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Abstract A nonlinear adaptive trajectory tracking
control strategy is proposed for a fully actuated strato-
spheric airship subject to uncertain mass and inertia
parameters. Based on the stratospheric airship trajec-
tory tracking model, a non-certainty equivalence adap-
tive control approach is adopted to estimate the uncer-
tain parameters since its excellently attractive property
of the immersion and invariance manifold condition.
The key idea involves a new filter construction for the
regressor terms in the airship dynamics that enables the
establishment of a stabilizing mechanism within the
adaption process for uncertain parameters. It is proved
that trajectory tracking errors asymptotically converge
to zero within the Lyapunov framework. Numerical
simulations are presented to demonstrate the perfor-
mance of the proposed controller.
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1 Introduction

With the development of the unmanned autonomous
vehicles, stratospheric airship as a novel aircraft has
attracted increasing attention in recent years. Strato-
sphere as the peaceful layer in atmosphere has good
wind condition on a yearly average [1] for airships.
Various platforms [2,3] are exploited by many scien-
tists to operate in the stratosphere beyond traditional
aircraft maneuvers. Compared with traditional aircraft
and spacecraft, the stratospheric airship as a lighter-
than-air vehicle performs with obvious advantages in
high altitude, payload capacity and long-time operation
to improve the fields of scientific explorations, remote
communications and real-time surveillance. Many typ-
ical stratospheric platforms are competing to develop in
many countries, such as High-Altitude Airship [4] and
Hisentinel Airship [5] of the USA, Stratospheric Plat-
form Airship [6] of Japan, and Stratospheric Airship
Program [7] of South Korea.

There are many modeling methods for airships,
such as Lagrangian and Hamiltonian reduction the-
ories [8] and Newton–Euler formulation [9,10]. For
the stabilization control of an airship, linear control
method has been utilized by [11], and backstepping
control approach has been used by [12]. However, these
controllers are based on the approximation-linearized
model of airships, and they are efficient only around
the equilibrium state. Furthermore, dynamic inver-
sion technology [13,14] and backstepping technology
[15,16] have been applied to the autonomous airship
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based on its nonlinear model. In addition to stabiliza-
tion control, the trajectory tracking [17,18] and path-
following control [19] driving the position of airship
to a desired time-varying trajectory should be stud-
ied, and the airship can be controlled to perform the
cruising flight [20–22] and station-keeping tasks [23–
25]. For the cruising flight task, a straight-line trajec-
tory can be designed, and the trajectory tracking con-
troller achieves line tracking to perform the monitoring
and transporting applications simultaneously. For the
station-keeping task, the ability to remain fixed over
a specified geo-location is performed, and thus a cir-
cle trajectory tracked by the airship can be selected to
achieve the long-time communicating and monitoring
applications. To the best of our knowledge, some afore-
mentioned controllers were designed with the exact
airship parameters. Therefore, it is necessary to design
robust controller to improve the existingmethods in tra-
jectory tracking control for stratospheric airships with
uncertain parameters.

Motivated by the excellent advantage of the non-
certainty equivalence adaptive control method, we
consider the trajectory tracking control problem of
a stratospheric airship with parametric uncertainty in
this work, and the contribution of this research is
twofold. First, the trajectory tracking dynamic model
for a stratospheric airship with parametric uncertainty
is derived, and a trajectory tracking robust controller
is developed based on a non-certainty equivalence
adaptive method. The main advantage of this novel
method is improving transient response performance
of the closed-loop system while maintaining stability
and robustness by means of controlling the parameter
estimation behavior which is not possible in traditional
certainty equivalence adaptive control. Second, the new
adaptive algorithm is employed to eliminate the effects
induced by parametric uncertainty, estimation errors
of the unknown parameters are bounded, and track-
ing errors of the airship flight trajectory asymptotically
converge to zero.

Remaining parts of this paper are arranged as fol-
lows. The airship trajectory tracking control problem is
stated in Sect. 2. A nonlinear adaptive trajectory track-
ing controller for airships with modeling uncertainties
is detailed generalized in Sect. 3. Numerical simula-
tion results are shown in Sect. 4 to demonstrate the
effectiveness of the controller. Concluding remarks are
given in Sect. 5.
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Fig. 1 Depiction of a stratospheric airship

2 Problem statement

The airship has a traditional ellipsoidal ballonet as
shown in Fig. 1. The helium is fell upon the ballonet,
and buoyancy is provided. The flight control system,
power system, and payloads are mounted on a gon-
dola under the ballonet. The aerodynamic control sur-
faces, including rudders and elevators, are installed on
the empennage surfaces. The deflections of the rudders
control the yaw movement, and the elevators influence
the pitch movement. The vectored thrust propellers are
fixed on both sides of the gondola, and they provide the
main propulsive force for flight.

