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Abstract This paper focuses on the problem of semi-
globally stable neural adaptive control for a class of
uncertain multi-input/multi-output nonlinear systems
in the presence of strong interconnection, input satu-
ration, and external disturbance. Radial basis function
neural networks are utilized in the online learning of
uncertain dynamics. The features of the scheme devel-
oped can be briefly summarized as follows: (1) The
problem of “explosion of complexity” caused by the
repeated differentiations of virtual controllers in tra-
ditional backstepping design is circumvented via the
pioneering dynamic surface control technique; (2) the
subsystem in the whole system can be any order, and
only one scalar is needed to be online updated when
dealing with uncertain dynamics and external distur-
bance, which is computationally inexpensive from the
perspective of practical application; and (3) the bounds
of transient and ultimate tracking errors are adjusted
by the design parameters in an explicit form with input
saturation in effect by virtue of the novel intercepted
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adaptation approach. It is proved via Lyapunov stability
theory that all the closed-loop signals are guaranteed
semi-globally uniformly ultimately bounded, and sim-
ulation results are presented to verify the effectiveness
of the proposed method.
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adaptation

1 Introduction

Approximation-based adaptive control has gone
through booming developments and advances recent
years, where NNs and fuzzy logic systems are widely
used as online approximators by virtue of their parallel
processing property and function approximation capac-
ity [1–4]. Although fruitful results on approximation-
based adaptive control have been reported in existing
literature, “dimension curse” is a barrier that restricts
the real application of this methodology, that is to
say, in order to achieve good function approximation
performance, as large as possible number of neural
nodes or fuzzy rules are used in theoretical study and
analysis, which results in too large number of para-
meters that must be online tuned in practical appli-
cation. As a result, the approximation times tend to
be unacceptably large and the time-consuming process
is unavoidable when approximation-based control are
implemented. To remove the requirement of match-
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ing conditions, backstepping design, aLyapunov-based
integration and analysis methodology, has been widely
advanced to control high-order nonlinear systems, see
[5–7] and the references therein as examples. Although
numerous theoretical works have been done, the prob-
lem of “explosion of complexity” limits the practi-
cal application of backstepping methodology, which is
caused by the repeated differentiation of so-called vir-
tual controllers in the backstepping recursive design
procedure [8], which leads to an extremely compli-
cated control scheme, especially for high-order sys-
tems. Fortunately, Yang et al. and Yip et al. [9,10]
and [8,11] solved the problem of “dimension curse”
and “explosion of complexity,” respectively, in their
pioneering works. In [9], small gain-based adaptive
fuzzy robust tracking controller was designed, which
achieved that only one function is needed to be approx-
imated by fuzzy systems with any numbers of states
and rules in fuzzy systems and thus reduced the com-
putation resource since only two parameters needed
to be adapted online. Such a technique was formally
named minimal learning parameter (MLP) algorithm
in subsequent literature [12,13]. In [10], MLP-based
robust adaptive tracking control was developed for a
class of strict-feedback uncertain nonlinear systems. In
[14], direct adaptive fuzzy tracking control was devel-
oped for a class of perturbed strict-feedback nonlin-
ear systems by virtue of merits of MLP. To further
simplify the MLP algorithm, Chen et al. [15] pro-
posed direct adaptive fuzzy control for nonlinear strict-
feedback systems, where the number of adaptation
law is reduced to one, and further, in [16], adaptive
neural control forMIMOnonlinear time-delay systems
is obtained using Lyapunov–Krasovskii function and
one parameter adaptation. Fuzzy-approximation-based
adaptive control (SISO [17] and MIMO [18]) is devel-
oped for nonlinear systems with time delays, where the
control is independent of the choice of the fuzzy mem-
bership functions and requires one adaptive law for nth-
order system. In [8], in order to simplify the adaptive
backstepping design, adaptive dynamic surface control
(DSC) was proposed, where n first-order low-pass fil-
ters were added which prevent the differentiation of
model nonlinearities from existing. This result was
further extended in [11] for non-Lipschitz systems.
Inspired by this success, NNs were incorporated into
DSC technique for strict-feedback nonlinear systems
in [19]. Considerations of input dead zone and state
delay were later made in [20] and [21], respectively.

Since it is impossible for physical actuator equipped
to provided unlimited control input, input saturation
should be explicitly considered in control system
design, especially for adaptive control system. With-
out proper consideration of effect of input saturation,
adaptation laws would act aggressively to seek the sat-
isfactory performance [22–24]. On dealing with input
saturation control problem, several interesting meth-
ods were reported in existing literature. In [22], a con-
cept of augmented error signal (AES)-based adaptive
control was developed for systems with hard satura-
tion. According to the applications in flight control
[25] and flight vehicle control [26], it can be concluded
that the AES-based method is effective in dealing with
input saturation. Partially inspired by this success, an
online approximation control of uncertain nonlinear
systems under control input saturation was designed
in [23], which was designed such that input saturation
does not destroy the adaptation capabilities in feedback
adaptive control systems, and it was pointed out that
the method in [23] can be trivially extended to high-
order nonlinear systems using the recursive design of
backstepping method. Therefore, backstepping-based
AES design can be found in [25,27]. In [28], Takagi–
Sugeno fuzzymodels and linear matrix inequality opti-
mization are used to the robust control of nonlin-
ear systems in the presence of actuator saturation. In
[29], model reference adaptive control for SISO time-
invariant continuous-time plants with control satura-
tion was proposed. In [30], backstepping-based vari-
able structure control using Lyapunov synthesis was
proposed for MIMO nonlinear systems with control
input nonlinearities, first-order filters were utilized to
the virtual control laws so that the extra computations
of time derivatives of virtual controllers were circum-
vented. In [31], robust adaptive backstepping control is
designed for uncertain nonlinear systems with control
saturation and external disturbance, where Nussbaum
function is utilized to compensate the nonlinear dynam-
ics caused by control saturation. In [32], adaptive fuzzy
output feedback control is developed for nonlinear sys-
tems in the presence of input dead-zone. In [33], output
feedback adaptive fuzzy control is designed for output
constrained nonlinear systems together with input sat-
uration. In spite of the reported methods reported in
the literature, there is extra space to improve the above-
mentioned methods, that is, the problem of “dimension
curse” and “explosion of complexity” exists in the lit-
erature. As can be seen from the methods in [30,34], an
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alternative method is to use fuzzy logic system or NNs
to approximate the combination of unknown dynamics
and differentiations of virtual controllers, which can
solve the “explosion of complexity” but still suffer the
“dimension curse,” that is to say, themethods in [30,34]
further augment the computational volume due to the
information of reference signal and its derivatives must
be incorporated into the input of fuzzy logic system
or neural networks. In [35,36], adaptive fuzzy/neural
tracking control is developed for stochastic nonlinear
systems with input constraints, where smooth nonlin-
ear function is utilized to approximate the saturation
function and one adaptive parameter is independent of
the number of fuzzy rule bases, and the plants are SISO
stochastic nonlinear systems.

