
Nonlinear Dyn (2015) 82:1001–1013
DOI 10.1007/s11071-015-2213-z

ORIGINAL PAPER

Stochastic response of a vibro-impact Duffing system under
external Poisson impulses

H. T. Zhu

Received: 26 July 2014 / Accepted: 12 June 2015 / Published online: 23 June 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper studies the stationary probabil-
ity density function (PDF) of a vibro-impact Duffing
system under external Poisson impulses. A one-sided
constraint is located at the equilibrium position of the
system, and the system collides with the constraint by
instantaneous repetitive impacts. A recently proposed
solution procedure is extended to the case of Poisson
impulses including three steps. First, the Zhuravlev
non-smooth coordinate transformation is utilized to
make the original Duffing system and impact condition
be integrated into one equation. An additional impul-
sive damping term is introduced in the new equation.
Second, the PDF of the new system is obtained with
the exponential–polynomial closure method by solv-
ing the generalized Fokker–Planck–Kolmogorov equa-
tion. Last, the PDF of the original system is established
following the methodology on seeking the PDF of a
function of random variables. In numerical analysis,
different levels of nonlinearity degree and excitation
intensity are considered in four illustrative examples to
show the effectiveness of the proposed solution proce-
dure. The numerical results show that when the poly-
nomial order is taken as six in the proposed solution
procedure, it can present a satisfactory PDF solution
compared with the simulated result. The tail region of
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the PDF solution is also approximated well for both
displacement and velocity.

Keywords Vibro-impact system · Random vibra-
tion · Probability density function · Generalized FPK
equation · Poisson impulses

1 Introduction

Vibro-impact systems, as typical nonlinear dynamical
systems, widely exist in the field of engineering and
physics [1–3]. The behaviors of these vibro-impact sys-
tems are complex and unusual because they behave
as continuous dynamical systems between two suc-
cessive impacts and develop a discrete behavior when
reaching a constraint. There have been considerably
extensive efforts to investigate the response of vibro-
impact systems on different aspects. For example, the
stability and bifurcation of the vibrations of vibro-
impact systems under deterministic excitation were
studied by many researchers, e.g., [4–7]. Several non-
smooth coordinate transformation techniques were
also developed and studied for vibro-impact vibration
[8–12]. In particular, the stochastic response of vibro-
impact systems has received more and more atten-
tion in the past decades [13–24]. In these investiga-
tions, the stochastic averaging method was extensively
adopted using different impactmodels. Themodel with
instantaneous repetitive impacts was used in quite a
few researches [13–18]. For this impact model, a
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restitution factor is used between impact and rebound
velocities to describe the energy loss according to the
Newton’s law. By contrast, a Hertzian contact model
with the well-known 3/2-power law was also used to
describe impacts [19]. Besides, Monte Carlo simula-
tionwas adopted to investigate the response probability
density function (PDF) of vibro-impact systems using
the model with instantaneous repetitive impacts [20].
In addition, a numerical path integration method was
developed together with the Zhuravlev–Ivanov coor-
dinate transformation for obtaining the response PDF
of stochastic vibro-impact systems with high energy
losses at impacts [21]. Recently, a solution proce-
dure has been proposed to obtain the stationary PDF
of lightly vibro-impact systems for different cases of
Gaussianwhite noises [22–24]. The solution procedure
consists of Zhuravlev non-smooth coordinate trans-
formation [2,13], the exponential–polynomial closure
(EPC) method [25–27] and the methodology on the
PDF solution of a function of variables [28]. The PDF
solutions obtained with the proposed solution proce-
dure agree with the simulated results, especially in the
tail regions.