2.1 Stratospheric airship model

The earth and body reference frames should be defined
first for themodel of airships. The earth reference frame
(ERF) is fixed to the earth with its origin Og located
at a fixed point on the ground. The Ogxg-axis points
north, the Ogzg-axis points to the earth core, and the
Ogyg-axis points east. The body reference frame (BRF)
is attached to the airship with its origin O coincident
with the center of volume (CV), but not the center of
gravity (CG), as shown in Fig. 1. The Ox -axis points
to the head of the airship. The Oz-axis is perpendicular
to the Ox -axis and points downwards. The Oy-axis is
determined by the right-hand rule and points toward
the right.

The airship position and attitude of Og are described
in ERF by ζ = [x, y, z]T and γ = [φ, θ, ψ]T. The
airship velocity and angular velocity of Og are defined
in BRF by υ = [u, v, w]T and ω = [p, q, r ]T. The
diagonal inertia and products of inertia are described
in BRF by {Ix , Iy, Iz} and {Ixy, Iyz, Ixz}, respectively.
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Because the airframe is symmetric about the lateral
plane, the products of inertia Ixy = Iyz = 0.

The six-degree-of-freedom kinematics and dynam-
ics for a stratospheric airship are

{
ẋ = Ry
M ẏ = N1 + N∗

2 + N3 + Bu
(1)

where x = [γ T, ζT]T, y = [ωT,υT]T, R =
diag{Rγ (γ ), Rg(γ )},

Rγ (γ ) =

⎡
⎢⎢⎣
1 sin φ tan θ cosφ tan θ

0 cosφ − sin φ

0
sin φ

cos θ

cosφ

cos θ

⎤
⎥⎥⎦ ,

Rg(γ ) =
⎡
⎢⎣
cos θ cosψ sin θ cosψ sin φ − sinψ cosφ sin θ cosψ cosφ + sinψ sin φ

cos θ sinψ sin θ sinψ sin φ + cosψ cosφ sin θ sinψ cosφ − cosψ sin φ

− sin θ cos θ sin φ cos θ cosφ

⎤
⎥⎦ ;

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ix 0 −Ixz 0 −mzg 0

0 Iy + ρ∇k3 0 mzg 0 −mxg
−Ixz 0 Iz + ρ∇k3 0 mxg 0

0 mzg 0 m + ρ∇k1 0 0

−mzg 0 mxg 0 m + ρ∇k2 0

0 −mxg 0 0 0 m + ρ∇k2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(Iz − Iy)qr + Ixz pq + mzg(ur − wp)

−(Ix − Iz − ρ∇k3)pr − Ixz(p2 − r2) − mzg(wq − vr) + mxg(vp − uq)

−(Iy + ρ∇k3 − Ix )pq − Ixzqr − mxg(ur − wp)

−(m + ρ∇k2)(wq − vr) + mxg(q2 + r2) − mzg pr

(m + ρ∇k2)wp − (m + ρ∇k1)ur − mxg pq − mzgqr

(m + ρ∇k1)uq − (m + ρ∇k2)vp − mxgrp + mzg(q2 + p2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N∗
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−zgmg cos θ sin φ

−zgmg sin θ − xgmg cos θ cosφ

xgmg cos θ sin φ

(B f − mg) sin θ

−(B f − mg) cos θ sin φ

−(B f − mg) cos θ cosφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

La

Ma

Na

Xa

Ya
Za

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FT,L cosμL

FT,R cosμR

FT,L sinμL

FT,R sinμR

δR

δE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos ξ cos ξ 0 0 0 0

sin ξ − sin ξ 0 0 0 −2Q∞Cm4

0 0 1 1 −2Q∞Cn4 0

−z p sin ξ −z p sin ξ yp −yp 0 0

z p cos ξ z p cos ξ −xp −xp 2Q∞Cy4 0

xp sin ξ − yp cos ξ xp sin ξ + yp cos ξ 0 0 0 −2Q∞Cz4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

123



1422 L. Sun, Z. Zheng

α = arctan2(w, u),

β = arctan2(v cosα, u);
La = Q∞Cl1 sin β sin |β|,
Ma = −Q∞ (Cm1 cos(α/2) sin(2α)

+Cm2 sin(2α) + Cm3 sin α sin |α|) ,

Na = Q∞ (Cn1 cos(β/2) sin(2β)