This paper is motivated by the neural adaptive
control of uncertain MIMO nonlinear systems with
strong interconnection, input saturation, and external
disturbance to overcome the problem of “dimension
curse” and “explosion of complexity.” Novel inter-
cepted adaptation approach is designed to attenuate
the effect caused by input saturation, and the signals
used to intercept the adaptation signal are generated
by properly built auxiliary systems. The intercepted
adaptation approach allows the online approximation
goes on and can prevent the presence of input saturation
from destroying the adaptation capacity and memory
of approximators. MLP and DSC techniques are uti-
lized to tackle the problem of “dimension curse” and
“explosion of complexity,” respectively. However, such
a combination of these two techniques is non-trivial
since input saturation and external disturbance are con-
sidered simultaneously in the plant, and extra efforts
must be done to guarantee the closed-loop stability,
which can be seen from the following design proce-
dures and stability analysis sections. Furthermore, the
MLP proposed in the pioneering works [9,10] is fur-
ther simplified partially inspired by [15], where only
one parameter is to be adapted online in the method
proposed in this paper. At the same time, the bound
values of transient and ultimate tracking errors can be
adjusted to arbitrarily small by choosing proper design
parameters in an explicit way even with input satura-
tion in effect. Comparing with existing methods where
smooth function is used to approximate saturation func-
tion, see [31,36] and references therein, the new fea-
tures of intercepted adaptation approach lie in that the
effect caused by input saturation is handled directly; in
the meantime, the amplitude of effect caused by con-

strained input can be attenuated to arbitrarily small in
an explicit form.

The rest of the paper is organized as follows. In
Sect. 2, formulated problem and some necessary pre-
liminaries are presented. The main results of this paper
are given in Sect. 3, and the stability analysis of the
closed-loop generated by the proposed control method
is shown in Sect. 4. Section 5 presents the simulation
examples to demonstrate the effectiveness of the devel-
oped control scheme. Section 6 ends this paper with
concluding remarks.

2 Problem formulation and preliminaries

Consider the followingMIMO nonlinear systems com-
posed of N subsystems with constrained input and
external disturbance:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,i1 = x1,i1+1 + f1,i1(x̄1,i1 , . . . , x̄ j,i j , . . . , x̄N ,iN )

+�1,i1(X, t)
· · ·

ẋ1,n1 = v1 + f1,n1(X) + �1,n1(X, t)
v1 = sat(u1)
y1 = x1,1

...

ẋ j,i j = x j,i j+1+ f j,i j (x̄1,i1 , . . . , x̄ j,i j , . . . , x̄N ,iN )

+� j,i j (X, t)
· · ·

ẋ j,n j = v j + f j,n j (X, ū j−1) + � j,i j (X, t)
v j = sat(u j )

y j = x j,1

(1)

where x j,i j is the i j th state variable in subsystem j ,
j = 1, . . . , N , N is the number of subsystems, i j =
1, . . . , n j , n j is the order of the subsystem j , x̄ j,i j =
[x j,1, . . . , x j,n j ]T, X = [xT1,n1, . . . , xTN ,nN

]T is the state
variable vector of whole system, f j,i j (·) is unknown
smooth function in its arguments, � j,i j (·) is coupled
external disturbance in whole state vector and time,
v j is the input to the subsystem j , u j is the designed
control law for subsystem j , and y j is the output of
subsystem j , respectively. The relationship of v j and
u j is as follows:

v j = sat(u j )

=
{
sign(u j )u

+
j , if |u j | > u+

j , j = 1, . . . , N
u j , else

(2)

where u+
j is a positive constant that represents the

bound value of the maximum output of actuator in sub-
system j .
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The target is to design neural adaptive control law
u j , j = 1, . . . , N for system given by Eq. (1) such that
(1) all the signals in the closed-loop system remain
semi-globally uniformly ultimately bounded and (2)
the output y j follows the reference signal y j,r with
small tracking errors which can be adjusted to arbitrar-
ily small by choosing proper design parameters.

To this end, the following assumptions and lemma
are used throughout this paper.

Assumption 1 [31]The j th subsystem, j = 1, . . . , N ,
in Eq. (1) is input-to-state stable.

Assumption 2 The external disturbances � j,i j (·) are
bounded by unknown constant.

Assumption 3 [13] The desired trajectories y j,r , j =
1, . . . , N are smooth enough such that there exists a
positive constant Bj,0 satisfying � j,0 :={
(y j,r , ẏ j,r , ÿ j,r )

∣
∣y2j,r + ẏ2j,r + ÿ2j,r ≤ B2

j,0

}
.

Remark 1 Since it is quite a challenge to establish the
stability property of an unstable plant under input satu-
ration in a general form [37], therefore Assumption 1 is
an assumption to guarantee the stability of a saturated
nonlinear system as in [31], which is used in this paper
to establish the closed-loop stability. Assumption 2 and
Assumption 3 are quite standard ones in existing liter-
ature.

Lemma 1 [12] For any given continuous function
f (x), x ∈ Rn with f (0) = 0, by applying the con-
tinuous function separation in [38] and the RBF NNs
approximation techniques, f (x) can be reconstructed

f (x) = S(x)Wx + ε (3)

where x is systemarguments, S(x) = [s1(x), s2(x), . . . ,
sl(x)] is a Gaussian basis function vector, and W is a
weight matrix,

si (x) = 1√
2πai

exp

(

− (x − μi )
T(x − μi )

2a2i

)

,

i = 1, . . . , l, W =

⎡

⎢
⎢
⎢
⎣

w11 w12 · · · w1n

w21 w22 · · · w2n
...

... · · · ...

wl1 wl1 · · · wln

⎤

⎥
⎥
⎥
⎦

,

where μi and ai denote the center of the receptive field
and the width of the Gaussian function, respectively.

3 Main results

This section presents the major design procedures of
j th subsystem, j = 1, . . . , N ,ϑ j is the estimated value

ofmax
{
β2
j,i j

, η2j,i j

}
, withβ j,i j andη j,i j specified later.

Construct the following system to generate signal
χ j = [χ j,1, . . . , χ j,n j ]T, which is used to intercept the
adaption laws:
⎧
⎪⎪⎨

⎪⎪⎩

χ̇ j,i j = χ j,i j+1 − α j,i j χ j,i j
i j = 1, . . . , n j − 1

χ̇ j,n j = �u j − α j,n j χ j,n j

j = 1, 2, . . . , N

(4)

whereα j,i j is positive design parameter,�u j is defined
as �u j := v j − u j . In order to facilitate the design
procedure and stability analysis, wemake the following
coordinates changes:
⎧
⎨

⎩

z j,1 = y j,1 − y j,r − χ j,1

z j,i j = x j,i j − r j,i j−1 − χ j,i j
i j = 2, . . . , n j

(5)

In the following, neural adaptive control scheme is
developed via intercepted adaptation and single learn-
ing parameter approach. To better present the main
design idea, the first step ( j, 1), the intermediate step
( j, i j ), and the final step ( j, n j ) of j th subsystem are
elaborated with detailed explanations.

