, and F(s) is the Laplace trans-
form of f (t).

Property 1 When C is any constant, t0D
α
t C = 0

holds.

Property 2 For constants μ and ν, the linearity of
Caputo fractional-order derivative is described by

t0D
α
t (μ f (t) + νg(t)) = μ t0D

α
t f (t) + ν t0D

α
t g(t).

2.2 The standard artificial bee colony algorithm

The ABC algorithm proposed by Karaboga [27–30]
in 2005 is a competitive optimization technique which
simulates the intelligent foraging behavior of honey-
bee swarm. In the standard ABC algorithm, the artifi-
cial bee colony includes three kinds of bees: employed
bees, onlooker bees and scout bees. In reality, half of
the colony consists of employed bees, and the rest of the
colony represents onlooker bees. As a matter of fact,
the number of employed bees is equal to the number of
onlooker bees and equal to the number of food sources
or solutions as well.

Among them, the employed bees are responsible for
searching available food sources andgathering required
information. At the same time, they also pass their food
information to onlooker bees through dancing in the
nearby hive. Thereafter, onlooker bees incline to select
a better food source according to its fitness; that is,
the more food amount the food source has, the more
likely the corresponding food source is chosen. Then,
the onlooker bees continue to further search a new food
source around the chosen food sources. In addition, if
the food amount of the new food source found by an
onlooker bee is more than that of the previous one, the
employed bee’s food source position is replaced by the
newone in itsmemory.Meanwhile, a so-called parame-
ter tr ial, which is used to record the number to deter-
mine whether the employed bee’s food source position
should be replaced, is set to zero when the employed
bee’s food source position is replaced, else the trial
parameter is going to be plus one in the employed bee’s
memory. As a result, if the number of trial exceeds a
predetermined number of cycles, the employed bee’s
food source is abandoned by its employed bee. Then,
the employed bee becomes a scout bee and starts to
search for a new food source in the vicinity of the hive.

In a word, the standard ABC algorithm is an itera-
tion optimization technique similar to other population-
based algorithms. The units of the standard ABC algo-
rithm can be described as follows:
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2.2.1 Initialization of the population

The initial population of solutions is filled with D-
dimensional real-valued vectors which are generated
randomly (i.e., food sources), and the size of the initial
population is set as SN , where SN denotes the size of
employed bees. Let Xi = (xi,1, xi,2, . . . , xi,D) repre-
sents the i th food source in the population, and then,
each food source is generated as follows:

xi, j = xmin, j + rand(0, 1)(xmax, j − xmin, j ), (2)

where i = 1, 2, . . . , SN , j = 1, 2, . . . , D. D is the
dimension of the searching space. xmin, j and xmax, j

are the lower and upper bounds for the dimension j
in respect. These food sources are randomly assigned
to the employed bees, and their fitness are evaluated
accordingly.

2.2.2 The employed bee phase

At this stage, for each position of the employed bee’s
food source Xi , a new food source position Vi is gen-
erated via the equation as follows:

vi, j = xi, j + φi, j (xi, j − xk, j ), (3)

where k = 1, 2, . . . , SN and j = 1, 2, . . . , D. k and j
are randomly generated, and k must be different from
i . φi, j is a random number in [−1, 1]. The above expla-
nation implies that the other components of Vi except
for dimension j are as same as the ones of Xi .

Then, a greedy selection is made between Xi and
Vi . That is, once Vi is obtained, it will be evaluated
and compared with Xi . If the fitness of Vi is equal
to or better than that of Xi , Vi will replace Xi and
correspondingly become a member of the population.
Otherwise, Xi is retained.

2.2.3 Calculating probability values referred to the
probabilities selection

After finishing the update process, employed bees share
their nectar amount information, which is related to
the food sources, with the onlooker bees in the nearby
hive. An onlooker bee evaluates the nectar information
taken fromall employedbees and chooses a food source
through a probability value pi , which is calculated by

pi = fiti∑SN
j=1 fit j

, (4)

where fiti denotes the fitness value of solution Xi . It is
obvious that the higher the fitness value of solution Xi

is, the higher the probability of selecting the i th food
source corresponding to solution Xi is. Besides, the
fitness value f i ti is defined as

fiti =
{

1
1+ f (Xi )

, if f (Xi ) ≥ 0,
1 + | f (Xi )|, if f (Xi ) < 0,

(5)

where f (Xi ) represents the objective function value of
the decision vector Xi .