Although extensive work has been done on the sto-
chastic response of vibro-impact systems, the above
studies are limited to the cases of Gaussian white noise,
an irregularly continuous random excitation. In fact,
the case of Poisson impulses is also worth being stud-
ied because this type of excitation represents a dis-
crete sequence of random impulses arriving at ran-
dom times. Poisson impulses can more adequately
model some natural loadings in practice [29], e.g.,
ice impacts [30]. However, the stochastic response of
vibro-impact systems has been scarcely addressed in
the presence of Poisson impulses. Most relevant work
on Poisson impulses is concerned with the response
of smooth nonlinear systems under Poisson impulses.
The response PDF solution is governed by the general-
ized Fokker–Planck–Kolmogorov (FPK) equation (i.e.,
the Kolmogorov–Feller equation) [31–34]. The gener-
alized FPK equation is too complex in its form to be
exactly solved in most cases [35–37]. Most problems
have to rely on approximation methods, such as pertur-
bation method [31,32], Petrov–Galerkin method [38],
path integration technique [39–42] and finite difference
approach [43]. As the statistical response moments of
nonlinear systems are concerned, equivalent lineariza-
tion methods [44–50] and cumulant-neglect closure
methods [51–53] are extensively investigated. When

the response of nonlinear systems is nearly Gaussian,
these two methods can present adequate values for the
statistical moments.

In this paper, a recently proposed solution procedure
is extended to the case of Poisson impulses [22–24].
This study considers a one-sided constraint is located
at the equilibrium position of the system and the system
collides with the constraint by instantaneous repetitive
impacts. The solution procedure consists of three steps.
First, the Zhuravlev non-smooth coordinate transfor-
mation is utilized to convert the original vibro-impact
system into a new system without any barrier by intro-
ducing an additional damping term. Second, the PDF
of the new system is obtained with the EPC method
by solving the generalized FPK equation. Last, the
PDF of the original system is formulated in terms of
the methodology on seeking the PDF of a function of
random variables. Different nonlinearity degrees and
excitation intensities are considered in four illustra-
tive examples to show the effectiveness of the proposed
solution procedure. When the polynomial order is six,
the PDF obtained with the proposed solution procedure
agrees well with the simulated result for both displace-
ment and velocity, especially in the tail regions.

2 Problem formulation

2.1 A vibro-impact Duffing system

A single-degree-of-freedom vibro-impact Duffing sys-
tem under Poisson impulses can be expressed as

ÿ + cẏ + ky + μy3 = ξ(t), y > 0 (1)

ẏ+ = −r ẏ−, y = 0, 0 < r ≤ 1 (2)

where ÿ, ẏ and y are the acceleration, velocity and dis-
placement, respectively; c is the damping coefficient;
k is the linear stiffness coefficient; μ is the nonlin-
earity coefficient in displacement; ξ(t) is an excita-
tion process of zero-mean Poisson impulses; r is the
restitution factor; ẏ− and ẏ+ are impact and rebound
velocities, respectively. Correspondingly, Fig. 1a illus-
trates a vibro-impact Duffing system with a zero offset
constraint. The constraint is located at the static equi-
librium position of the system.

In this paper, ξ(t) represents an excitation process
of Poisson impulses as follows

ξ(t) =
N (T )∑

k=1

Ykδ(t − τk) (3)
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Fig. 1 A vibro-impact system under Poisson impulses: a a Duffing system with a zero offset constraint; b representative Poisson
impulses between 0 and 20s in the case of λ = 1, λE[Y 2] = 0.1 and Y is a zero-mean Gaussian variable

where N (T ) is the total number of impulses arriving in
the time interval (−∞, T ]. Yk is the random amplitude
of the kth impulse arriving at time τk . δ(t) is the Dirac
delta function. N (T ) is assumed to yield the Poisson
law with a constant impulse arrival rate λ. The impulse
amplitudes Yk are independent and identically distrib-
uted (i.i.d.) random variables. These impulses are also
independent of the impulse arrival time τk . The nth
cumulant function of ξ(t) is a multiplication of (n − 1)
Dirac delta functions

κn[ξ(t1), . . . , ξ(tn)] = λE[Yn]δ(t2−t1) . . . δ(tn−t1)

(4)

Figure 1b shows a typical excitation process of Poisson
impulses in the case of λ = 1 and λE[Y 2] = 0.1, in
which Y is a zero-mean Gaussian variable.