Step ( j, 1): Differentiating both sides of z j,1 =
y j,1 − y j,r − χ j,1 gives

ż j,1 = x j,2 + f j,1(x̄1,i1 , . . . , x̄ j,i j , . . . , x̄N ,iN )

+� j,1(X, t) − ẏ j,r − χ j,2 + α j,1χ j,1

= z j,2 + r j,1 + f j,1(x̄1,i1 , . . . , x̄ j,i j , . . . , x̄N ,iN )

+� j,1(X, t) − ẏ j,r + α j,1χ j,1 (6)

Using the RBF NNs approximation technique in
Lemma 1, the unknown function f j,1(·) is remodeled
as follows:

f j,1(X j,1) = S j,1(X j,1)Wj,1X j,1 + ε j,1

= S j,1(X j,1)Wj,1x j,1

+ S j,1(X j,1)Wj,1X
∗
j,1

+ ε j,1

= S j,1(X j,1)Wj,1z j,1

+ S j,1(X j,1)Wj,1(y j,r

+χ j,1) + S j,1(X j,1)Wj,1X
∗
j,1 + ε j,1

(7)
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where

X j,1 =
[
x̄T1,i1 , . . . , x̄

T
j,i j , . . . , x̄

T
N ,iN

]T

X∗
j,1 =

[
x̄T1,i1 , . . . , x̄

∗T
j,i j , . . . , x̄

T
N ,iN

]T

x̄∗T
j,i j = [

0, x j,2, . . . , x j,i j
]T

Inspired by the technique used in [13], we define
the following notations: β j,1 := ‖Wj,1‖, m(Wj,1) :=
Wj,1/β j,1, φ j,1 := m(Wj,1)z j,1 with m(Wj,1) being a
normalized term, it follows

f j,1(X j,1) = β j,1S j,1(X j,1)φ j,1 + S j,1(X j,1)Wj,1(y j,r

+χ j,1) + S j,1(X j,1)Wj,1X
∗
j,1 + ε j,1 (8)

Integrating Eq. (6) and Eq. (8) gives

ż j,1 = z j,2 + r j,1 + β j,1S j,1(X j,1)φ j,1

+ ζ j,1 − ẏ j,r + α j,1χ j,1 (9)

where ζ j,1 := S j,1(X j,1)Wj,1 (y j,r+χ j,1)+S j,1(X j,1)

Wj,1 X∗
j,1 + ε j,1 + � j,1(X, t) is bounded, i.e.,

‖ζ j,1‖ ≤ η j,1ρ j,1(X j,1) (10)

with η j,1 = max
{‖Wj,1(y j,r + χ j,1)‖, ‖Wj,1X∗

j,1‖,
ε∗
j,1,�

∗
j,1

}
, ρ j,1(X j,1) = 1 + ‖S j,1(X j,1)‖.

Select the following virtual control law:

r j,1 = −α j,1(x j,1−y j,r )+ ẏ j,r − ϑ̂ j� j,1(X j,1)z j,1

(11)

where the definition of � j,1(X j,1) and adaptation law
of ϑ̂ j will be specified at step ( j, n j ).

To implement theDSC technique in [11], let r j,1 pass
through the following inertial filter with time constant
τ j,1 to obtain ϕ j,1; thus, the differentiation of r j,1 is
circumvented:

τ j,1ϕ̇ j,1 + ϕ j,1 = r j,1, ϕ j,1(0) = r j,1(0) (12)

Step ( j, i j ): The differentiation of z j,i j is calculated
as

ż j,i j = x j,i j + f j,i j (x̄1,i1 , . . . , x̄ j,i j , . . . , x̄N ,iN )

+� j,i j (X, t) − ṙ j,i j−1 − χ j,i j+1 + α j,i j χ j,i j

= z j,i j+1 + r j,i j + f j,i j (x̄1,i1 , . . . , x̄ j,i j ,

. . . , x̄N ,iN ) + � j,i j

(X, t) − ṙ j,i j−1 + α j,i j χ j,i j (13)

Using the RBF NNs approximation technique in
Lemma1 anddefining the samenotationswith emenda-
tory subscript in step ( j, 1), f j,i j (X j,i j ) is rewritten as

f j,i j (X j,i j ) = S j,i j (X j,i j )Wj,i j X j,i j + ε j,i j

= S j,i j (X j,i j )Wj,i j x j,i j
+ S j,i j (X j,i j )Wj,i j X

∗
j,i j + ε j,i j

= S j,i j (X j,i j )Wj,i j z j,i j
+ S j,i j (X j,i j )Wj,i j (r j,i j−1 + χ j,i j )

+ S j,i j (X j,1)Wj,i j X
∗
j,i j + ε j,i j

= β j,i j S j,i j (X j,i j )φ j,i j

+ S j,i j (X j,i j )Wj,i j (r j,i j−1 + χ j,i j )

+ S j,i j (X j,i j )Wj,i j X
∗
j,i j + ε j,i j (14)

It follows

ż j,i j = z j,i j+1 + r j,i j + β j,i j S j,i j (X j,i j )φ j,i j

+ ζ j,i j − ṙ j,i j−1 + α j,i j χ j,i j (15)

where ζ j,i j := S j,i j (X j,i j )Wj,i j (r j,i j−1 + χ j,i j ) +
S j,i j (X j,i j )Wj,i j X

∗
j,i j

+ε j,i j +� j,i j (X, t) is bounded,
i.e.,

‖ζ j,i j ‖ ≤ η j,i j ρ j,i j (X j,i j ) (16)

with η j,i j = max
{‖Wj,i j (r j,i j−1 + χ j,i j )‖,

‖Wj,i j X
∗
j,i j

‖, ε∗
j,i j

,�∗
j,i j

}
, ρ j,i j (X j,i j ) = 1 + ‖S j,i j

(X j,i j )‖
Select the following virtual control law:

r j,i j = −α j,i j (x j,i j − r j,i j−1) − ϑ̂ j� j,i j (X j,i j )z j,i j
+ ϕ̇ j,i j−1 (17)

where the definition of� j,i j (X j,i j ) and adaptation law

of ϑ̂ j will be specified at step ( j, n j ).
Let r j,i j pass through the following inertial filter

with time constant τ j,i j to obtain ϕ j,i j :

τ j,i j ϕ̇ j,i j + ϕ j,i j = r j,i j , ϕ j,i j (0) = r j,i j (0) (18)

Step ( j, n j ): By defining the same notations with
emendatory subscript in above step, invoking the RBF
NNs approximation technique, the differentiation of
z j,n j is obtained as

ż j,n j = v j + f j,n j (X, ū j−1) + � j,n j (X, t)

− ṙ j,n j−1 − �u j + α j,n j χ j,n j

= u j + f j,n j (X, ū j−1) + � j,n j (X, t)

− ṙ j,n j−1 + α j,n j χ j,n j

= u j + β j,n j S j,n j (X, ū j−1)

φ j,n j + ζ j,n j − ṙ j,n j−1 + α j,n j χ j,n j (19)

where β j,n j := ‖Wj,n j ‖, φ j,n j := m(Wj,i j )z j,n j ,
m(Wj,n j ) := Wj,n j /β j,n j , ζ j,n j := S j,n j (X j,n j , ū j−1)

Wj,n j (χ j,n j+ r j,n j−1)+S j,n j (X j,n j , ū j−1)Wj,n j X
∗
j,n j
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+ S j,n j (X j,n j , ū j−1)Wj,n j ū j−1 + ε j,n j +� j,n j (X, t),
‖ζ j,n j ‖ ≤ η j,n j ρ j,n j (X j,n j ), ρ j,n j (X j,n j ) = 1 +
‖S j,n j (X j,n j )‖, and η j,n j := max

{‖Wj,n j (r j,n j−1

+ χ j,n j )‖, ‖Wj,n j X
∗
j,n j

‖, ‖Wj,n j ū j−1‖, ε∗
j,n j

,�∗
j,n j

}
.