2.2.4 The onlooker bee phase

Based on the probability value pi calculated by Eq. (4),
each onlooker bee randomly chooses a food source cor-
responding to the solution Xi with a probability value
pi . Thereafter, it makes a modification (i.e., Vi ) around
the chosen food source by Eq. (3). Similar to the phase
of employed bees, the greedy selection mechanism is
applied to select a better solution between the solutions
Xi and Vi .

2.2.5 The scout bee phase

If the food source position corresponding to the solu-
tion Xi is not improved continuously in the honey-
bee’s memory within certain time (limit), which is
recorded by the parameter tr ial, then the correspond-
ing employed bee will abandon the food source and
becomes a scout bee. The scout bee produces a new
food source randomly as Eq. (2).

3 Problem formulation

Consider the following fractional-order chaotic system

0D
α
t Y (t) = f (Y (t),Y0, θ), (6)

where Y (t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn

denotes the state vector, Y0 = Y (0) denotes the initial
value, θ = (θ1, θ2, . . . , θn)

T denotes the set of origi-
nal systematic parameters, α = (α1, α2, . . . , αn)(0 <

αi < 1, i = 1, 2, . . . , n) is the fractional deriva-
tive orders, and f (Y (t),Y0, θ) = ( f1(Y (t), Y0, θ),
f2(Y (t),Y0, θ), . . . , fn(Y (t),Y0, θ))T .
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The corresponding estimated system can be written
as

0D
α̃
t Ỹ (t) = f (Ỹ (t),Y0, θ̃ ), (7)

where Ỹ (t) = (ỹ1(t), ỹ2(t), . . . , ỹn(t))T ∈ Rn is the sta
te vector of the estimated system, θ̃ =(θ̃1, θ̃2, . . . , θ̃n)

T

is a set of estimated systematic parameters, and α̃ =
(α̃1, α̃2, . . . , α̃n)

T is the estimated fractional orders.
Besides, systems (6) and (7) have the same initial con-
ditions Y0.

In general, to identify the fractional-order chaotic
system (6), it can be transformed into a functional
extrema model as

J (α̃, θ̃ ) = arg min
(α̃,θ̃ )∈�

F = arg min
(α̃,θ̃ )∈�

N∑
k=1

‖Yk − Ỹk‖2,

(8)

where k = 1, 2, . . . , N is the sampling time point
and N denotes the length of data used for parameter
estimation. Yk and Ỹk , respectively, denote the state
vector of the original system (6) and the estimated
system (7) at time kh. h is the step size employed
in the predictor–corrector approach for the numeri-
cal solutions of fractional differential equations [11].
‖ · ‖ is Euclid norm. � is the searching area admit-
ted for parameters θ̃ , where the fractional orders α̃ are
considered as special variables. The parameter iden-
tification of system (6) can be achieved by search-
ing suitable θ̃ and α̃ in the searching space � such
that the objective function (8) is minimized. In other
words, the main task is to find the best combination
of the independent variables α̃ and θ̃ for the objective
function.

4 HABC algorithm

In this section, a hybrid artificial bee colony algo-
rithm (HABC) is proposed. Firstly, chaotic opposition-
based population initialization is employed to initial-
ize the population, which can guide the population
toward the more promising areas and spread it as
much as possible over the searching space. Secondly, to
keep the balance between exploitation and exploration
abilities better, two new searching equations are pro-
posed to generate new candidate solutions on employed
bees phase and onlooker bees phase, respectively.

Then, the idea of changing the ratio of employed and
onlooker bees is adopted. Finally, chaotic opposition-
based searching method on scout bees phase is used
again. The details are described in the following sub-
sections.

4.1 Chaotic initialization based on circle map

Owing to the characteristics of the certainty, ergodic-
ity and pseudo-randomness, the chaotic map is suitable
to initialize the population for the purpose of increas-
ing the population diversity and achieve high-quality
solution, which is called chaos optimization algorithm
(COA) [37].

Particularly, in Ref. [37], Yang reveals the inher-
ent mechanism of high efficiency and superior perfor-
mance of COA, from new respects of both the proba-
bility distribution property and search speed of chaotic
sequences generated by different chaotic maps. And
the statistical property and search speed of chaotic
sequences are presented by the probability density
function (PDF) and the Lyapunov exponent (LE) in
respect. Among the eight chaosmapsmentioned inRef.
[37], it is found that the circle map makes a better per-
formance than others in many aspects. Its equation is
written as

zn+1 =
(
zn + � − K

2π
sin(2π zn)

)
mod 1, (9)

where z is chaotic variable and the parameters K and�

can be thought of as strength of nonlinearity and exter-
nally applied frequency, respectively. The circle map
produces much unexpected behavior with the change
of parameters.

