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Abstract In this note, some comments are pointed
out to the paper (Zeng et al. in Nonlinear Dyn 67:2719–
2726, 2012). It is shown that the authors in the men-
tioned paper have wrongly utilized the fractional Ito
formula to derive the reducibility conditions of nonlin-
ear fractional stochastic differential equations (SDEs)
to linear fractional SDEs. This incorrect use of the frac-
tional Ito formula has led to fundamental flaws in the
proposed theorems.
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1 Introduction

In [1], the authors have claimed that they have derived
some necessary and sufficient conditions for reducing
the nonlinear stochastic differential equations (SDEs)
driven by fractional Brownian motion (fBm) to linear
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SDEs. The nonlinear SDE with fBm considered in [1]
is:

dx(t) = F(t, x(t))dt + G(t, x(t))dBH (t) (1)

where F(t, x(t)) andG(t, x(t)) are real-valued nonlin-
ear functions, and BH (t) is a standard fBm with Hurst
parameter 1/2 < H < 1. It has been claimed in [1] that
by applying the fractional Ito formula in [2] to process
y(t) = h(t, x(t)), the following can be obtained:

dy(t) =
⎡
⎣∂h(t, x(t))

∂t
+ ∂h(t, x(t))

∂x
F(t, x(t))

+∂2h(t, x(t))

∂x2
G(t, x(t))

t∫

0

G(s, x(s))φ(s, t)ds

⎤
⎦ dt

+∂h(t, x(t))

∂x
G(t, x(t))dBH (t) (2)

where the function φ(s, t) is defined as

φ(s, t) = H(2H − 1) |s − t |2H−2 (3)

Based on this claim, some necessary and sufficient con-
ditions for the reducibility of nonlinear SDEs with fBm
to linear homogenous and nonhomogenous SDEs have
been presented in two theorems. Furthermore, follow-
ing the reducibility conditions, an explicit solution of
(1) has been obtained. The authors of [1] have also pro-
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vided some simulation examples to illustrate the effec-
tiveness of their approach.However, in the next section,
we show that the authors have inconsiderately used the
fractional Ito formula for their problem.Due to this neg-
ligence, the solutions obtained for nonlinear SDEswith
fBm (1) by reducing them to linear SDEs are not valid.

2 Main discussion

To prove that the fundamental relation (2) is wrong, we
review the results in [2] on fractional Ito formula.

Theorem 1 (Theorem 4.5 in [2]) Let Gu, u ∈ [0, T ]
satisfy the conditions of theorem 4.3 in [2], and Let
sup0≤s<T |Fs | < ∞. Denote xt = ξ + ∫t0 Fudu +
∫t0 GudBH

u , ξ ∈ R for t ∈ [0, T ]. Let
(

∂ f
∂x (s, xs) Fs,

s ∈ [0, T ]
)

∈ L (0, T ). Then, for t ∈ [0, T ], the
following holds:

f (t, xt ) = f (0, ξ) +
∫ t

0

∂ f

∂s
(s, xs) ds

+
∫ t

0

∂ f

∂x
(s, xs) Fsds

+
∫ t

0

∂ f

∂x
(s, xs)GsdB

H
s

+
∫ t

0

∂2 f

∂x2
(s, xs)GsD

φ
s xsds (4)

where Dφ
t xt is the Malliavin derivative of xt defined in

Definition 3.1 in [2].
For the nonlinear SDE with fBm given in (1), it has

been claimed that:

Dφ
r xt =

∫ t

0
G(s, x(s))φ(s, r)ds (5)

which is incorrect. As a matter of fact, (5) is true only
in the case that in (1), F(t, x(t)) = 0 and G(t, x(t))
is not a function of x (t) as given in relation 3.6 in [2].
For the nonlinear SDE (1), it can be shown that Dφ

t xt
satisfies the following equation:

Dφ
r xt =

∫ t

0

∂Fs
∂x

Dφ
r xsds +

∫ t

0

∂Gs

∂x
Dφ
r xsdB

H
s

+
∫ t

0
Gsφ (r, s) ds (6)

By letting Yt := Dφ
r xt , then:

dYt =
{

∂Ft
∂x

Yt + Gtφ (r, t)

}
dt+

{
∂Gt

∂x
Yt

}
dBH

t (7)

To obtain Yt for the nonlinear SDEs with a nonzero
drift term, one needs to solve the fractional SDE (7)
which is a complicated task. However, Eq. (5) used by
the authors of the paper reduces to:

dYt = {Gtφ (r, t)} dt (8)

It is clear that Eqs. (7) and (8) are not identical and
will not yield the same solution. Therefore, the neces-
sary and sufficient conditions for reducibility of non-
linear SDEs with fBm to linear SDEs should be mod-
ified by employing Theorem 1 with the correct Malli-
avin derivative of xt as given in Eq. (6). Additionally,
based on this discussion, the explicit solution of (1)
that is obtained by the authors by using the reducibil-
ity approach in section 3 of [1] and also the illustrative
examples in section 4 of [1] are not valid.

Remark 1 As a counterexample, consider a special
case that SDE is linear and is given by:

dxt = At xtdt + Ct xtdB
H
t (9)

where At andCt arematrix-valued stochastic processes,
and dBH

t is the Ito-type differential of fractional
Brownian motion with Hurst parameter H . For this
SDE, Dφ

t xt has been proved to be as follows (see
Lemma 2.12 in [3]):

Dφ
t xt = xt

∫ t

0
φ (t, s)Csds, ∀t ∈ [0, T ] (10)

It is clear that the above equation is not identical to
the linear form of (5). Moreover, by replacing (10) in
fractional Ito formula (4), Eq. (2) will not be obtained.

Remark 2 In Remarks 1–3 in [1], it has been claimed
that for F (t, x (t)) = F (x) and G (t, x (t)) = G (x),
both independent of t , the reducibility conditions take
some special forms. However, we should mention the
fact that if any of F andG is independent of t , then x (t)
will become independent of t , which means that x is a
constant. Therefore, the given results in Remarks 1–3
in [1] are not valid as well.

3 Conclusions

In this comment paper, we pointed out that the results in
the paper [1] contain essential errors. It was shown that
the necessary and sufficient conditions for reducibility
of nonlinear SDEs to linear ones given in [1] cannot be
trusted.
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