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Abstract Many kinds of nonlinear engineering struc-
tures have nonlinear components which are spatially
localized. For these structures, it is usually needed to
determine locations and types of nonlinearities firstly
tomake the subsequent procedure of parameter estima-
tion more efficient and accurate. This paper presents a
new approach to identify all the locations of possible
nonlinearities in a multiple-degree-of-freedom struc-
ture. Themethod is a spectral approach since it is based
on the reverse path method. Moreover, as a forward
selection approach, it is able to identify nonlinearities
of different types and locations one by one. This for-
ward selection characteristic makes the method able
to suffer less computational burden than using an iter-
ate brute-force method when there exist multiple non-
linearities in the structure and the number of possible
nonlinearities to be verified is large. Also, the method
only needs one single excitation point which could be
located at any node in the structure and no prior infor-
mation about the underlying linear system is needed.
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One possible drawback is that in order to calculate the
internal nonlinear forces, the response measurements
at all the possible nonlinear nodes are needed. Another
limitation is that the nonlinearities should be strong
enough to be indicated in the response measurements
which are polluted by noise.
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1 Introduction

In the past few decades, lots of effort have been put
into the field of identification of nonlinear MDOF sys-
tems. Although various kinds of methods have been
proposed, there is still no applicable one which could
be utilized to model general structures with arbitrary
number and type of nonlinearities. Several common
techniques include restoring force surface method [1–
5], Hilbert transform [6–8], NARMAXmodels [9–11],
Volterra series [12–16], proper orthogonal decompo-
sition [17–21], nonlinear identification through feed-
back of the output [22], nonlinear resonant decay
method [23], subspace-based method [24–26] and so
on [27,28].More information about the commonmeth-
ods can be achieved in [29].

One of these developed methods for identifying
MDOF nonlinear systems is the RP approach which
was firstly introduced by Bendat [30,31] as a spectral
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method to identify single-degree-of-freedom (SDOF)
systems. Then the method was applied to MDOF sys-
tems by Rice and Fitzpatrick [32]. The RP method
reverses the input–output path of the given system to
formulate equations in frequency domain and divides
the whole system into the underlying linear part and
several internal nonlinear forces. A possible drawback
is that the excitationmust be applied on the locations of
the nonlinearities to achieve the coefficients, which is
hard to implement especially when the locations of the
nonlinearities are unknown beforehand. To overcome
the disadvantage of RP method, conditioned reverse
path (CRP) method was put forward by Richards and
Singh [33] and the key idea of the method is to sep-
arate the nonlinear part and the linear part of input
and output of the system by spectral conditioning tech-
niques to construct the uncorrelated response compo-
nents in the frequency domain.However, althoughCRP
method only needs a single excitation point, the formu-
lation of the problem is complex and increases com-
putational complexity. Muhamad et al. [34] proposed
orthogonalized reverse path method (ORP) which pro-
vides a simpler formulation for the problem of charac-
terizing the underlying linear system by removing the
effects of nonlinearities in the time domain. Another
method modifying the RP method proposed by Mag-
nevall et al. [35] only needs a single broadband exci-
tation. The method generally applies the RP approach
with the assumption that the locations of the nonlinear-
ities are known beforehand and the response measure-
ments could be achieved at the nonlinear locations.

When applying RP, CRP and most of the other
methods to identify parameters of the nonlinearities
in MDOF structures, the locations and the types of
the nonlinearities are usually needed to be determined
firstly as the structure identification, which is beneficial
to make the mathematical modeling and the parameter
estimation more efficient and robust. Therefore, differ-
ent nondestructive and low-cost techniques based on
analysis of vibration signals have been developed to
locate the nonlinearities. For example, Lin [36,37] and
Ewins [36] proposed a method to locate the nonlin-
earities by correlating analytical model with measured
vibration test data; Al-Hadid and Wright [38] devel-
oped procedures based on thewell-known time-domain
restoring force surface (RFS) method; Trendafilova et
al. [39] discussed procedures using pattern recognition
tools for the localization of nonlinearities in structures.
This technique was built on the comparison between

the signals from the linear structure and the signals
from the corresponding nonlinear one; Peng et al. [40–
42] studied the distribution of nonlinear effects in the
one-dimensional chain type structures, which can be
utilized to determine the location of the nonlinear-
ity; Lang et al. [43] extended the transmissibility to
nonlinear cases by introducing NOFRFs to propose
a method to locate the nonlinear damage in MDOF
engineering structures. Josefsson et al. [44] proposed a
method based on the RP methodology and the coher-
ence functions to find the most possible position where
the nonlinearity is located. Most of the identification
techniques listed above require some priori informa-
tion such as the underlying linear system or require that
measurements should be carried out more than once to
achieve data under different excitation levels.