Thus, in this paper, the circle map is used to ini-
tialize the population and the parameters are chosen
as � = 0.5, K = 2. At the same time, according
to Ref. [38], using the opposition-based population
initialization instead of the random initialization can
achieve better initial solutions and then accelerate con-
vergence speed. Therefore, in the phase of population
initialization, an opposition-based learningmethod and
a chaos optimization algorithm are combined to gener-
ate initial population. The pseudo-code of the proposed
chaotic initialization is given in Algorithm 1 shown
below.

Remark 1 Algorithm 1 is also used by the scout bees
to discover a new food source.
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Step 1) Set the maximum number of chaotic
iteration as N ≥ 300, the population size SN , and
the individual counter i = 1, j = 1.
Step 2) The phase of chaotic initialization:

For i = 1 to SN do
For j = 1 to D do
Randomly initialize variables

ch0, j ∈ (0, 1), set iteration counter n = 0.
For n = 1 to N do

chn+1, j = (chn, j + � − K
2π sin(2π zn))mod 1,

End For
chxi, j = xmin, j + chN , j (xmax, j − xmin, j ),

End For
End For

Step 3) The phase of opposition-based learning:
Set the individual counter i = 1, j = 1.
For i = 1 to SN do

For j = 1 to D do
oxi, j = xmin, j + xmax, j − chxi, j ,

End For
End For

Step 4) Choosing SN fittest individuals from the
set {chx(i), ox(i)|i = 1, 2, . . . , SN }.
Algorithm 1: A modified initialization method on the

population-based initialization phase

4.2 Two modified solution searching equations

In order to achieve satisfying performance, all of the
population-based optimization algorithms have to bal-
ance two contradictory aspects of their performances:
exploration and exploitation. In the optimization algo-
rithms, the exploration represents the ability to search
the various unknown regions in the solution space to
discover the global optimum, while the exploitation
stands for the ability to take advantages of the informa-
tion of the previous solutions to discover better solu-
tions. That is, to achieve good performance on opti-
mization problem, the two abilities must be well bal-
anced. However, the solution searching equation of the
standard ABC algorithm is selected to generate new
candidate solutions based on the information of pre-
vious solutions. It is good at exploration but poor at
exploitation [39], which result in some challenging
problems, such as slow convergence speed when deal-
ing with those unimodal problems.

To improve the performance of the standard ABC
algorithm, one effective research trend is to investigate

searching equations. So far, a variety of searching equa-
tions have been put forward [39–43]. The most repre-
sentative one is GABC proposed by Zhu and Kwong
[39]. In this method, in order to improve the exploita-
tion and make full use of the information of the global
best (gbest) solution to guide the search of candidate
solution, a modified searching equation enlightened by
PSO is suggested as follows:

vi, j = xi, j + φi, j (xi, j − xk, j ) + ψi, j (xbest, j − xi, j ),

(10)

where the third term in the right-hand side of Eq. (10)
is a new added term called gbest term, xbest, j is the j th
element of the global best solution, and ψi, j is a uni-
form random number in [0, 1.5]. Nevertheless, based
on the experimental results shown in Ref. [39], it can
be found that the improvement of the algorithm is not
notable. Hence, to further develop the performance of
the ABC algorithm, two improved searching equations
are proposed as

vi, j = xr1, j + λ(xi, j − xr1, j ) + μ(xbest, j − xr1, j ),

(11)

vi, j = xbest, j + pi (xi, j − xbest, j ) + ν(xr1, j − xr2, j ),

(12)

where xbest, j is the j th element of the global best
solution. Similar to PSO algorithm, xi, j denotes the
j th element of the best previous solution of the i th
employed bee (i.e., local-best position or its experi-
ence). r1 and r2 are distinct integers randomly selected
from {1, 2, . . . , SN } and are also different from i and
best . j ∈ {1, 2, . . . , n} is a randomly chosen index. pi
represents the current probability of the i th employed
bee. λ, μ are random numbers in the range [0, 1] and
ν is a random number in the range [−1, 1].