+Cn2 sin(2β) + Cn3 sin β sin |β|) ,

Xa = −Q∞
(
Cx1 cos

2 α cos2 β

+Cx2 sin(2α) sin(α/2)) ,

Ya = −Q∞
(
Cy1 cos(β/2) sin(2β) + Cy2 sin(2β)

+Cy3 sin β sin |β|) ,

Za = −Q∞ (Cz1 cos(α/2) sin(2α) + Cz2 sin(2α)

+Cz3 sin α sin |α|) ;
m is the airship mass; ∇ is the airship volume; xg and
zg are the x- and z-coordinates of the center of gravity;
{k1, k2, k3} are the ellipsoid inertia factors for calculat-
ing the addedmass and inertia matrices; Q∞ = ρV 2/2
is the dynamic pressure, ρ is the atmosphere density
of flight altitude and V = √

u2 + v2 + w2 is the air-
ship speed; Ci j (i = l,m, n, x, y, z; j = 1, 2, 3, 4)
are the aerodynamic coefficients; {Xa,Ya, Za} and
{La, Ma, Na} are the aerodynamic forces and torques
in BRF; B f is the buoyancy that acts on the airship; g
is the acceleration of gravity; {xp, yp, z p} are the posi-
tion coordinates of the right propeller in BRF; δR and
δE are the deflections of the trailing edge flaps of the
rudders and elevators, respectively; FT,L , FT,R and ξ

are thrusts and the patulous angular of the left and right
propellers mounted on both sides of the gondola; μL

and μR are the rotational angular of the left and right
propellers with respect to the Oy-axis of BRF.

Remark 1 The configuration of the vectored thrust pro-
pellers on both sides of the gondola results in a fully
actuated airship, improves the maneuvering ability of
airship and simplifies the designing of control inputs
compared with the under-actuated airship.

Assumption 1 The airship is assumed to be a rigid
body, so that aeroelastic effects are ignored. The center
of volume is assumed to coincide with the gross center
of buoyancy, and the airship is always in neutral buoy-
ant state, that is B f = mg. Therefore, the resultant

forces of gravitation and buoyancy have no effect on
the dynamics in the horizontal motion.

Assumption 2 The airship massm, volume∇, inertial
parameters {Ix , Iy, Iz, Ixz}, the center of gravity coor-
dinates {xg, zg} and ellipsoid inertia factors {k1, k2, k3}
are unknown constants. The patulous angular ξ and the
position of the right propeller {xp, yp, z p} are known
and constant scalars. The aerodynamic coefficients
Ci j (i = l,m, n, x, y, z; j = 1, 2, 3, 4) are known
scalars, but the atmosphere density of flight altitude
ρ is an unknown scalar.

Assumption 3 The airship states {γ , ζ ,ω,υ} aremea-
surable. The desired position trajectory ζ c is differ-
entiable, and its time derivatives {ζ̇ c, ζ̈ c, ζ

(3)
c , ζ

(4)
c }

are bounded. The airship attitude γ is always satisfy
|φ| < π and |θ | < π/2 such that the kinematicalmatrix
Rγ (γ ) in (1) is always invertible.

2.2 Trajectory tracking model

With giving a desired position trajectory ζ c, we can
define a Frenet frame [26] with the unit vectors of the
tangent, lord normal and vice normal for the desired
position trajectory ζ c(t) at arbitrary time t as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

et = ζ̇ c

‖ζ̇ c‖
eb = ζ̇ c × ζ̈ c

‖ζ̇ c × ζ̈ c‖
en = eb × et

(2)

Then, we can obtain the desired attitude by using this
Frenet frame.

The unit vector en always directs to the concave side
of the desired trajectory ζ c, but not the right-hand side
of the airship body. To overcome this defect, we need
to design the desired trajectory ζ c such that the third
element of eb satisfies eb3 �= 0. Then, the desired
airship body frame can be established by unit vec-
tors {et , sgn(eb3)en, sgn(eb3)eb}, where sgn(eb3) is the
signum function for eb3 without zero. Thus, the rota-
tion matrix from desired airship body frame to ERF
is Rc

g = [et , sgn(eb3)en, sgn(eb3)eb]. Since the atti-
tude tracking objective is to render the BRF coincid-
ing with the desired airship body frame, comparing
Rc
g = [ri j ](i = j = 1, 2, 3)with Rg yields the desired

attitude γ c = [φc, θc, ψc]T as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φc = arctan

(
r32
r33

)

θc = arctan

⎛
⎝ −r31√

r211 + r221

⎞
⎠

ψc = arctan

(
r21
r11

)
(3)

and then the desired attitude rates {γ̇ c, γ̈ c} are also
obtained directly by calculating the time derivatives of
γ c.