Select the following controller u j , adaptation law
˙̂
ϑ j , and known function � j,i j (X j,i j ):

u j = −α j,n j (x j,n j − r j,n j−1) − ϑ̂ j� j,n j

(X j,n j )z j,n j + ϕ̇ j,n j−1 (20a)

˙̂
ϑ j = � j

n j∑

i j=1

[
� j,i j (X j,i j )z

2
j,i j

]
− c j ϑ̂ j (20b)

� j,i j (X j,i j ) = 1

4κ2
j,i j

ρ j,i j (X j,i j )
2 (20c)

where � j , c j , and κ j,i j are positive design parameters.
The aforementioned design procedures are summa-

rized in the following theorem.

Theorem 1 For uncertain MIMO systems Eq. (1) with
satisfied Assumption 1–Assumption 3, if the following
initial conditions are satisfied in addition:

N∑

j=1

n j∑

i j=1

(
z2j,i j (0)

)
+

N∑

j=1

n j−1
∑

i j=1

(
e2j,i j (0)

)

+
N∑

j=1

(
ϑ̃ j (0)�

−1
j ϑ̃ j (0)

)
≤ 2p

where p is any positive number, and the control scheme
given by Eq. (20) guarantees the following statements:

1. The signals in the closed-loop system remain semi-
globally uniformly ultimately bounded;

2. The adjustable ultimate tracking error z j,1 is given
by:

lim
t→∞|y j,1 − y j,r − χ j,1| ≤

√
2γ ∗
b

3. The adjustable transient tracking error y j,1 − y j,r
is given by:

|y j − y j,r | ≤
√
2γ ∗
b

+
∑N

j=1

(
ϑ̃ j (0)�

−1
j ϑ̃ j (0)

)

+
∑N

j=1 |�u j |
2
√
k0

and the definitions of γ ∗, b, and k0 will be specified
later.

Remark 2 The pioneering DSC [11] and MLP [9]
techniques have been resoundingly synthesized into
the traditional backstepping design method. It can be
observed easily that the controller in Eq. (20) is very
simple, and the new features of the control scheme can
be briefly summarized as follows: (1) Input saturation,
MIMO structure, and external disturbance are further
considered compared with the pioneering works that
proposed the DSC technique [8,11,19] and (2) we fur-
ther simply the MLP technique in pioneering works
[9,10], i.e., two parameters need to be online adjusted
in [9] and [10], while only one parameter needs to be
online adjusted in the control scheme proposed in this
paper, which further simplify the controller structure.

Remark 3 Set the initial value χ j (0) zero and if no
input saturation happens, the variable χ j remains zero
state, that is to say, no supererogatory computation hap-
pens without input saturation. When input saturation
happens, χ j responses with changing �u j , and the
original signal y j,1 − y j,r and x j,i j − r j,i j−1 used in
the parameter learning is therefore intercepted by χ j,i j
to prevent aggressive action, performance degradation,
even instability in the presence of input saturation, and
such a method is thus named after “intercepted adap-
tation” approach.

Remark 4 In viewof the fact that theRBFNNs approx-
imation technique in Lemma 1 is established in some
compact set, the stability property obtained in this work
is thus semi-global. It is also noticeable that other
kinds of linearly parameterized approximation tech-
niques, such as spline functions, fuzzy systems, and
high-orderNNs, can replace theRBFNNswith remain-
ing design procedures and stability analysis being triv-
ially obtained.

Remark 5 In order to better utilize the design method-
ology of dynamic surface control in pioneering works
[11,19], the subsystems inEq. (1) is of the same formof
the SISO system in [19], but we consider extra external
disturbance and input saturation simultaneously in this
work. By virtue of the mean value theorem [39] and
other necessary assumptions, the method developed in
this paper is applicable to the generalMIMOnon-affine
nonlinear systems; one refers to [39] and [40] for more
details on this technique. In the following simulation
studies, an example that the control law in Theorem 1
is used to control the MIMO non-affine nonlinear sys-
tem in [40] with extra consideration of input saturation
demonstrates this statements.
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4 Stability analysis

In this section, the closed-loop stability by choosing
proper design parameters is rigorously proved. The
closed-loop dynamics resulting from the control law
in Theorem 1 can be obtained as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż j,1 = z j,2 − α j,1z j,1 + β j,1S j,1(X j,1)φ j,1

+ ζ j,1 − ϑ̂ j� j,1(X j,1)z j,1
ż j,i j = z j,i j+1 − α j,i j z j,i j + β j,i j S j,i j (X j,i j )φ j,i j

+ ζ j,i j − ϑ̂ j� j,i j (X j,i j )z j,i j
+ ϕ̇ j,i j−1 − ṙ j,i j−1

j = 2, . . . , N , i j = 2, . . . , n j − 1
ż j,n j = −α j,n j z j,n j + β j,n j S j,n j (X j,n j )φ j,n j

+ ζ j,n j − ϑ̂ j� j,n j (X j,n j )z j,n j

+ ϕ̇ j,n j−1 − ṙ j,n j−1

r j,i j = τ j,i j ϕ̇ j,i j + ϕ j,i j , ϕ j,i j (0) = r j,i j (0)˙̂
ϑ j = � j

∑n j
i j=1

[
� j,i j (X j,i j )z

2
j,i j

− c j ϑ̂ j

]

(21)

Defining e j,ii := ϕ j,i j − r j,i j , j = 1, . . . , N , i j =
1, . . . , n j , and differentiating both sides gives

ė j,i j = −e j,i j
τ j,i j

+ Bj,i j (·)

with
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Bj,1(·) := α j,1(x j,2 − ẏ j,r ) − ÿ j,r + ∂r j,1
∂z j,1

ż j,1

+ ∂r j,1
∂X j,1

Ẋ j,1 + ∂r j,1
∂ϑ̂ j

˙̂
ϑ j

B j,i j (·) := α j,i j (x j,i j+1 − ṙ j,i j−1) + ∂r j,1
∂z j,1

ż j,1

+ ∂r j,1
∂X j,1

Ẋ j,1 + ∂r j,1
∂ϑ̂ j

˙̂
ϑ j − ϕ̈ j,i j−1

(22)

It follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż j,1 = z j,2 − α j,1z j,1 + β j,1S j,1(X j,1)φ j,1