In Eq. (11), with the first term, the new candidate
solution is generated around Xr1 which is a randomly
selected individual from the population. The randomly
selected individual Xr1 can bring more information to
the searching equation and avoid trapping into the local
optimum, which contributes to improving the explo-
ration ability. Besides, although the guidance of Xbest

is not used in the first term, Eq. (11) can also take full
advantages of xi, j and Xbest in the latter two terms to
drive the new candidate solution toward the current best
solution, which can guarantee its convergence speed.
So the last two terms of Eq. (11) make a contribution
to developing the exploitation ability. As a whole, Eq.
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(11) can balance the exploration and exploitation well.
But, due to the guidance of Xr1 in the first term, Eq.
(11) place more emphasis on the exploration. Accord-
ing to [27], on the employed bee phase, the searching
process focuses on the exploration which is consistent
with emphasis of Eq. (11). Therefore, Eq. (11) is chosen
as the searching equation for the employed bees.

From Eq. (12), owing to the first term, the new can-
didate solution is generated around Xbest which rep-
resents the current global best solution. The current
probability is added in the second term to make full
use of the information of the current population to fur-
ther improve the exploitation. Therefore, the first two
terms is good for the development of exploitation abil-
ity. In addition, to keep balance in corresponding to the
first two terms in Eq. (12), the third term is introduced
to improve the diversity of the population. To sum up,
Eq. (12) may be beneficial to not only the convergence
but also the diversity of the population. However, since
the the guidance of Xbest in the first term, Eq. (12)
pays more attention to the exploitation. According to
Ref. [27], the onlooker bee phase lays stress on the
exploitation which is in accordance with the empha-
sis of Eq. (12). Therefore, Eq. (12) is employed as the
searching equation for the onlooker bees.

4.3 The change in the ratio of employed and onlooker
bees

In standard ABC algorithm, half of the colony is com-
posed of employed bees and the rest half is composed
of onlooker bees, originally proposed by Karaboga and
Basturk in Ref. [27]. That is, the ratio between the
employed bees and onlooker bees is {1:1}. In Ref. [44],
the ratio between two types of bees was changed as
{1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 4:1, 2:2, 2:3, 3:2}, respec-
tively. From the simulation results in Ref. [44], it was
shown that in some cases, the high ratio of onlooker
bees had better effect on the new algorithm when com-
pared to high ratio of employed bees, while in some
cases, the high ratio of employed bees had better per-
formance with respect to high ratio of onlooker bees. In
aword, different ratios betweenonlooker and employed
bees has better performance in contrast to the stan-
dard ABC algorithm. Particularly, a higher number of
onlooker bees performs better results. Therefore, the
ratio of employed and onlooker bees in this paper is
taken as {1:4}.

4.4 The framework of HABC algorithm

In view of the above, the pseudo-code of the HABC
algorithm is given below:

Step 0) Predefine some parameters: SN
(population size), D (dimension of the searching
space), Upper (upper bound of the searching
space), Lower (lower bound of the searching
space), limit (control parameter), MCN
(maximum cycle number), tr ial = 0, N .
Step 1) The population initialization phase:
Step 1.1) Randomly generate 20% ∗ SN points

in the searching space to form an initial
population via Algorithm 1.

Step 1.2) Evaluate the objective function
values of population.
Step 1.3) cycle = 1;

Step 2) The employed bees phase:
For i = 1 to 20% ∗ SN do
Step 2.1)
Step 2.1.1) Generate a candidate solution

Vi by Eq. (11).
Step 2.1.2) Evaluate f (Vi ).

Step 2.2) If f (Vi ) < f (Xi ), set Xi = Vi ,
otherwise, set tr iali = tr iali + 1.

End For
Step 3) Calculating the probability values pi by
Eq.(4), set t = 0, i = 1.
Step 4) The onlooker bees phase:

While t ≤ 80% ∗ SN , do
Step 4.1)
If rand(0, 1) < pi
Step 4.1.1) Generate a candidate solution

Vi by Eq. (12).
Step 4.1.2) Evaluate f (Vi ).
Step 4.1.3) If f (Vi ) < f (Xi ), set

Xi = Vi , otherwise, set tr iali = tr iali + 1.
Step 4.1.4) Set t = t + 1.

End If
Step 4.2) Set i = i + 1, if i = 20% ∗ SN , set

i = 1.
End While

Step 5) The scout bees phase:
If max(tr iali ) > limit , replace Xi with a new

candidate solution generated via Algorithm 1.
Step 6) Set cycle = cycle + 1, and if
cycle > MCN , then stop and output the best
solution achieved so far, otherwise, go to Step 2.