Define the desired velocities and accelerations with
R−1
g = RT

g and Ṙg(γ c) = Rg(γ c)S(ωc) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωc = R−1
γ (γ c)γ̇ c � [pc, qc, rc]T

ω̇c = R−1
γ (γ c)[γ̈ c − Ṙγ (γ c)ωc]

υc = RT
g (γ c)ζ̇ c

υ̇c = RT
g (γ c)[ζ̈ c − Rg(γ c)S(ωc)υc]

(4)

where

R−1
γ (γ c) =

⎡
⎢⎣
1 0 − sin θc

0 cosφc sin φc cos θc

0 − sin φc cosφc cos θc

⎤
⎥⎦ , S(ωc) =

⎡
⎢⎣

0 −rc qc

rc 0 −pc

−qc pc 0

⎤
⎥⎦ ,

Ṙγ (γ c) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
θ̇c sin φc + φ̇c tan θc cosφc

cos2 θc

θ̇c sin φc − φ̇c tan θc sin φc

cos2 θc

0 −φ̇c sin φc −φ̇c cosφc

0
φ̇c cosφc cos θc + θ̇c sin φc sin θc

cos2 θc

−φ̇c sin φc cos θc + θ̇c cosφc sin θc

cos2 θc

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From B f = mg in Assumption 1, we know that the
term N∗

2 in (1) can be simplified and denoted as

N2 = [−zgmg cos θ sin φ,−zgmg sin θ

− xgmg cos θ cosφ, xgmg cos θ sin φ, 0, 0, 0]T

thus the error kinematics and dynamics can be obtained
by

{
ẋe = (R − Rc) yc + Rye
M ẏe = N1 + N2 + N3 + Bu − M ẏc

(5)

where xe = x − xc, ye = y − yc, xc = [γ T
c , ζT

c ]T,
yc = [ωT

c ,υT
c ]T, Rc = diag{Rγ (γ c), Rg(γ c)}.

Furthermore, since R is non-singular, defining z1 =
xe, z2 = ẋe and P = R−1, then (5) can be formulated
as{

ż1 = z2

H(z1) ż2 + C1(z1, z2)z2 + C2(z1, z2) = τ
(6)

where H(z1) = PTMP ,C1(z1, z2) = −PTMP ṘP ,
C2(z1, z2) = PTMP ṘP(R−Rc) yc− PTMP[(Ṙ−
Ṙc) yc − (R − Rc) ẏc] − PT(N1 + N2 − M ẏc), τ =
PT(N3 + Bu).

According to (6), the trajectory tracking control
objective in this paper is equivalent to determining
the control vector u under Assumptions 1–3 such that
limt→∞ z1(t) = 0 and limt→∞ z2(t) = 0.

3 Main results

In this section a novel adaptive controller will be
designed such that the airship motion tracks the desired
trajectory while unknown parameters are estimated.
The system state filters and parameter regressor matrix

filter are designed, and then the controllers for position
and attitude are developed in a unified non-certainty
equivalence principle framework.

We now get ready to develop a non-certainty equiv-
alence adaptive trajectory tracking controller for error
dynamics (6) with unknown parameter vector

ϑ = [
Ix , Iy + ρ∇k3, Iz

+ ρ∇k3, Ixz,m + ρ∇k1,m + ρ∇k2,mxg,mzg
]T

,

and the adaptive control input u is determined through

u = B−1
[
−N3 + RT

(
−Y(ϑ̂ + κ) − δY f YT

f

× [
(kd − kz)z f2 + kp z f1 + z2

])]
(7)

˙̂
ϑ = δ(kzY f − Y)T z f2 + δYT

f (kd z f2 + kp z f1) (8)
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where κ = δYT
f z f2 ; ϑ̂ + κ is the estimation of ϑ ;

kz, kp, kd > 0, δ ≥ 1/kd ; the signals z f1 , z f2 and Y f

are obtained from stable first-order linear filters{
ż f1 = −kz z f1 + z1

ż f2 = −kz z f2 + z2
(9)

Ẏ f = −kzY f + Y (10)

and the regressor matrix Y ∈ R
6×8 is constructed in

the following manner:

Yϑ = H(z1)(kd z2 + kp z1)

+ Ḣ(z1)[(kd − kz)z f2 + kp z f1 + z2]
−C1(z1, z2)z2 − C2(z1, z2)