The method proposed in the present study is a for-
ward selection approach based on RPmethod. It is able
to determine the nonlinearities in the structure one by
one from all the various kinds of possible nonlineari-
ties in a forward selection way. Moreover, the method
only needs a single broadband excitation point and no
prior information about the underlying linear system
is needed. Since it is a forward selection method, it is
able to decrease the computational cost compared with
an iterate brute-force approach when there exist sev-
eral nonlinearities in one structure and the number of
possible nonlinearities to be verified is large. A possi-
ble drawback is that in order to calculate the internal
nonlinear forces the response measurements at all the
possible nonlinear nodes are needed. Another limita-
tion is that the nonlinearities should be strong enough
to be indicated in the response measurements which
are polluted by noise. In Sect. 2, the method will be
described in detail when it is applied to identify the
locations of nonlinearities in structure. In Sect. 3, illus-
trative numerical examples are given and results are
shown to demonstrate the feasibility of the forward
selection method.

2 Forward selection RP method

The forward selection RP method discussed in the
present study is able to be applied to structures with
several local nonlinearities as shown in Fig. 1. Sim-
ilar to the traditional linear frequency response func-
tion technique, the method assumes that the structure is
excited at degree-of-freedom (DOF) p by a broadband
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Fig. 1 Illustration of the structure considered in the present
study: a broadband excitation at node xp and responses at N
nodes are needed to be measured

excitation fin(p) which is large enough to excite the
nonlinearities in the structure. All the displacements at
N nodes, which are x1, x2, . . ., xN as shown in Fig. 1,
should be achieved. The mathematical representation
of the structure should be able to be simplified as an
underlying linear systemwith internal nonlinear forces.
The internal nonlinear force between node i and node
j is denoted as fi j as shown in Fig. 1. The goal of
the method is to identify the nodes which are affected
directly by the internal nonlinear forces one by one
using only one single set of displacement measure-
ments.

2.1 A RP algorithm

The RP method was firstly proposed by Bendat [30,
31] and then developed by Rice and Fitzpatric [32],
Richards andSingh [33],Muhamad et al. [34] andMag-
nevall et al. [35]. The forward selection formulation of
the RP method in this paper is described in the follow-
ing part.

The key idea of the RP methodology is to separate a
MDOF nonlinear system into an underlying linear part
and several nonlinear internal forces. Thus, the situ-
ation shown in Fig. 1 where a nonlinear structure is
excited by an excitation fin(p)could be treated equally
as the situation where the underlying linear structure is
excited by the excitation fin(p) and several nonlinear
internal forces fi j . This change of perspective not only
makes the traditional linear frequency response func-
tion technique usable in this situation, but also enables
the RP approach to be applied to a continuous structure.
Starting from the representation of MDOF frequency

response function, denoted as H(ω), of the underlying
linear system, the governing equation of the nonlinear
system can be written as

X(ω)

= H(ω)

⎛
⎝Fin(p) (ω) −

∑
i1

F1i1 (ω) − · · · −
∑
iN

FNiN (ω)

⎞
⎠

(1)

where X (ω) = [
x1 (ω) x2 (ω) · · · xN (ω)

]T
, F j i j

(ω) = [ 0 · · · 0︸ ︷︷ ︸
j−1

f j i j (ω) 0 · · · 0︸ ︷︷ ︸
N− j

]T and Fin(p) (ω) =

[ 0 · · · 0︸ ︷︷ ︸
p−1

fin(p) (ω) 0 · · · 0︸ ︷︷ ︸
N−p

]T are the Fourier trans-

forms of the displacement response vector x (t) =[
x1 (t) x2 (t) · · · xN (t)

]T
, the internal nonlinear force

vector f j i j (t) = [ 0 · · · 0︸ ︷︷ ︸
j−1

f j i j (t) 0 · · · 0︸ ︷︷ ︸
N− j

]T and the

external excitation f in(p) (t) = [ 0 · · · 0︸ ︷︷ ︸
p−1

fin(p)

0 · · · 0︸ ︷︷ ︸
N−p

]T , respectively. The subscript j i j of F j i j (ω)

and f j i j (t) means the internal nonlinear force which
acts between node j and node i j .