Algorithm 2: Framework of HABC algorithm
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4.5 A novel parameter estimation scheme

Now, with the above HABC algorithm, the problem of
parameter estimation for fractional-order chaotic sys-
tems is converted into that of nonlinear function opti-
mization.

Then, the procedure of the new method is outlined
in the following pseudo-code:

Step 1) The initialization phase:
Step 1.1) Initialize the parameters for HABC

algorithm and fractional-order chaotic system (6).
Step 1.2) Generate the initial population in

the feasible domain � referred to in Sect. 3.
Step 2) The optimization phase:

Repeat:
Optimize the function (8) by HABC

algorithm.
Until Termination condition is satisfied.

Algorithm 3: The novel parameter estimation method with
HABC algorithm

5 Simulations

To demonstrate the effectiveness of the proposed
scheme, two typical fractional-order chaotic systems
(namely fractional-order economic and Rössler sys-
tems) are selected to test the performance. The simula-
tions are implemented using MATLAB 7.1 on Intel(R)
Core(TM) i5-3470 CPU, 3.2 GHz with 4 GB RAM. To
calculate the objective function, the number of sam-
ples is set as 300 and the step size is 0.01. The para-
meters of HABC algorithm are set as follows: popula-
tion size (SN) is 100; maximum cycle number of itera-
tions (MCN) are set as 50 for fractional-order economic
system and 100 for fractional-order Rössler systems,
respectively; the control parameter (limit) is 15, and
the maximum number of chaotic iteration N = 300.
For the parameters of DE algorithm, according to Ref.
[26], the scaling factor F = 0.5 is usually a good
choice. If the parameter F is smaller, the population
may converge prematurely. On the contrary, the con-
vergence speed decreases. Besides, about the crossover
rate CR, a large CR often speeds up convergence. How-
ever, from a certain value upwards, the convergence
speed may decrease or the population may also con-
verge prematurely. A good choice for the crossover rate
is a value between CR = 0.3 and CR = 0.9. In the fol-
lowing experiments, the parameters of DE are selected

as: F = 0.5,CR = 0.7. For PSO, empirical results
have shown that a inertia weight w = 0.7298 and cog-
nitive and social factors with c1 = c2 = 1.49618 pro-
vide good convergent behavior [24,45]. So in the fol-
lowing simulation, the parameters for PSO are set as:
w = 0.7298, c1 = c2 = 1.49618. Besides, accord-
ing to Ref. [46], the best parameter setting for GA is
cr = 0.8,mu = 0.1, where cr is the crossover rate and
mu is the mutation rate. In order to eliminate the dif-
ference of each experiment, the algorithm is executed
15 times for each example, and all runs are terminated
after the predefined maximum cycle number of iter-
ations is reached. The HABC algorithm is compared
with some existing typical ABC-based algorithms and
other typical population-based algorithms (e.g., PSO,
DE and GA) separately. Tomake a fair comparison, the
searching spaces of the parameters are the same for all
algorithms.

5.1 Comparison with some typical ABC-based
algorithms

In this subsection, the performance on the search ability
of the HABC algorithm is compared with some typical
ABC-based algorithms, including the standard ABC,
GABC [39] andEABC [43] algorithms. The basic para-
meter settings are the same as the HABC algorithm.
Besides, based on the above parameter settings, just
considering the influence of the population size (SN)
on the time complexity, for the HABC algorithm pro-
posed in Sect. 4 in a single iteration, the time complex-
ity can be analyzed as follows: The time complexity of
the employed bees searching around their neighbors is
O(0.2 ∗ SN ); the time complexity for calculating the
fitness values is O(0.2 ∗ SN ); the time complexity for
calculating the probability values is O(0.2 ∗ SN ); the
worst time complexity for the onlooker bees to select
the nectar sources is O(0.8∗ SN ∗0.2∗ SN );the worst
time complexity for updating the best nectar source
is O(0.2 ∗ SN ); the worst time complexity for the
scout bees to replace bad nectar source is O(0.2∗ SN ).
Therefore, for one iteration, the worst time complex-
ity is: O(0.2 ∗ SN ) + O(0.2 ∗ SN ) + O(0.2 ∗ SN ) +
O(0.8 ∗SN ∗0.2∗SN )+O(0.2∗SN )+O(0.2∗SN ),
and it can be simplified as O(0.16 ∗ SN 2). Thus,
the worst time complexity for the HABC algorithm
is O(H ABC) = O(0.16 ∗ SN 2). Similarly, the time
complexity for the standard ABC algorithm introduced
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Fig. 1 Distribution of the objective function values for
fractional-order economic system (13) with (α3, b, c) =
(0.95, 0.1, 1)