Remark 2 The regressor matrix Y can be constructed
based on the fact that N1 + N2 � Tϑ and Ma =
L(a)ϑ for any vector a = [a1, a2, a3, a4, a5, a6]T,
where

L(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 −a3 0 0 0 −a5

0 a2 0 0 0 0 −a6 a4

0 0 a3 −a1 0 0 a5 0

0 0 0 0 a4 0 0 a2

0 0 0 0 0 a5 a3 −a1

0 0 0 0 0 a6 −a2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 qr −qr pq 0 0 0 ur − wp − g cos θ sin φ

−pr 0 pr r2 − p2 0 0 vp − uq − g cos θ cosφ vr − wq − g sin θ

pq −pq 0 −qr 0 0 wp − ur + g cos θ sin φ 0

0 0 0 0 0 vr − wq r2 + q2 −pr

0 0 0 0 −ur wp −pq −qr

0 0 0 0 uq −vp −rp p2 + q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

thus from (6), we have Y = PTL(P(kd z2 + kp z1)) −
2PTL(P ṘP[(kd − kz)z f2 + kp z f1 + z2]) + PTL
(P ṘP z2)− PTL(P ṘP(R−Rc) yc)+ PTL(P[(Ṙ−
Ṙc) yc − (R − Rc) ẏc]) − PTL( ẏc) + PTT .

Remark 3 After designing the controller in (7) and
denoting u = [u1, u2, u3, u4, u5, u6]T, we know from

(1) that FT,L =
√
u21 + u23, FT,R =

√
u22 + u24, μL =

arctan

(
u3
u1

)
, μR = arctan

(
u4
u2

)
, δR = u5, δE = u6.

Theorem 1 Consider the trajectory tracking system
model (6) under Assumptions 1–3, for any initial
states and desired reference trajectories, the pro-
posed adaptive trajectory tracking controller (7)–(10)
under condition (16) can guarantee limt→∞ z1(t) =
limt→∞ z2(t) = 0 in the closed-loop system.

Proof Firstly, define the parameter estimation error

zy = ϑ̂ + κ − ϑ (11)

and introduce a linear filter for the control signal as

τ̇ f = −kzτ f + τ (12)

Then adding and subtracting the terms

H(z1)(kd z2 + kp z1)

+ Ḣ(z1)[(kd − kz)z f2 + kp z f1 + z2]

to right-hand side of the second sub-equation of (6)
give rise to

H(z1) ż2 = Yϑ + τ − H(z1)(kd z2 + kp z1)

− Ḣ(z1)[(kd−kz)z f2 +kp z f1+z2] (13)

Substituting (9), (10) and (12) into the first sub-
equation of (6) and (13) yields the filtered-state error
model
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
( ż f1 − z f2) = −kz( ż f1 − z f2)

d

dt
[H(z1)( ż f2 + kp z f1 + kd z f2) − Y f ϑ − τ f ]

= −kz[H(z1)( ż f2 +kp z f1+kd z f2)−Y f ϑ−τ f ]
(14)

As can be seen, Eq. 14 contains two linear differen-
tial equations, so the solution of (14) can be immedi-
ately obtained by⎧⎪⎨
⎪⎩

ż f1 = z f2 + η1(t)

ż f2 = −kp z f1 − kd z f2
+ H−1(z1)(Y f ϑ + τ f ) + H−1(z1)η2(t)

(15)

where⎧⎪⎨
⎪⎩

η1(t) = [ ż f1(0) − z f2(0)]e−kz t

η2(t) = [H(z1(0))[ ż f2(0) + kp z f1(0) + kd z f2(0)]
−Y f (0)ϑ − τ f (0)]e−kz t

It is easily known that η1(t) and η2(t) are exponen-
tially decaying terms and their initial values directly
depend on z f1(0), z f2(0), Y f (0), τ f (0), z1(0) and
z2(0). Actually, η1(t) ≡ 0 and η2(t) ≡ 0 for all t ≥ 0
are equivalent to following conditions⎧⎪⎨
⎪⎩

ż f1(0) − z f2(0) = 0

ż f2(0) + kp z f1(0) + kd z f2(0) = 0

Y f (0) = 0, τ f (0) = 0

then after algebraic calculations with (9), we know the
initial values of filters should be chosen as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z f1(0) = (kz − kd)z1(0) − z2(0)
kz(kz − kd) + kp

z f2(0) = kp z1(0) + kz z2(0)

kz(kz − kd) + kp

Y f (0) = 0, τ f (0) = 0

k2z − kzkd + kp �= 0

(16)