+ζ j,1 − ϑ̂ j� j,1(X j,1)z j,1
ż j,i j = z j,i j+1 − α j,i j z j,i j + β j,i j S j,i j (X j,i j )

φ j,i j + ζ j,i j − ϑ̂ j� j,i j (X j,i j )z j,i j
− e j,i j−1

τ j,i j−1
+ Bj,i j−1(·)

j = 2, . . . , N , i j = 2, . . . , n j − 1
ż j,n j = −α j,n j z j,n j + β j,n j S j,n j (X j,n j )φ j,n j

+ζ j,n j − ϑ̂ j� j,n j (X j,n j )z j,n j

− e j,n j−1

τ j,n j−1
+ Bj,n j−1(·)

r j,i j = τ j,i j ϕ̇ j,i j + ϕ j,i j , ϕ j,i j (0) = r j,i j (0)˙̂
ϑ j = � j

∑n j
i j=1

[
� j,i j (X j,i j )z

2
j,i j

]
− c j ϑ̂ j

(23)

FromAssumption 3, it is known that� j,0 is compact
in space R3. The following set is compact in space

R
(
∑ik

ik=1(2ik )) for any p > 0:

� j,ik =
⎧
⎨

⎩

i j∑

ik=1

(
z2j,ik

)
+

i j−1
∑

ik=1

e2j,ik + ϑ̃ j�
−1
j ϑ̃ j

⎫
⎬

⎭
,

ik = 1, . . . , n j

Therefore, the set � j,0 × � j,ik is compact in

R
(
∑ik

ik=1(2ik+3))
. As a result, Bj,i j , j = 1, . . . , N ,

i j = 1, . . . , n j − 1 are bounded on � j,0 × � j,ik , that
is to say, there exists B+

j,i j
such that |Bj,i j (·)| ≤ B+

j,i j
.

One can refer to [13] and [19] for more details on the
existence of B+

j,i j
.

Choose the following Lyapunov candidate:

V = 1

2

N∑

j=1

n j∑

i j=1

(
z2j,i j

)
+ 1

2

N∑

j=1

n j−1
∑

i j=1

(
e2j,i j

)

+ 1

2

N∑

j=1

ϑ̃ j�
−1
j ϑ̃ j (24)

Its derivative along Eq. (23) is obtained as:

V̇ =
N∑

j=1

n j∑

i j=1

(
z j,i j ż j,i j

) +
N∑

j=1

n j−1
∑

i j=1

(
e j,i j ė j,i j

)

+
N∑

j=1

ϑ̃ j�
−1
j

˙̃
ϑ j

=
N∑

j=1

n j∑

i j=1
(
−α j,i j z

2
j,i j + β j,i j S j,i j (X j,i j )φ j,i j z j,i j

+ ζ j,i j z j,i j − ϑ̂ j� j,i j (X j,i j )z
2
j,i j

)

+
N∑

j=1

n j−1
∑

i j=1

(
z j,i j z j,i j+1

)

+
N∑

j=1

n j∑

i j=2

(

−z j,i j
e j,i j−1

τ j,i j−1
+ z j,i j B j,i j−1(·)

)

+
N∑

j=1

n j−1
∑

i j=1

(

−
e2j,i j
τ j,i j

+ e j,i j B j,i j (·)
)

+
N∑

j=1

⎛

⎝ϑ̃ j

n j∑

i j=1

[
� j,i j (X j,i j )z

2
j,i j

]
− c j ϑ̃ j ϑ̂ j

⎞

⎠

≤
N∑

j=1

(

−α j,1z
2
j,1 + 1

2
z2j,1

)
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+
N∑

j=1

n j−1
∑

i j=2

(
−α j,i j z

2
j,i j + z2j,i j

+
z2j,i j

2τ j,i j−1
+ |z j,i j B j,i j−1(·)|

)

+
N∑

j=1

(

−α j,n j z
2
j,n j

+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(
β j,i j S j,i j (X j,i j )φ j,i j z j,i j + ζ j,i j z j,i j

)

+
N∑

j=1

n j−1
∑

i j=1

(

−
e2j,i j
2τ j,i j

+ |e j,i j B j,i j (·)|
)

+
N∑

j=1

⎛

⎝−ϑ j

n j∑

i j=1

[
� j,i j (X j,i j )z

2
j,i j

]
−c j ϑ̃ j ϑ̂ j

⎞

⎠

(25)

Using the following facts

N∑

j=1

n j∑

i j=1

(
β j,i j S j,i j (X j,i j )φ j,i j z j,i j

)

≤
N∑

j=1

n j∑

i j=1

(
β2
j,i j

4κ2
j,i j

‖S j,i j (X j,i j )‖2z2j,i j
)

+ κ2
j,i j ‖φ j,i j ‖2 (26a)

N∑

j=1

n j∑

i j=1

(
ζ j,i j z j,i j

)

≤
N∑

j=1

n j∑

i j=1

(
η2j,i j

4κ2
j,i j

ρ2
j,i j (X j,i j )z

2
j,i j + κ2

j,i j

)

(26b)

N∑

j=1

(
−c j ϑ̃ j ϑ̂ j

)

≤
N∑

j=1

(
−c j

2
ϑ̃2
j + c j

2
ϑ2
j

)

≤
N∑

j=1

(

− c j

2max{�−1
j } ϑ̃ j�

−1
j ϑ̃ j + c j

2
ϑ2
j

)

(26c)

gives

V̇ ≤
N∑

j=1

(

−α j,1z
2
j,1 + 1

2
z2j,1

)

+
N∑

j=1

n j−1
∑

i j=2

(
−α j,i j z

2
j,i j + z2j,i j

+
z2j,i j

2τ j,i j−1
+ |z j,i j B j,i j−1(·)|

)

+
N∑

j=1

(

−α j,n j z
2
j,n j

+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(

max
{
β2
j,i j , η

2
j,i j

} 1

4κ2
j,i j

× ρ2
j,i j (X j,i j )z

2
j,i j + κ2

j,i j + κ2
j,i j ‖φ j,i j ‖2

)

+
N∑

j=1

n j−1
∑

i j=1

(

−
e2j,i j
2τ j,i j

+ |e j,i j B j,i j (·)|
)

+
N∑

j=1

⎛

⎝−ϑ j

n j∑

i j=1

[
� j,i j (X j,i j )z

2
j,i j

]

− c j

2max{�−1
j } ϑ̃ j�

−1
j ϑ̃ j + c j

2
ϑ2
j

)

(27)

Choose the design parameters α j,1 and k j0 in the fol-
lowing way:

α j,1 = 1

2
+ k j0 (28a)

k j0 = min

{
c j

2max{�−1
j }

}

> 0 (28b)

It follows

V̇ ≤
N∑

j=1

(
−k j0z

2
j,1

)

+
N∑

j=1

n j−1
∑

i j=2

(

−α j,i j z
2
j,i j + z2j,i j

+
z2j,i j

2τ j,i j−1
+ |z j,i j B j,i j−1(·)|

)

+
N∑

j=1

(
−α j,n j z

2
j,n j
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+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j + κ2

j,i j ‖φ j,i j ‖2
)