in Sect. 2.2 is O(ABC) = O(0.25 ∗ SN 2); the time
complexity for the GABC [39] and EABC [43] algo-
rithms is O(0.25 ∗ SN 2) as well. Obviously, the time
complexity of HABC algorithm is smaller than those
of standard ABC, GABC and EABC algorithms. Then,
simulations are done to synchronize the fractional-
order economic system.

Example 1 Fractional-order economic system [16,47,
48] described as:⎧⎨
⎩

0D
α1
t x(t) = z(t) + (y(t) − a)x(t),

0D
α2
t y(t) = 1 − by(t) − x2(t),

0D
α3
t z(t) = −x(t) − cz(t),

(13)

when (a, b, c) = (1, 0.1, 1), (α1, α2, α3) = (0.90,
0.85, 0.95) and initial point is (2,−1, 1), system (13)
is chaotic. To show the performance of HABC algo-
rithm clearly and for ease of representation in figures,

Table 1 Simulation results of various algorithms for system (13) over 15 independent runs

Algorithm ABC HABC GABC EABC

Best

α1 0.89999577922600 0.90000000000000 0.90000009475113 0.89999999117169
|α1−0.90|

0.90 4.22E−06 0.00E+00 9.48E−08 8.83E−09

α2 0.84995388225102 0.84999999999997 0.84999992843210 0.85000010739079
|α2−0.85|

0.85 4.61E−05 3.20E−14 7.16E−08 1.07E−07

a 1.00002149015383 1.00000000000002 1.00000022990467 0.99999987462906
|a−1.00|
1.00 2.15E−05 2.40E−14 2.30E−07 1.25E−07

F 4.61E−04 1.19E−12 1.34E−05 1.58E−06

Mean

α1 0.89997512124998 0.90000000020934 0.89999859685594 0.89999974017237
|α1−0.90|

0.90 2.49E−05 2.09E−10 1.40E−06 2.60E−07

α2 0.85012882612347 0.84999999966056 0.85000247933011 0.85000005449369
|α2−0.85|

0.85 1.29E−04 3.39E−10 2.48E−06 5.45E−08

a 0.99988566383364 0.99999999955956 1.00000279860799 0.99999985634389
|a−1.00|
1.00 1.14E−04 4.40E−10 2.80E−06 1.44E−07

F 4.91E−03 3.22E−09 4.93E−05 1.06E−05

Worst

α1 0.90061572824201 0.90000000313977 0.89999257104212 0.89999837644065
|α1−0.90|

0.90 6.16E−04 3.14E−09 7.43E−06 1.62E−06

α2 0.84928657308081 0.84999999491306 0.85001010793638 0.85000165138482
|α2−0.85|

0.85 7.13E−04 5.09E−09 1.01E−05 1.65E−06

a 0.99849906514597 0.99999999340540 1.00002044980085 0.99999561333106
|a−1.00|
1.00 1.50E−03 6.59E−09 2.04E−05 4.39E−06

F 9.68E−03 4.83E−08 1.06E−04 2.60E−05

Bold values indicate the performance of the HABC algorithm more clearly and provide a sharp contrast
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the true values of fractional orders α1, α2 and system-
atic parameter a are randomly assumed as unknown
parameters which need to be estimated. The searching
spaces of the unknown parameters and orders are set
as (α1, α2, a) ∈ [0.1, 1.4] × [0.1, 1.4] × [0.5, 1.5].
The corresponding objective function can be chosen as

F(α̃1, α̃2, ã) =
N∑

k=1

‖Yk − Ỹk‖2, (14)

therefore, the problem of inversion for the chaotic sys-
tems (13) is transformed into that of nonlinear func-
tion optimization (14). In particular, the smaller F is,
the better combination of parameters (α1, α2, a) is.
Figure 1 shows the distribution of the objective func-
tion value for the fractional-order economic system
(13). As viewed from different colors in Fig. 1, it
is obviously seen that the objective function values
are smaller in the vicinity of the point (α1, α2, a) =
(0.90, 0.85, 1.00) than those in other places.