Thus, η1(t) ≡ 0 and η2(t) ≡ 0 result in the filtered-
state error dynamics{

ż f1 = z f2
ż f2 = −kp z f1 − kd z f2 + H−1(z1)(Y f ϑ + τ f )

(17)

Consider the filtered control signal τ f can be spec-
ified as [27]

τ f = −Y f (ϑ̂ + κ) (18)

then from Eqs. (11) and (18), (17) becomes{
ż f1 = z f2
ż f2 = −kp z f1 − kd z f2 − H−1(z1)Y f zy

(19)

and the dynamics of the parameter estimation error can
be derived by using (8) and (19) to yield the following:

ży = ˙̂
ϑ + κ̇ = −δYT

f H
−1(z1)Y f zy (20)

Choose a function

V = 1

2
kp zTf1 z f1 + 1

2
zTf2 z f2 + 1

2λm
zTy zy ≥ 0 (21)

where λm is the minimum eigenvalue of H(z1). Taking
the time derivative of (21) along trajectories generated
from (19), (20) and using δ ≥ 1/kd give rise to

V̇ = kp zTf1 ż f1 + zTf2 ż f2 + 1

λm
zTy ży

= kp zTf1 z f2+zTf2 [−kd z f2−kp z f1−H−1(z1)Y f zy]
+ 1

λm
zTy (

˙̂
ϑ + κ̇)

= −kd zTf2 z f2 − zTf2H
−1(z1)Y f zy

− δ

λm
zTyY

T
f H

−1(z1)Y f zy

≤ −kd zTf2 z f2 − zTf2H
−1(z1)Y f zy

− δzTyY
T
f H

−T(z1)H−1(z1)Y f zy

≤ −kd
2

‖z f2‖2 − δ

2
‖H−1(z1)Y f zy‖2

− kd
2

(
‖z f2‖2 − 2

kd
‖z f2‖‖H−1(z1)Y f zy‖

+ δ

kd
‖H−1(z1)Y f zy‖2

)

≤ −kd
2

‖z f2‖2 − δ

2
‖H−1(z1)Y f zy‖2 ≤ 0 (22)

Since V (t) ≥ 0 and V̇ (t) ≤ 0, then V (t) is
monotonically decreasing along the closed-loop sys-
tem trajectory and is bounded by zero. Hence, V (t)
has a finite limit V (∞) as t → ∞ and

0 ≤ V (∞) ≤ V (t) ≤ V (0) < ∞,∀t ≥ 0

According to (22), we also know∫ ∞

0
‖z f2‖2dt ≤ −2

kd

∫ ∞

0
V̇ (t)dt

≤ 2[V (0) − V (∞)]
kd

< ∞
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∫ ∞

0
‖H−1(z1)Y f zy‖2dt ≤ −2

δ

∫ ∞

0
V̇ (t)dt

≤ 2[V (0) − V (∞)]
δ

< ∞

these mean z f2 and H−1(z1)Y f zy are square inte-
grable.

Then from the definition of V (t), we have

0 ≤ 1

2
kp‖z f1‖2 + 1

2
‖z f2‖2 + 1

2λm
‖zy‖2

= V (t) < ∞,∀t ≥ 0

Thus, ‖z f1‖ < ∞, ‖z f2‖ < ∞ and ‖zy‖ < ∞.
From ‖z f1‖ < ∞, ‖z f2‖ < ∞ and (9), we know

‖z1‖ < ∞ and ‖z2‖ < ∞, thus ‖Y‖ < ∞, ‖Y f ‖ <

∞, ‖Ẏ f ‖ < ∞, ‖Ḣ(z1)‖ < ∞, ‖ ży‖ < ∞ (each sig-
nal ismerely either bounded signal or signal driven by a
stable linear filters with a bounded input). Furthermore,
from ‖z f1‖ < ∞, ‖z f2‖ < ∞, ‖H−1(z1)Y f zy‖ < ∞
and⎧⎪⎪⎨
⎪⎪⎩

ż f2 = −kd z f2 − kp z f1 − H−1(z1)Y f zy
d
dt [H−1(z1)Y f zy] = Ḣ

−1
(z1)Y f zy

+H−1(z1)Ẏ f zy + H−1(z1)Y f ży

(23)

we know ‖ ż f2‖ < ∞ and
∥∥∥ d
dt [H−1(z1)Y f zy]

∥∥∥ < ∞,

it means z f2 and H−1(z1)Y f zy are uniformly contin-
uous. Thus, limt→∞ z f2(t) = 0 and limt→∞ H−1(z1)
Y f (t)zy(t) = 0 by virtue of Barbalat’s Lemma [28].
Differentiating ż f2 in (23) with respect to time yields

z̈ f2 = −kd ż f2 − kp ż f1 − d

dt
[H−1(z1)Y f zy]

then we have ‖ z̈ f2‖ < ∞, and from limt→∞ z f2(t) =
0, we also have limt→∞ ż f2(t) = 0. It follows from
(23) that limt→∞ z f1(t) = 0. Therefore, from the
stability of linear filters in (9), we can guarantee
limt→∞ z1(t) = limt→∞ z2(t) = 0.