+
N∑

j=1

n j−1
∑

i j=1

(

−
e2j,i j
2τ j,i j

+ |e j,i j B j,i j (·)|
)

+
N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j + c j

2
ϑ2
j

)
(29)

Define

γ :=
N∑

j=1

⎛

⎝
c j
2

ϑ2
j +

n j∑

i j=1

(
κ2
j,i j

)
⎞

⎠ (30)

and note that the following inequality is true for any
ε > 0:

N∑

j=1

n j−1
∑

i j=1

|e j,i j B j,i j (·)|

≤
N∑

j=1

n j−1
∑

i j=1

(
e2j,i j B

2
j,i j

(·)
2ε

+ ε

2

)

(31)

Choose design parameter τ j,i j in the way such that

1
2τ j,i j

= B+2
j,i j
2ε + k j0, it gives

V̇ ≤
N∑

j=1

(
−k j0z

2
j,1

)

+
N∑

j=1

n j−1
∑

i j=2

(

−α j,i j z
2
j,i j + z2j,i j

+
z2j,i j

2τ j,i j−1
+ |z j,i j B j,i j−1(·)|

)

+
N∑

j=1

(

−α j,n j z
2
j,n j

+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)

+
N∑

j=1

n j−1
∑

i j=1

(

−
(
B+2
j,i j

2ε
+ k j0

)

e2j,i j

+
e2j,i j B

2
j,i j

(·)B+2
j,i j

2B+2
j,i j

ε
+ ε

2

)

+
N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)
+ γ

=
N∑

j=1

(
−k j0z

2
j,1

)
+

N∑

j=1

n j−1
∑

i j=2
(

−α j,i j z
2
j,i j +z2j,i j +

z2j,i j
2τ j,i j−1

+|z j,i j B j,i j−1(·)|
)

+
N∑

j=1

(

−α j,n j z
2
j,n j

+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
+

N∑

j=1

n j−1
∑

i j=1
(

−k j0e
2
j,i j −

(

1 − B2
j,i j

B+2
j,i j

)
e2j,i j B

+2
j,i j

2ε
+ ε

2

)

+
N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)
+ γ (32)

Since B+
j,i j

is the bound value of Bj,i j , i.e., |Bj,i j | ≤
B+
j,i j

, 1 − B2
j,i j

B+2
j,i j

is therefore positive, and further

−
(

1 − B2
j,i j

B+2
j,i j

)
e2j,i j

B+2
j,i j

2ε is negative,

V̇ ≤
N∑

j=1

(
−k j0z

2
j,1

)
+

N∑

j=1

n j−1
∑

i j=2
(

−α j,i j z
2
j,i j+z2j,i j+

z2j,i j
2τ j,i j−1

+|z j,i j B j,i j−1(·)|
)

+
N∑

j=1

(

−α j,n j z
2
j,n j

+ 1

2
z2j,n j

+
z2j,n j

2τ j,n j−1
+ |z j,n j B j,n j−1(·)|

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
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+
N∑

j=1

n j−1
∑

i j=1

(
−k j0e

2
j,i j

)

+
N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)
+ γ +

N∑

j=1

n j−1
∑

i j=1

(ε

2

)

(33)

Choose the design parameters α j,i j in the following
way:

α j,i j = 1 + 1

2τ j,i j−1
+

B+2
j,i j−1

2ε
+ k j0,

j = 1, . . . , N , i j = 2, . . . , n j (34)

it yields

V̇ ≤
N∑

j=1

(
−k j0z

2
j,1

)

+
N∑

j=1

n j−1
∑

i j=2

(

−k j,0z
2
j,i j −

B+2
j,i j−1

2ε
z2j,i j

+
z2j,i j B

2
j,i j−1(·)B+2

j,i j−1

2εB+2
j,i j−1

+ ε

2

)

+
N∑

j=1

(

−k j0z
2
j,n j

−
B+2
j,n j−1

2ε
z2j,n j

+
z2j,n j

B2
j,n j−1(·)B+2

j,n j−1

2εB+2
j,n j−1

+ ε

2

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)

+
N∑

j=1

n j−1
∑

i j=1

(
−k j0e

2
j,i j

)
+

N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)

+ γ +
N∑

j=1

n j−1
∑

i j=1

(ε

2

)

=
N∑

j=1

(
−k j0z

2
j,1

)
+

N∑

j=1

n j∑

i j=2
(

−k j,0z
2
j,i j −

(

1 −
B2
j,i j−1(·)
B+2
j,i j−1

)
B+2
j,i j−1z

2
j,i j

2ε

)

+
N∑

j=1

n j−1
∑

i j=1

(
−k j0e

2
j,i j

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)

+
N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)
+ γ +

N∑

j=1

n j−1
∑

i j=1

(ε)

≤
N∑

j=1

(
−k j0z

2
j,1

)
+

N∑

j=1

n j∑

i j=2

(
−k j,0z

2
j,i j

)

+
N∑

j=1

n j−1
∑

i j=1

(
−k j0e

2
j,i j

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
+

N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)
+γ ∗

=
N∑

j=1

n j∑

i j=1

(
−k j0

(
z2j,i j

))

+
N∑

j=1

n j−1
∑

i j=1

(
−k j0e

2
j,i j

)
+

N∑

j=1

(
−k j0ϑ̃ j�

−1
j ϑ̃ j

)

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
+ γ ∗

≤ −k0

⎛

⎝
N∑

j=1

n j∑

i j=1

(
z2j,i j

)

+
N∑

j=1

n j−1
∑

i j=1

(
e2j,i j

)
+

N∑

j=1

(
ϑ̃ j�

−1
j ϑ̃ j

)
⎞

⎠

+
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
+ γ ∗

= − 2k0V +
N∑

j=1

n j∑

i j=1

(
κ2
j,i j ‖φ j,i j ‖2

)
+ γ ∗ (35)

where k0 is chosen such that k0 = min {k10, . . . , kN0},
γ ∗ is defined as γ ∗ := γ +∑N

j=1
∑n j−1

i j=1 (ε). From the
definition of φ j,i j , it is known that

‖φ j,i j ‖ ≤ ‖m(Wj,i j )‖|z j,i j | ≤ |z j,i j | (36)

Choose design parameter κ j,i j such that max
{
κ j,i j

} ≤
1√
2
, it follows

V̇ ≤ −2k0V +
N∑

j=1

n j∑

i j=1

(
1

2
z2j,i j

)

+ γ ∗

≤ −bV + γ ∗ (37)
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with b defined as b := 2k0 − 1. Choose the design
parameter k0 such that k0 > γ ∗/(2p) + 1/2, it gives
V̇ ≤ 0 on V = p, i.e., V ≤ p is an invariant set; in this
sense, for any initial value V (0) satisfying V (0) ≤ p,
V (t) ≤ p is true for all t ≥ 0.