The statistical results of the best, the mean and the
worst estimated parameters with corresponding rela-
tive error values over 15 independent runs are shown
in Table 1. From Table 1, it can be easily found that
the estimated values generated byHABC algorithm are
closer to the true parameter values, which indicates that
it is more accurate than the standard ABC, GABC and
EABC algorithms. Besides, it can also be clearly seen
that the relative error values obtained by HABC algo-
rithm and marked with black are all smaller than those
of the standardABC,GABC, EABC algorithms, which

0.6
0.8

1
1.2

1.4

0.6
0.8

1
1.2

1.4

0.6

0.8

1

1.2

1.4

α1
α2

α 3

1

2

3

4

5

6

7

8

F
(a,b,c)=(0.5,0.2,10)

Fig. 5 Distribution of the objective function values for
fractional-order Rössler system (15) with (a, b, c) = (0.5, 0.2,
10)

can further prove that the HABC algorithm has higher
calculation accuracy. What’s more, the best objective
function values obtained by HABC algorithm is better
than those obtained by the comparison algorithms.

The evolutionary curves of the parameters and
objective function values estimated by various algo-
rithms are shown in Figs. 2, 3 and 4 in a single run.
Figures 2, 3 and 4 show that convergence processes of
the parameters and objective function values of HABC
algorithm are much better than other algorithms. The
estimated parameters can be earlier close to the true
values than comparison algorithms. The correspond-
ing relative error values and objective function val-
ues obtained by HABC algorithm decline faster than
other algorithms. In one word, it can be concluded
that HABC algorithm has a better search ability with a
smaller time complexity.

5.2 Comparison with some other typical
population-based algorithms

To further test the effectiveness of the proposed scheme,
the proposed HABC algorithm is mainly compared
with the well-known PSO, DE and GA algorithms in
this subsection. Similar to the analysis of the time com-
plexity in Sect. 5.1, here the population size (SN) is
only considered to have an influence on the time com-
plexity. For the PSO algorithm, the time complexity
can be obtained as follows: The time complexity for
the initialization of the particle swarm is O(SN ); the
time complexity for calculating the fitness values is

123



1452 W. Hu et al.

O(SN ); the time complexity for updating the indi-
vidual extreme value is O(SN ); the time complex-
ity for selecting the best individual extreme value is
O(SN ); the time complexity for updating the veloc-
ities and positions is O(SN ). Therefore, the worst
time complexity of PSO algorithm for one iteration is:
O(SN )+O(SN )+O(SN )+O(SN )+O(SN ), which
can be simplified as O(PSO) = O(SN ). For the
DE algorithm, the time complexity mainly depends on
the time complexities of mutation operation (O(SN )),
crossover operation (O(SN )) and selecting operation
(O(SN )). Therefore, the time complexity of DE algo-
rithm for one iteration is O(DE) = O(SN ). Simi-
lar to the DE algorithm, the time complexity of GA
algorithm is mainly determined by the time complex-
ities of roulette wheel selection operation (O(SN 2)),
crossover operation (O(SN )) and mutation operation
(O(SN )). Thus, the time complexity of the GA algo-

rithm can be regarded as O(GA) = O(SN 2). In a
word, it can be concluded that O(GA) � O(HABC) >

O(PSO) � O(DE). Then, simulations are conducted
to identify the fractional-order Rössler system.

Example 2 Fractional-order Rössler system [16,47,
49] described as:⎧⎨
⎩

0D
α1
t x(t) = −(y(t) + z(t)),

0D
α2
t y(t) = x(t) + ay(t),

0D
α3
t z(t) = b + z(t)(x(t) − c),

(15)

when (a, b, c) = (0.5, 0.2, 10), (α1, α2, α3) = (0.90,
0.85, 0.95) and initial point is (0.5, 1.5, 0.1), system
(15) is chaotic. Similarly, to show the performance of
HABC algorithm clearly and for ease of representation
in figures, the fractional orders α1, α2, α3 are randomly
selected as unknown parameters to be estimated in this
example. The searching spaces of the unknown para-
meters are set as (α1, α2, α3) ∈ [0.4, 1.4]×[0.4, 1.4]×

Table 2 Simulation results of various algorithms for system (15) over 15 independent runs