Expanding Eq. (1), Eq. (1) can be rewritten as

⎡
⎢⎢⎢⎣

H1p (ω)

H2p (ω)

.

.

.

HNp (ω)

⎤
⎥⎥⎥⎦ fin(p) (ω) −

⎡
⎢⎢⎢⎣

H11 (ω)

H21 (ω)

.

.

.

HN1 (ω)

⎤
⎥⎥⎥⎦
∑
i1

f1i1 (ω) − · · ·

−

⎡
⎢⎢⎢⎣

H1N (ω)

H2N (ω)

.

.

.

HNN (ω)

⎤
⎥⎥⎥⎦
∑
iN

fNiN (ω) =

⎡
⎢⎢⎢⎣

X1 (ω)

X2 (ω)

.

.

.

XN (ω)

⎤
⎥⎥⎥⎦ (2)

For an N -degree-of-freedom system, there are N rows
in Eq. (2). Each row m can be rewritten individually as

Hmp (ω) fin(p) (ω) − Hm1 (ω)
∑
i1

f1i1 (ω) − · · ·

−HmN (ω)
∑
iN

fNiN (ω) = Xm (ω) (3)

Assuming that every internal nonlinear force can be
represented by

fnin (ω) = NonlinearFun(knin , xn, xin )

= knin Znin (xn, xin ) (4)

123



1382 M. W. Zhang et al.

where xin is the displacement of node in that is affected
directly by fnin (ω), knin is the coefficient of the nonlin-
ear internal force and Znin (xn, xin ) represents themath-
ematical form of the nonlinearity. Multiplying Eq. (3)
by H−1

mp (ω) and then substituting Eq. (4) into Eq. (3)
yield

fin(p) (ω) = H−1
mp (ω)

∑
i1

Hm1 (ω) k1i1 Z1i1(x1, xi 1) + · · ·

+H−1
mp (ω)

∑
iN

HmN (ω) kNiN ZNiN (xN , xiN )

+H−1
mp (ω) Xm (ω) (5)

Noting that fnin (ω) = knin Znin (xn, xin ) not only acts
on node n, but also acts on node in , which means that
there may be two terms in Eq. (5) corresponding to the
single nonlinearity represented by Znin (xn, xin ). Com-
bining these identical terms and rewriting in matrix
form yield

fin(p) (ω) =[
H−1
mp (ω) H−1

mp (ω) hk1 (ω) · · · H−1
mp (ω) hkt (ω)

]

· [ Xm (ω) S1 (ω) · · · St (ω)
]T

(6)

where

⎧⎪⎪⎨
⎪⎪⎩

Si (ω) = Zab (xa, xb) = Zba (xb, xa)
hki (ω) = Hma (ω) kab + Hmb(ω)kba
= (Hma(ω) − Hmb (ω)) kab (1 ≤ i ≤ t,
0 ≤ a �= b ≤ N )

(7)

For simplicity, Eq. (6) can be rewritten as

F = BX (8)

where F = fin(p) (ω), X = [
Xm (ω) S1 (ω) · · ·

St (ω)
]T and B = big[H−1

mp (ω) H−1
mp (ω) hk1 (ω) · · ·

H−1
mp (ω) hkt (ω)

]
. Eq. (8) describes a multiple-input-

single-output (MISO) system as shown in Fig. 2. The
vectorB contains information of underlying linear sys-
tem and the coefficients of internal nonlinear forces.
The vector X includes the information of the types of
nonlinearities and is treated as input despite that it is
composed of response measurements of the structure.
Similarly, F = fin(p) (ω), which is in fact the Fourier
transform of the excitation, is treated as output.

Since Eq. (8) describes a linear model, classical H1

estimator [45] can be used to calculate vector B as

B = GFXG
−1
XX (9)

Fig. 2 ThederivedRPmodel: system’s responses compose input
vector X and system’s excitation composes output F

and

{
GFX = E

(
FXH

)
GXX = E

(
XXH

) (10)

where GFX and GXX represent cross-spectral row-
vector between F and X and auto-spectral matrix of
X , respectively. XH is the conjugate transpose of X
and E (·) is the expectation operator. Once B is calcu-
lated, relative information about the underlying linear
system and the coefficients of internal nonlinear forces
are achieved.