Equation (37) yields

0 ≤ V (t) ≤ γ ∗

b
+

(

V (0) − γ ∗

b

)

exp−bt (38)

This implies that there exists a time moment T such
that z j,ii , e j,i j , and ϑ j are bounded in the following
compact sets for any t > T :

�z =
{

z j,i j
∣
∣|z j,i j | ≤

√
2γ ∗
b

}

(39a)

�e =
{

e j,i j
∣
∣|e j,i j | ≤

√
2γ ∗
b

}

(39b)

�ϑ =
{

ϑ j
∣
∣|ϑ j | ≤

√
2γ ∗

|�−1
j |b

}

(39c)

From Eq. (38), it is known that the transient bound
value of V (t) is γ ∗

b + V (0) with

V (0) := 1

2

N∑

j=1

n j∑

i j=1

(
z2j,i j (0)

)
+ 1

2

N∑

j=1

n j−1
∑

i j=1

(
e2j,i j (0)

)

+ 1

2

N∑

j=1

ϑ̃ j (0)�
−1
j ϑ̃ j (0) (40)

From Eq. (12) and Eq. (18), it is known that e j,i j (0) =
0, j = 1, . . . , N , i j = 1, . . . , n j −1. Setting the initial
values z j,i j (0) to be zero gives

V (0) = 1

2

N∑

j=1

(
ϑ̃ j (0)�

−1
j ϑ̃ j (0)

)
(41)

It can be observed that V (0) is a decreasing function
of � j . The bound value of transient z j,1 is therefore
obtained as

|z j,1| = |y j − y j,r − χ j,1|

≤
√
√
√
√2γ ∗

b
+

N∑

j=1

(
ϑ̃ j (0)�

−1
j ϑ̃ j (0)

)
(42)

Now, wewill find out the bound value ofχ j,1 to seek
the bound value of tracking error y j,1 − y j,r . To that
end, we choose the following Lyapunov function

Vχ = 1

2

N∑

j=1

n j∑

i j

χ2
j,i j (43)

and its derivative is obtained as

V̇χ =
N∑

j=1

n j∑

i j=1

(
−α j,ii χ

2
j,i j

)

+
N∑

j=1

n j−1
∑

i j=1

(
χ j,i j χ j,i j+1

) +
N∑

j=1

(
χ j,n j �u j

)

≤
N∑

j=1

n j∑

i j=1

(
−α j,ii χ

2
j,i j

)

+ 1

2

N∑

j=1

χ2
j,1 +

N∑

j=1

n j∑

i j=2

χ2
j,i j + 1

2

N∑

j=1

�u2j

(44)

From Eq. (34), it follows

V̇χ ≤ −k0

N∑

j=1

n j∑

i j=1

(
χ2
j,i j

)
+ 1

2

N∑

j=1

�u2j

= −2k0Vχ + 1

2

N∑

j=1

�u2j (45)

then

0 ≤ Vχ

≤
∑N

j=1 �u2j
4k0

+
(

Vχ (0) −
∑N

j=1 �u2j
4k0

)

exp−2k0t

(46)

Setting the initial value Vχ (0) to be zero gives the fol-
lowing inequality in finite time:

0 ≤ Vχ ≤
∑N

j=1 �u2j
4k0

−
(∑N

j=1 �u2j
4k0

)

exp−2k0t

≤
∑N

j=1 �u2j
4k0

(47)

In view of the definition of Vχ , we have

1

2
χ j,1 ≤

∑N
j=1 �u2j
4k0

⇒ |χ j,1| ≤
∑N

j=1 |�u j |
2
√
k0

(48)

and therefore, the bound of y j − y j,r is obtained as
follows:

|y j − y j,r | ≤
√
√
√
√2γ ∗

b
+

N∑

j=1

(
ϑ̃ j (0)�

−1
j ϑ̃ j (0)

)

+
∑N

j=1 |�u j |
2
√
k0

(49)
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FromEq. (49), it can be observed that the tracking error
y j − y j,r in j th subsystem can be adjusted to arbitrar-
ily small by choosing large enough b and k0 and small
enough γ ∗; at the same time, the effects of initial esti-
mation errors ϑ̃ j (0) can be attenuated by choosing large
enough � j .

Remark 6 The parameter-choosing techniques are par-
tially inspired by the pioneering works [11] and [19].
Since the MIMO structure, effect of input satura-
tions, neural approximation errors, external distur-
bances are explicitly contained simultaneously in our
closed-loop system, we have done extra efforts to
obtain Eq. (37), which facilitates the derivations of
the ultimate and transient convergence sets of tracking
error.

Remark 7 From the above analysis, it is known that
the tracking error y j − y j,r can be tuned to arbitrar-
ily small by choosing proper design parameters; at the
same time, the effect of initial estimation errors can be
attenuated by choosing large enough � j , an indepen-
dent parameter of b and k0. Although such a merit,
extra attention must be paid if put the method into
practice, since too large sets of b and k0 may lead to
a high-gain control, which will cause chattering phe-
nomenon in practical applications. What is more, the
proposed method involves several design parameters,
and it is a challenge and an open problem to choose
an optimal set of these parameters, and in the fol-
lowing simulation section, a trial-and-error method is
used.

Remark 8 It is noted that the initial values of state vari-
ables in V must be confined in a ball with a radius of√
2p. By choosing large enough p and it is in fact that

the state variables in practice are impossible to be infi-
nite, the initial conditions, in this sense, are quite easy
to satisfy and are not restrictive indeed. The arguments
in [11] are applicable in our work on how to set these
state variables in the desired ball,which is not discussed
in details here.

5 Simulation results

5.1 Example 1

Consider the following uncertainMIMOnonlinear sys-
tems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = 0.5(x1,1+x2,1)+0.1x21,1x
2
2,1+x1,2+�1,1

ẋ1,2 = (x1,1x1,2) + cos(x1,1x2,1) + v1 + �1,2

v1 = sat(u1), u+
1 = 2.8

y1 = x1,1
ẋ2,1 = x1,1x2,1 + sin(x1,1x2,1) + x2,2 + �2,1

ẋ2,2 = (x1,1x1,2 + x2,1x2,2)
+ ex1,1 + e−x2,1 + v2 + �2,2

v2 = sat(u2), u+
2 = 2.8

y2 = x2,1

(50)

where �1,1 = 0.2x1,1x1,2x2,1x2,2 sin(t), �1,2 =
0.5 sin(x21,1 + x21,2) cos(x

2
2,1x

2
2,2), �2,1 = 0.3 sin(x1,1

x1,2x2,1x2,2), �2,2 = 0.4(x1,1 + x1,2) cos(x2,1x2,2)
sin2(t). Input saturations u+

1 = 2.8 and u+
2 = 2.8 are

imposed on the 1st and 2nd subsystems, respectively.
The references y j , j = 1, 2 are generated by the van

der Pol oscillator, which is described by:
{
ẏ1,r = ẏ2,r
ẏ2,r = −y1,r + βv(1 − y21,r )y2,r

if βv is chosen as positive constant, the outputs of the
van der Pol oscillator get close to a limit cycle. In this
example, βv is chosen as 0.001.