2.2 Non-smooth coordinate transformation

First, Eqs. (1) and (2) are combined into one equation
by the Zhuravlev non-smooth coordinate transforma-
tion so that the new equation can be further handled
by the generalized FPK equation. The transformation
procedure is given in details in Refs. [2,13] as follows

y = |z| = zsgn(z), ẏ = żsgn(z), ÿ = z̈sgn(z) (5)

where z̈, ż and z are the acceleration, velocity and
displacement of the converted system, respectively;
sgn(•) is the sign function as follows

sgn(z) =
⎧
⎨

⎩

1, z > 0
0, z = 0
−1, z < 0

(6)

Therefore, the last two items of Eq. (5) are formulated
due to the fact that d(sgn(z))/dt = 0.

Equation (2) presents the condition for each impact.
Based on Eq. (5), Eq. (2) is reformulated into the below
condition using the new variable

ż+ = r ż− at z = 0 (7)

where ż− and ż+ are impact and rebound velocities
before and after each impact for the converted system,
respectively. After that, the reduction in the converted
velocity jump is evaluated by an amount proportional
to (1 − r ).

Subsequently, an additional impulsive damping
term, as a substitute of Eq. (7), is introduced into the
equation ofmotion for the converted system. Using this
additional damping term, the equation of motion and
the impact condition are integrated into one equation.
In Refs. [2,13], the Dirac delta function is used to intro-
duce this velocity jump into the equation of motion as
an additional impulsive damping term. The additional
damping term due to impacts is approximately evalu-
ated as

(ż+ − ż−)δ(t − ti ) = (1 − r)żδ

(t − ti ), given that |ż+| < |ż| < |ż−| (8)

In Eq. (8), ti is the time instant of each impact, which is
implicitly determined by initial condition, system para-
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meters and excitation intensity. Directly using the term
with ti in the transformed equation of motion leads to a
complicated equation which is difficult to be solved. In
order to remove the time instant ti from the expression
of the additional impulsive damping term, the transfor-
mation of variables from the time domain to the space
domain is established by the following way.

It should be addressed that the restitution factor is
assumed to be close to unity in the following trans-
formation procedure. Therefore, (1− r ) can be treated
as a small parameter. In such a case, the response of
the converted system may have much less significant
discontinuities in its time derivative. Consequently, the
response can be approximately treated as a continu-
ous process. This assumption permits the vibro-impact
problem to be handled by some conventional approx-
imate methods [16,54], e.g., FPK equation methods,
equivalent linearization methods and stochastic aver-
aging methods.

Since the response of the vibro-impact system can
be approximated by a continuous process as explained
above, the displacement in the vicinity of each impact
can be approximated as follows

z(t) = z(ti ) + ż(ti )(t − ti ) (9)

where z(ti ) is the displacement at the time instant of
impacts ti . That is, z(ti ) is the location of equilibrium
position and z(ti ) = 0. Subsequently, Eq. (9) is further
written as

t − ti = z(t)/ż(ti ) (10)

Considering Eq. (8), the Dirac delta function is applied
to Eq. (10) in a small interval of the vicinity of each
impact

δ(t − ti ) = δ(z(t)/ż(ti )) (11)

Furthermore, the Dirac delta function has a property
that δ(z(t)/ż(ti )) = |ż|δ(z), and Eq. (8) further reads

(1 − r)żδ(t − ti ) = (1 − r)ż|ż|δ(z) (12)

After that, the time instant of each impact ti is removed
from the expression of the additional impulsive damp-
ing term. Equations (1) and (2) finally are integrated
into one equation as follows

z̈ + cż + kz + μz3 + (1 − r)ż|ż|δ(z) = sgn(z)ξ(t)

(13)