Finally, the control input u can be recovered from
the filtered control signal τ f defined in (12) and (18)
as

u = B−1
[
−N3 + RT(τ̇ f + kzτ f )

]

= B−1
(
−N3 + RT

[
−Ẏ f (ϑ̂ + κ)

−Y f

( ˙̂
ϑ + κ̇

)
− kzY f

(
ϑ̂ + κ

)])

= B−1
(
−N3+RT

[
−Y(ϑ̂+κ)−Y f

( ˙̂
ϑ+κ̇

)])
(24)

Substituting (8), κ = δYT
f z f and (9) into (24) gives

u = B−1
(
−N3 + RT

(
−Y(ϑ̂ + κ)

−Y f

[
δ(kzY f − Y)T z f2 + δYT

f (kd z f2

+ kp z f1) + δẎ
T
f z f2 + δYT

f ż f2
]))

= B−1
(
−N3 + RT

(
−Y(ϑ̂ + κ)

−Y f

[
δ(kzY f − Y)T z f2 + δYT

f (kd z f2 + kp z f1)

+ δ(−kzY f + Y)T z f2 + δYT
f (−kz z f2 + z2)

]))

= B−1
(
−N3 + RT

(
−Y(ϑ̂ + κ)

− δY f YT
f

[
(kd − kz)z f2 + kp z f1 + z2

]))
(25)

which is the same as (7) thereby completing the proof.
��

Remark 4 We obtain limt→∞ z1(t) = 0 and limt→∞
H−1(z1)Y f (t)zy(t) = 0 in the proof of Theorem 1,
this means limt→∞ H−1(z1) = M−1, and all closed-
loop trajectories ultimately end up inside an attracting
manifold M = {zy ∈ R

8|Y f zy = 0}. Obviously,
limt→∞ zy(t) = 0 implies limt→∞ Y f (t)zy(t) = 0,
but the converse is not necessarily true. Moreover,
convergence to this attracting manifold can be made
arbitrarily fast by tuning the adaptive parameter δ

present within the control law in (7). Actually, the term
Y f (t)zy(t) includes the information about the error
between the current estimate of the parameter ϑ̂ + κ

and its corresponding true value ϑ .

4 Simulation example

In the following simulation, a typical helix trajectory
is selected as the desired trajectories to verify the pro-
posed control method. Values of parameters and coef-
ficients for the stratospheric airship are calculated from
[9] and demonstrated in Table 1.

The desired trajectory for ascendant helix tracking
simulation is performed as

ζ c = [xc(t), yc(t), zc(t)]T
= [500 sin(0.01t), 500 cos(0.01t), −2t − 20000]Tm

where the initial position is ζ (0) = [−300, 0,
−19800]T m, the initial line velocity is υ(0) =
[5, 0, 0]Tm/s, the initial attitude isγ (0) = [0, 0, 0]T rad
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Table 1 Parameters and
coefficients of a
stratospheric airship

Parameter Value Unit Coefficient Value

m 5.6 × 104 kg k1 0.17

∇ 7.4 × 105 m3 k2 0.83

ρ 0.089 kg/m3 k3 0.52

{xg, zg} {5, 15} m Cl1 2.4 × 104

{xp, yp, z p} {4, 0, 40} m Cmi (i = 1, 2, 3, 4) 7.7 × 104

Ix 5 × 107 kgm2 Cni (i = 1, 2, 3, 4) 7.7 × 104

Iy 2.9 × 108 kgm2 Cx1 657

Iz 2.9 × 108 kgm2 Cx2 657

Ixz −6 × 104 kgm2 Cyi (i = 1, 2, 3, 4) 657

ξ π/6 rad Czi (i = 1, 2, 3, 4) 657

g 9.81 m/s2
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Fig. 2 3-D Position trajectory for helix tracking

and the other states are zero. The controller parameters
are chosen as kp = 3, kd = 3, kz = 10, δ = 100.
The initial values are ϑ(0) = [5 × 107, 3 × 108, 3 ×
108,−6×104, 6.5×104, 1.1×105, 3×105, 9×105]T
and Y f (0) = 0. z f1(0) and z f2(0) are determined by
(16). The simulation results are demonstrated in Figs. 2,
3, 4, 5, 6 and 7, where the 3-D position tracking result
for the helix trajectory is given in Fig. 2, and corre-
sponding tracking errors of the closed-loop system are
also shown in Figs. 3 and 4, the estimation of the uncer-
tain parameters are displayed in Figs. 5, 6 and 7.