Algorithm HABC PSO DE GA

Best

α1 0.90000000000000 0.89999976800825 0.89999999997794 0.89951124144673
|α1−0.90|

0.90 0.00E+00 2.32E−07 2.21E−11 5.43E−04

α2 0.85000000000000 0.84999856019088 0.85000000023856 0.84965786901271
|α2−0.85|

0.85 0.00E+00 1.44E−06 2.39E−10 4.03E−04

α3 0.94999999999987 0.95012518289719 0.95000000987768 0.95425219941349
|α3−0.95|

0.95 1.30E−13 1.25E−04 9.88E−09 4.48E−03

F 3.00E−13 8.28E−05 1.20E−08 1.44E−02

Mean

α1 0.89999999999999 0.89999581166110 0.89999999996680 0.90003258390355
|α1−0.90|

0.90 1.19E−14 4.19E−06 3.32E−11 3.62E−05

α2 0.85000000000001 0.85001036746114 0.84999999991562 0.85004887585533
|α2−0.85|

0.85 1.01E−14 1.04E−05 8.44E−11 5.75E−05

α3 0.94999999999968 0.94957364204493 0.94999999450775 0.95835777126100
|α3−0.95|

0.95 3.16E−13 4.26E−04 5.49E−09 8.80E−03

F 6.53E−13 5.57E−04 2.34E−08 2.12E−02

Worst

α1 0.89999999999993 0.89994777622230 0.90000000092049 0.90048875855328
|α1−0.90|

0.90 7.29E−14 5.22E−05 9.20E−10 5.43E−04

α2 0.85000000000006 0.85012993522134 0.84999999861606 0.85161290322581
|α2−0.85|

0.85 5.95E−14 1.30E−04 1.38E−09 1.90E−03

α3 0.94999999999718 0.94352872137521 0.94999989275506 1.07839687194526
|α3−0.95|

0.95 2.82E−12 6.47E−03 1.07E−07 1.35E−01

F 1.11E−12 2.79E−03 3.83E−08 4.28E−02

Bold values indicate the performance of the HABC algorithm more clearly and provide a sharp contrast
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Fig. 6 Estimated parameter values with some other population-
based algorithms on fractional-order Rössler system (15)

[0.4, 1.4]. The distribution of the objective function
value for the fractional-order Rössler system (15) is
shown in Fig. 5.
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Fig. 7 Relative error values with some other population-based
algorithms on fractional-order Rössler system (15)

The statistical results in terms of the best, the mean
and the worst estimated parameters by various algo-
rithms over 15 independent runs are listed in Table 2.
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From Table 2, it can be seen that the HABC algorithm
has more accurate results than those of PSO, DE and
GA algorithms. Figures 6, 7 and 8 depict the conver-
gence profile of the evolutionary processes of the esti-
mated parameters and the objective function values.
From the figures, it can be seen that HABC algorithm
can still converge to the optimal solution more rapidly
and accurately than other algorithms.

In addition, from the aspect of the time complexity,
it can be clearly seen that under the same level of time
complexity with the GA algorithm, the HABC algo-
rithm has faster convergence speed and higher calcu-
lation accuracy in estimating the unknown fractional-
order system (15). Besides, although the time complex-
ity of HABC algorithm is higher than those of PSO and
DE algorithms, its better search ability in convergence
speed and accuracy could compensate for this short-
coming to some extent.

6 Conclusions

In this paper, a novel parameter estimation scheme
based on a hybrid artificial bee colony (HABC) algo-
rithm is proposed to identify the unknown fractional-
order chaotic systems from the point of optimization.
The hybrid algorithm is improved in terms of popu-
lation initialization, searching equation and the ratio
between employed and onlooker bees. In order to ver-
ify the optimization capabilities of the HABC algo-
rithm, two typical fractional-order chaotic systems are

chosen to test the performance. Compared with some
ABC-based algorithms and some other population-
based algorithms, the estimated results demonstrate
the strong capabilities and the effectiveness of the pro-
posed algorithm. It is shown that, for the given para-
meter configurations and maximum number of itera-
tions, theHABCalgorithmcould estimate the unknown
fractional-order chaotic systems more rapidly, more
accurately and more stably. The proposed method can
avoid the design of parameter update law in syn-
chronization analysis of the fractional-order chaotic
systems with unknown parameters. In general, the
proposed HABC algorithm is a feasible, effective
and promising method for parameter estimation of
unknown fractional-order chaotic systems. Further-
more, although this paper mainly concentrates on the
parameters estimation problem of uncertain fractional-
order chaotic systems, the proposed method is also a
useful tool for the study of various numerical optimiza-
tion problems in physics and other related areas.
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