Considering that the RP model described by Eq. (8)
is aMISOsystem, it is straightforward to applymultiple
coherence function to evaluate the linear dependence
between the single output and all the inputs [44]. The
physical meaning of the multiple coherence function
is the proportion of the output power caused by the
known inputs to the total actual output power, which
can be calculated as

γ 2 = E
(
BX (BX)H

)

GFF
=

E

(
GFXG

−1
XXXX

H
(
GFXG

−1
XX

)H)

GFF

=
GFXG

−1
XXE

(
XXH

) (
GFXG

−1
XX

)H

GFF

= GFXG
−1
XXGXXG

−1
XXG

H
FX

GFF
= GFXG

−1
XXG

H
FX

GFF
(11)

Thevalue of themultiple coherence function is between
0 and 1, which indicates how much the output F is
caused by X. In the present study, the value is used as a
criteria to judge the correctness of the chosen nonlinear
terms in X. It is simple to find that γ 2 is a scalar value
depending on the frequency, and thus, a more eligible
formula is as

γ 2 = 1

nω

∑
ω

GFXG
−1
XXG

H
FX

GFF
(12)

which is the average of all γ 2s calculated in nω dif-
ferent chosen frequencies. Another point which is
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needed to be noticed is that as Eq. (9) uses H1 esti-
mator which deals with output noise uncorrelated
with input very well, Eq. (11) is thus especially reli-
able when only the excitation fin(p) is disturbed by
noise.

2.2 Forward selection formulation

It is usually an indispensable part to determine the loca-
tions and types of nonlinearities in a system before
the step of parameter estimation for the reason that
these prior information is able to make the subse-
quent parameter estimation more robust, efficient and
accurate. One simple implementation is the brute-
force approach which verifies every possibility and
then finds the most feasible one as the result. How-
ever, this method may induce lots of computational
burden when there are multiple possible nonlinear-
ities to be verified. Another possible approach to
reduce the computational work is to implement a for-
ward selection method which is put forward in the
present study. The method uses the criteria described
in Eq. (12) to judge the rationality of the chosen
nonlinear terms one by one, in a forward selection
way.

In Eq. (8), X = [
Xm (ω) S1 (ω) · · · St (ω)

]T
includes various kinds of nonlinearities. The basic prin-
ciple of the forward selection approach is to choose
Si (ω) one by one based on their values of the multiple
coherence function. The selection is terminated when
the criterion in Eq. (12) reached the preset threshold
value.

To better describe the method, auxiliary vectors are
defined as

P1 = Xm ,P2 =
[
Xm

z1

]
=
[
P1

z1

]
, . . . ,Pk+1 =

[
Pk

zk

]
, . . .

(13)

Replacing X with P, Eq. (11) is rewritten as

GFFγ 2
k = GFPkG

−1
PkPk

GH
FPk

(14)

where the subscript k means the kth iteration in the
forward selection approach.

Similarly, Eq. (11) with γ 2
k+1 is rewritten as

GFFγ 2
k+1 = GFPk+1G

−1
Pk+1Pk+1

GH
FPk+1

(15)

Substituting Eq. 14 into 15 yields

GFFγ 2
k+1 = [

GFPk GFzk

] [GPkPk GPk zk
GzkPk Gzk zk

]−1
[
GH

FPk

GH
Fzk

]

(16)

When GPkPk is reversible, implementing inverse oper-
ation of block matrix yields

GFFγ 2
k+1 = [

GFPk GFzk

] [G−1
PkPk

+ T1 T2

T3 T4

][
GH

FPk

GH
Fzk

]

= GFPkG
−1
PkPk

GH
FPk

+ [
GFPk GFzk

] [T1 T2

T3 T4

][
GH

FPk

GH
Fzk

]

= GFFγ 2
k + [

GFPk GFzk

] [T1 T2

T3 T4

] [
GFPk GFzk

]H

(17)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 =
(
Gzkzk − GzkPkG

−1
PkPk

GPk zk

)−1

T1 = T0G
−1
PkPk

GPk zkGzkPkG
−1
PkPk

T2 = −T0G
−1
PkPk

GPk zk

T3 = T H
2 = −T0GzkPkG

−1
PkPk

T4 = T0

(18)

As the computational complexity of dense matrix mul-
tiplication ofMa×b andMb×c is O (abc) and the com-
putational complexity of dense matrix inversion of
Md×d is O

(
d3
)
, it is straightforward that using either

Eq. (16) or (17) will lead to an O
(
k3
)
algorithm when

trying to judge whether a certain kind of nonlinear-

ity is the appropriate zk in Pk+1 = [
PT
k zk

]T
. How-

ever, if there are Nk kinds of nonlinearities to be ver-
ified, Eq. (16) is needed to be implemented Nk times
which will lead to an O

(
Nkk3

)
algorithm. On the con-

trary, sinceG−1
PkPk

is needed to be calculated only once
in the kth iteration of the forward selection approach,
Eq. (17) will lead to an algorithm with lower compu-
tational complexity when there is many nonlinearities
to be verified.