As shown in the Figs. 2, 3, 4, 5, 6 and 7, the asymp-
totic convergence of the trajectory tracking errors is
guaranteed after a transient behavior for helix trajec-
tory. The simulations reveal that the trajectory track-
ing controller can operate on the entire desired trajec-
tory with proposed controller parameters. The bounded
estimations for uncertain parameters also confirm the
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Fig. 3 Attitude errors and angular velocity errors for helix track-
ing
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Fig. 4 Position errors and line velocity errors for helix tracking
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Fig. 5 Estimations of parameters ϑ1, ϑ2, ϑ3 in helix tracking
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Fig. 7 Estimations of parameters ϑ7, ϑ8 in helix tracking
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Fig. 8 Attitude and angular velocity tracking errors with small
parameters of controller (7)
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Fig. 9 Position and linear velocity tracking errors with small
parameters of controller (7)

robustness of proposed trajectory tracking control
method. The simulation results verify that the trajec-
tory tracking control method designed in this paper for
stratospheric airship is effective. From Figs. 2, 3, 4, 5, 6
and 7, it can be seen that the proposed controller results
in a satisfactory tracking performance.

In addition, the closed-loop system is simulated
again by using the proposed adaptive controller (7)
with smaller parameters kp = 1, kd = 1, kz = 3
and δ = 10. Simulation results of attitude and posi-
tion tracking are shown in Figs. 8 and 9. By compar-
ing them with Figs. 3 and 4, we can conclude that the
transient response performance and robustness of the
closed-loop system can be improved by regulating the
parameter estimation behavior. In other words, it is also
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Fig. 10 Attitude and angular velocity tracking errors with PID
controller
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Fig. 11 Position and linear velocity tracking errors with PID
controller

found via the extensive simulation that the tracking
performance can be further improved by appropriately
increasing the estimator parameters kp, kd , kz and δ.

In order to illustrate the advantage of the pro-
posed controller (7), the helix tracking mission is
conducted with widely used proportional–integral–
derivative (PID) controller u = −Kpxe − Ki

∫ t
0 xe(τ )

dτ − Kd ẋe. With defining a simple control energy
index E = ∫ T

0 ‖u(t)‖2dt in T=10s, it is easy to
derive that the control energy of the proposed adap-
tive controller (7) is about E = 4.334 × 109. With
regulating the feedback gains of PID controller as
Kp = diag{15I3, 2.4I3}, Ki = diag{7.2I3, 5.6I3} and
Kd = diag{212I3, 16I3}, where I3 denotes the 3 × 3

identitymatrix,we derive that the control energy of PID
controller is E = 4.385 × 109, this is nearly the same
as the energy of controller (7). Figures. 10 and 11 show
the simulation results of attitude and position tracking
with PID controller. As can be seen in Figs. 10 and 11,
the tracking errors of attitude and position converge to
zero. However, by further comparing themwith Figs. 3
and 4, we can conclude that with nearly the same con-
trol energy, the proposed adaptive controller provides a
better dynamic performance than PID controller, which
is mainly due to the shorter transient response time and
smaller steady-state errors. Although PID controller is
easy to be regulated, it is hard to ensure high con-
trol accuracy and good dynamic performance for the
closed-loop system.

5 Conclusion

This paper developed a nonlinear adaptive trajectory
tracking controller for a stratospheric airship in the
presence of parametric uncertainties. The unknown
parameterswere estimated online based on a novel non-
certainty equivalence adaptive law. The paper includes
detailed stability analysis of the closed-loop system.
Asymptotical convergence of the trajectory tracking
errors is guaranteed with the proposed controller even
in the presence of parametric uncertainties. Simulation
results demonstrated the performance of the proposed
controller. Moreover, although the trajectory tracking
controller in this paper is designed for the stratospheric
airship, the proposed approach is also applied on the
other second-order mechanical systems. Future works
include controller design and robust analysis for air-
ships with parametric uncertainties, unknown aerody-
namic coefficients and external disturbances.
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