The initial values of the plant are as follows.
x1,1(0) = 0.3, x1,2(0) = 0.1, x2,1(0) = 0.1, x2,2(0) =
0.2, ϕ11(0) = 0, ϕ21(0) = 0, y1r (0) = 0.2, y2r (0) =
−0.1, ϑ̂1(0) = ϑ̂2(0) = 0. The design parameters are
chosen as follows. α1,1 = 16, α1,2 = 26, α2,1 = 16,
α2,2 = 26, κ j,i j = 0.1, j = 1, 2, i j = 1, 2,
τ1,1 = τ2,1 = 0.005, c1 = c2 = 0.1, �1 = �2 = 5.

The RBF NNs (1, 1) contain 20 nodes with widths
a1,1 = 1.5 and centersμ1,1 evenly spaced in [−2, 2]×
[−1.5, 1.5]; RBF NNs (1, 2) contain 30 nodes with
widths a1,2 = 1.5 and centers μ1,2 evenly spaced in
[−2.5, 2.5]×[−1.5, 1.5]×[−2, 2]×[−1.5, 1.5]; RBF
NNs (2, 1) contain 20 nodeswithwidthsa2,1 = 1.5 and
centers μ2,1 evenly spaced in [−2, 2] × [−1.5, 1.5];
RBF NNs (2, 2) contain 30 nodes with widths a2,2 =
1.5 and centers μ2,2 evenly spaced [−2.5, 2.5] ×
[−1.5, 1.5] × [−2, 2] × [−1.5, 1.5]. The initial values
of all RBF NNs are set to be zero.

The simulation results of this example are shown in
Fig. 1. Figure 1a, b presents the tracking performance
of subsystems, and Fig. 1c shows the tracking errors. It
is clear that the results are satisfactory. From Fig. 1d,
boundedness of x12 and x22 is observed. FromFig. 1e, f,
it follows that the constrained input signals become
periodic after about 1s. Figure 1g, h illustrates that the
adaptive parameters (ϑ̂1 and ϑ̂2) and auxiliary signals
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Fig. 1 Simulation results of example 1. a Output y1 (dot-dash
line) follows y1,r (solid line). bOutput y2 (dot-dash line) follows
y2,r (solid line). c Trajectories of tracking errors. d Trajectories
of x12 (solid line) and x22 (dot-dash line). e Control input v1. f

Control input v2. g Trajectories of ϑ̂1 (solid line) and ϑ̂2 (dot-
dash line). h Trajectories of χ1,1 (solid line), χ1,2 (dash line),
χ2,1 (dot-dash line) and χ2,2 (dot line)
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Fig. 2 Simulation results of example 1: χ = 0. a Output y1 (dot-dash line) follows y1,r (solid line). bOutput y2 (dot-dash line) follows
y2,r (solid line). c Trajectories of v1. d Trajectories of v2

(χ1,1, χ1,2, χ2,1 and χ2,2) are bounded. It is concluded
that the closed-loop signals are all bounded.

For unprejudiced comparison, we will set χ j = 0
to check the system response since χ j is the key point
to attenuate the effect caused by input saturation and
guarantee systematic performance according to above
theoretical analysis. Actually, when χ j = 0, Eq. (5)
becomes z j,1 = y j,1 − y j,r and z j,i j = x j,i j − r j,i j−1,
which are widely used in existing literature [40,41].
The results when χ j = 0 are given in Figure 2, and the
closed-loop stability is ruined.

5.2 Example 2

Consider the following non-affine MIMO nonlinear
system in [40]. To verify the effectiveness of the pro-
posedmethod, input saturations characterized by u+

1 =
1.1 and u+

2 = 0.5 are imposed on the first and second
subsystems, respectively.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = x1,1 + x2,1 + x21,2
5

ẋ1,2 = x1,1x1,2 + x2,1 + v1 + v31
7 + �1,2

v1 = sat(u1), u+
1 = 1.1

y1 = x1,1

ẋ2,1 = x1,1x1,2 + x2,1 + v1 + v2 + v22
7 + �2,1

v2 = sat(u2), u+
2 = 0.5

y2 = x2,1

(51)

The references are the output of van del Pol oscil-
lator with βv = 0.002. The initial values of the plant
are as follows. x1,1(0) = 0.3, x1,2 = 0.2, x2(0) = 0,
ϕ11(0) = 0, y1r (0) = 0.2, y2r (0) = 0.5, ϑ̂1(0) =
ϑ̂2(0) = 0. The design parameters are chosen as fol-
lows. α1,1 = 6, α1,2 = 12, α2 = 25, κ1,1 = κ1,2 =
κ2 = 0.1, τ1,1 = 0.005, c1 = c2 = 0.1, �1 = �2 = 5.

The RBF NNs (1, 1) contain 20 nodes with widths
a1,1 = 1.5 and centersμ1,1 evenly spaced in [−2, 2]×
[−1.5, 1.5]; RBF NNs (1, 2) contain 30 nodes with
widths a1,2 = 1.5 and centers μ1,2 evenly spaced in
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Fig. 3 Simulation results of example 2. a Output y1 (dot-dash
line) follows y1,r (solid line). bOutput y2 (dot-dash line) follows
y2,r (solid line). c Trajectories of tracking errors. d Trajectories

of x12. e Control input v1. f Control input v2. g Trajectories of ϑ̂1
(solid line) and ϑ̂2 (dot-dash line). (h) Trajectories of χ1,1 (solid
line), χ1,2 (dash line), and χ2 (dot-dash line)
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Fig. 4 Simulation results of example 2: χ = 0. a Output y1 (dot-dash line) follows y1,r (solid line). bOutput y2 (dot-dash line) follows
y2,r (solid line). c Trajectories of v1. d Trajectories of v2

[−2.5, 2.5]×[−1.5, 1.5]×[−2, 2]×[−1.5, 1.5]; RBF
NNs (2) contain 30 nodes with widths a2 = 1.5 and
centers μ2 evenly spaced [−2.5, 2.5] × [−1.5, 1.5] ×
[−2, 2] × [−1.5, 1.5] × [−2, 2]. The initial values of
all RBF NNs are set to be zero.

The simulation results of this example are shown in
Fig. 3. Figure 3a, b presents the tracking performance of
subsystems, and Fig. 3c shows the tracking errors, and
the results are satisfactory. From Fig. 3d, boundedness
of x12 is observed. From Fig. 3e, f, it follows that the
constrained input signals become periodic after about
2s. Figure 3g, h illustrates that the adaptive parameters
(ϑ̂1 and ϑ̂2) and auxiliary signals (χ1,1, χ1,2 and χ2) are
bounded. It is concluded that the closed-loop signals
are all bounded. The stability is ruined if χ j is set to be
zero, see Fig. 4.

6 Concluding remarks

In this paper, neural adaptive control is proposed for
a class of uncertain MIMO systems in the presence of

constrained input. Both the problems of “explosion of
complexity” and “dimension curse” are circumvented
simultaneously in the developed method via DSC and
MLP algorithms, respectively. Novel intercepted adap-
tation approach is developed to attenuate the effects
caused by input saturation. Comparing with the pio-
neeringMLPalgorithm, only one parameter needs to be
online learning. Simulation results are used to demon-
strate the effectiveness of the proposed approach.
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