In conclusion, by assuming that there exist Nr non-
linearities of different types and locations in the struc-
ture and there are also Nz kinds of nonlinearities to be
verified in the method, the forward selection algorithm
with Eq. (17) is summarized as follows:
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Assuming that all the Nr nonlinearities are deter-
mined correctly, the computational complexity of the

method is
Nr∑
k=1

(
O
(
k3
)+ NzO

(
k2
))
, which is poly-

nomial complexity. However, using the brute-force
method, the computational complexity would be

O

(
Nr∑
k=1

k3Ck
Nz

)
,which is exponential complexitywhen

Nr is close to Nz. Also, in the situation when Nz is
large and Nr is small but larger than 1, which is more
common in practical applications, the forward selection
method’s computational complexity is lower aswell for
that its polynomial complexity has a lower order.

3 Numerical experiments

In this section, two numerical examples are provided
to give illustrations of the performance of the pro-
posed forward selection method. In the first example, a
six-degree-of-freedom lumped mass system with local
nonlinearities is used, and in the second example, a
cantilever beam with local nonlinearities is simulated.

3.1 Example 1: a six-degree-of-freedom system with
local nonlinearities

The six-degree-of-freedom lumped mass system with
four different local nonlinearities considered in this
example is shown in Fig. 3. Expressions of the four
nonlinearities in the system are as follows:

⎧⎪⎪⎨
⎪⎪⎩

fN1 = kn1x31
fN2 = kn2 (x2 − x1)3

fN3 = kn3 (x4 − x3) |x4 − x3|
fN4 = kn4x5 |x5|

(23)

where kn1 = 1015, kn2 = 1018, kn3 = 1015, kn4 =
1010 are the nonlinear coefficients, respectively. xi
(i = 1, . . . , 6) is the response displacement and the
other system parameters are chosen as

⎧⎨
⎩
ki = 3.6 × 105, (i = 1, . . . , 8)
ci = 5 × 10−5 × ki , (i = 1, . . . , 8)
mi = 1, (i = 1, . . . , 6)

(24)

The preceding four modes between 0 and 180Hz are
considered, and the theoretical value of the FRF H16

of the underlying linear system is plotted in Fig. 4.
The response displacements of the system are calcu-
lated using the fourth-order Runge–Kutta algorithm.
The excitation fin(p) on node 6 is chosen as a zero-
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Fig. 3 The six-degree-of-freedom lumped mass system with four localized nonlinearities in the numerical simulation

Fig. 4 Theoretical value of |H16| of the underlying linear system
containing the preceding four modes

mean white Gaussian noise whose root-mean-square
value is 1, and it is also assumed to be contaminated by
a 20-dB white Gaussian noise. The sample frequency
is chosen to be 10kHz, and data between 0 and 5s are
generated to be used in the identification. Also,Welch’s
method [46] with 50% overlap is used to calculate the
power spectrum.

The FRF H16 calculated with the response displace-
ments using the H2 estimator [45] is shown in Fig. 5a,
and γ 2

1 calculated using Eq. (19) is shown in Fig. 5b.
Compared with the theoretical value in Fig. 4, it is clear
to see fromFig. 5 that the system has significant nonlin-
ear characteristic and cannot be represented by a linear
model.

It is needed to decide beforehand the set which con-
tains all the possible nonlinearities to be verified when
implementing the forward selection method. In this
example, the set � is determined as follows:

� = {x1 |x1| , x2 |x2| , x3 |x3| , x4 |x4| , x5 |x5| , x6 |x6|}
∪ {x31 , x32 , x33 , x34 , x35 , x36

}

∪
⎧⎨
⎩

(x2 − x1) |(x2 − x1)| , (x3 − x2) |(x3 − x2)| ,
(x4 − x3) |(x4 − x3)| ,

(x5 − x4) |(x5 − x4)| , (x6 − x5) |(x6 − x5)|

⎫⎬
⎭

∪ {(x2 − x1)
3 , (x3 − x2)

3 , (x4 − x3)
3 ,

(x5 − x4)
3 , (x6 − x5)

3} (25)

which contains 22 kinds of nonlinearities totally. Fol-
lowing the forward selection algorithm and setting the
threshold value ρ as 0.995, the results calculated using
the first row of matrix in Eq. (1) or (2) are shown in
Fig. 6, 7, 8 and 9. Figures 6a, 7a, 8a and 9a show the cal-
culatedmultiple coherence function γ 2

k (k = 2, 3, 4, 5)
corresponding to the relevant nonlinearity in set �

within the chosen frequency scope 0–180Hz. Fig-
ures 6b, 7b, 8b and 9b show the γ 2

k (k = 2, 3, 4, 5)
which is before the operation of averaging and thus
depends on different frequencies. The blue bold line
describes the γ 2

k−1 calculated in the previous iteration,
and the red line with circles describes the γ 2

k calcu-
lated with the chosen nonlinear term in the current
iteration. All the other gray lines describe γ i2

k calcu-
lated with the other nonlinear terms to be verified in
set � with Eq. (21). As Figs. 6, 7, 8 and 9 show, the
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Fig. 5 a Calculated |H16|
using the simulated data
with H2 estimator and b γ 2

1
which should be 1 when
modeling a linear system

Fig. 6 The results of the 1st
iteration. a γ i2

2 calculated
corresponding to each
verified term and b γ i2

2 s
calculated before the
operation of averaging

Fig. 7 The results of the
second iteration. a γ i2

3
calculated corresponding to
each verified term and b γ i2

3
calculated before the
operation of averaging

forward selection algorithm selects the 18th, 15th, 7th
and 5th terms corresponding to the maximum γ 2

k in
each iteration, and after four iterations, the algorithm
is terminated since the sum of all the γ 2

k has reached
the preset threshold value. The four chosen nonlinear
terms are (x2 − x1)3 , (x4 − x3) |x4 − x3| , x31 , x5 |x5|,

and the result gives the right types and locations of
nonlinearities in the locally nonlinear MDOF lumped
mass system. After determining the contained non-
linearities in the system, the parameters of the sys-
tem can be estimated with different kinds of meth-
ods.
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Fig. 8 The results of the
third iteration. a γ i2

4
calculated corresponding to
each verified term and b
γ i2
4 s calculated before the

operation of averaging

Fig. 9 The results of the
fourth iteration. a γ i2

5
calculated corresponding to
each verified term and b
γ i2
5 s calculated before the

operation of averaging

Fig. 10 The cantilever beam with four localized nonlinearities in the numerical simulation

3.2 Example 2: a cantilever beam with local
nonlinearities

As shown in Fig. 10, the system considered in the sec-
ond numerical simulation is a cantilever beam with
four different local nonlinearities. The beam is mod-
eled with finite element method [47] and Euler beam
unit. The preceding six modes between 0 and 268Hz
are considered. The density, elasticity modulus, length,
height, width of the beam are 7800kg/m3, 2.06e11Pa,
0.2, 0.01, 0.005m, respectively. Each mode’s damping
ratio is assumed to be 0.02. Expressions of the four
nonlinearities in the system are as follows:

⎧⎪⎪⎨
⎪⎪⎩

fN1 = kn1 (x2 − x1) |x2 − x1|
fN2 = kn2x3 |x3|
fN3 = kn3x33
fN4 = kn4 (x6 − x5)3

(26)

where kn1 = 108, kn2 = 107, kn3 = 1010, kn4 = 109

are the nonlinear coefficients, respectively.
xi (i = 1, . . . , 6) is the response displacement of the
corresponding node of the beam and is calculated using
the fourth-order Runge–Kutta algorithm. As in the first
example, the excitation fin(p) on node 6 is also cho-
sen as a zero-mean white Gaussian noise whose root-
mean-square value is 1 and it is also assumed to be
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Fig. 11 Theoretical value of |H16| of the underlying linear sys-
tem containing the preceding six modes

contaminated by a 20-dB white Gaussian noise. The
governing equation of the cantilever beam calculated
from the preset parameters is as follows:

Mẍ + Cẋ + Kx = F + Fn (27)

where

⎧⎪⎨
⎪⎩

F = [
01×10 fin(p) 0

]T
Fn = [

fN1 0 − fN1 0 − fN2 − fN3 01×3 fN4 0 − fN4 0
]T

x = [
x1 θ1 x2 θ2 x3 θ3 x4 θ4 x5 θ5 x6 θ6

]T
(28)

θi (i = 1, . . . , 6) is the angular displacement of the cor-
responding node of the beam. M, K and C are three
12 × 12 matrices and are provided as supplementary
materials. The sample frequency is chosen tobe10kHz,
and data between 0 and 5s are generated to be used

in the identification. Also, Welch’s method with 50%
overlap is used to calculate the power spectrum.

The theoretical value of the FRF H16 of the under-
lying linear system, or the linear cantilever beam,
is plotted in Fig. 11. The FRF H16 calculated with
the response displacements using the H2 estimator is
shown in Fig. 12a, and γ 2

1 calculated using Eq. (19) is
shown in Fig. 12b. It is clear to see from Fig. 12 that
the system has significant nonlinear characteristic and
cannot be represented by a linear model.

The set � which contains all the possible nonlin-
earities to be verified is determined as the same in the
first example with Eq. (25) which contains 22 kinds
of nonlinearities totally. The threshold value ρ is set
as 0.99, and the results calculated using the first row of
matrix in Eq. (1) or (2) are shown in Figs. 13, 14, 15 and
16. Figures 13a, 14a, 15a and 16a show the calculated
multiple coherence function γ 2

k (k = 2, 3, 4, 5) corre-
sponding to the relevant nonlinearity in set�within the
chosen frequency scope 0–268Hz. Figures 13b, 14b,
15b and 16b show the γ 2

k (k = 2, 3, 4, 5) before the
operation of averaging. The blue bold line describes
the γ 2

k−1 calculated in the previous iteration, and the
red line with circles describes the γ 2

k calculated with
the chosen nonlinear term in the current iteration. All
the other gray lines describe γ i2

k calculated with the
other nonlinear terms. In Figs. 13, 14, 15 and 16,
in the second example, the algorithm selects the 3rd,
22th, 13th and 9th terms after four iterations and is
terminated since the sum of all the γ 2

k has reached
the preset threshold value. The four chosen nonlinear
terms are x3 |x3| , (x6 − x5)3 , (x2 − x1) |x2 − x1| , x33 ,
and the result also gives the right types and locations of
nonlinearities in the locally nonlinear cantilever beam.

Fig. 12 a Calculated |H16|
using the simulated data
with H2 estimator and b γ 2

1
which should be 1 when
modeling a linear system
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Fig. 13 The results of the
1st iteration. a γ i2

2
calculated corresponding to
each verified term and b
γ i2
2 s calculated before the

operation of averaging

Fig. 14 The results of the
second iteration. a γ i2

3
calculated corresponding to
each verified term and b
γ i2
3 s calculated before the

operation of averaging

Fig. 15 The results of the
third iteration. a γ i2

4
calculated corresponding to
each verified term and b
γ i2
4 s calculated before the

operation of averaging

4 Conclusion

The results of the numerical examples indicate that the
proposed forward selection method is able to correctly
identify the four nonlinearities in the two different sys-
tems and thus is also able to determine the correspond-
ing locations of the nonlinearities in the structures.

An advantage of the method is that nonlinearities
can be determined one by one in a forward selection

approach, and therefore, computational cost is reduced
compared with an iterate brute-force method when the
number of possible nonlinearities to be verified is large.
Moreover, since the algorithm can be implemented
using only a single row of matrix in Eq. (1), it is able to
carry out the algorithm multiple times with a single set
of response measurements. Furthermore, the method
needs only a single broadband excitation which can be
applied on anywhere in the structure as long as the non-
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Fig. 16 The results of the
fourth iteration. a γ i2

5
calculated corresponding to
each verified term and b
γ i2
5 s calculated before the

operation of averaging

linearities in the structure is excited. Also, only one set
of response data at one single excitation amplitude is
needed and no prior information about the underlying
linear system is required. A possible drawback is that
since the method is a forward selection approach, it
is not global optimized in a strict mathematical sense.
One probable settlement is carrying out the algorithm
more than once with different rows of matrix in Eq. (1)
to get a more reliable result. Another limitation is that
the nonlinearities should be strong enough to be indi-
cated in the response measurements which are polluted
by noise.
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