Some remarks are worth addressing on this non-
smooth coordinate transformation procedure. This

transformation procedure is performed by an approxi-
mateway. First, for Eq. (5), it is justified in autonomous
conservative cases, when the barrier is eliminated com-
pletely, and the external load does not lead to multiple
strikes against the barrier per one cycle of vibration.
Therefore, the examined cases of this paper should
approximately satisfy this requirement. Second, as
Eq. (8) is concerned, the interval before and after an
instantaneous impact is very small, and the restitu-
tion factor is assumed to be close to unity. In such a
case, the magnitude of velocity is expected to be nearly
uniform. Thus, ż is approximately adopted in Eq. (8)
replacing ż+ and ż− in the expression. Last, in gen-
eral, introducing Dirac delta function into nonlinear
differential equations complicates mathematical justi-
fication of themodeling [55]. It is an important issue on
how delta function participates in these nonlinear dif-
ferential equations. Grace et al. [11] presented a good
interpretation of such a manipulation with delta func-
tion. In the transformationmanipulation, δ(z) is treated
as a specific distribution applied to some testing func-
tion rather than the conventional Dirac delta function.
It is because the term with the conventional Dirac delta
function in Eq. (13) cannot be justified due to the dis-
continuous factor ż|ż| at z = 0. Herein, δ(z) is used to
take the value of the testing function at the one adja-
cent side of zero but not exactly at zero. In such a case,
the term (1 − r)ż|ż|δ(z) can present an approximate
description for the energy loss at the barrier. Similarly,
this specific definition of delta function has been used
in some references, e.g., [1,56–58].

2.3 Exponential–polynomial closure method

In this section, Eq. (13) is further handled by the gen-
eralized FPK equation which is approximately solved
by the EPC method. Letting x1 = z, x2 = ż , Eq. (13)
can be formulated in a set of two first-order differential
equations
{
ẋ1 = x2
ẋ2 = −cx2 − kx1 − μx31 − (1 − r)x2|x2|δ(x1) + sgn(x1)ξ(t)

(14)

The response {x1, x2}T is approximated by a Markov
process, and its PDF, i.e., p(x1, x2, t), is governed by
the following generalized FPK equation

The generalized FPK equation is expressed in an
infinite series form [34]
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∂p(x1, x2, t)

∂t
= −x2

∂p(x1, x2, t)

∂x1

+ ∂

∂x2
{[cx2 + kx1 + μx31

+ (1 − r)x2|x2|δ(x1)]p(x1, x2, t)}

+ λ

∞∑

j=1

(−1) j

j ! [sgn(x1)] j E[Y j ]∂
j p(x1, x2, t)

∂x j
2

(15)

where E[•] denotes the expectation of (•). The FPK
equation or the generalized FPK equation is a partial
differential equation. It describes the time evaluation
of the probability density function of the response of a
system. For a linear system and a few specific single-
degree-of-freedom nonlinear systems, some closed-
form solutions (mostly stationary solutions) are avail-
able. When considering the non-stationary response of
nonlinear systems, the FPK equation and generalized
FPK equation are too complicated in their forms to be
exactly solved. Although some numerical methods can
be used, e.g., finite element method, finite difference
method and path integration method, the associated
solution procedure is still a tough and time-consuming
task [59,60]. In those methods, the spatial and tempo-
ral discretization of the initial-boundary value problem
has to properly be handled. Meanwhile, some adequate
associated techniques also need to be developed for
solving the resulting non-symmetric system of linear,
algebraic equations. On the other hand, other previ-
ous methods for stationary cases are also difficult to be
extended directly for non-stationary cases.

In this paper, theEPCmethod is used to study the sta-
tionary PDF solution of vibro-impact systems. There-
fore, the term on the left-hand side of Eq. (15) vanishes
and Eq. (15) is reduced to be

−x2
∂p(x1, x2)

∂x1
+ ∂

∂x2
{[cx2 + kx1 + μx31

+ (1 − r)x2|x2|δ(x1)]p(x1, x2)}
− λ[sgn(x1)]E[Y ]∂p(x1, x2)

∂x2

+ 1

2!λE[Y 2]∂
2 p(x1, x2)

∂x22

− 1

3!λ[sgn(x1)]E[Y 3]∂
3 p(x1, x2)

∂x32

+ 1

4!λE[Y 4]∂
4 p(x1, x2)

∂x42
+ · · · = 0 (16)

Equation (16) is too complicated in its form to
be solved exactly, and the solution has to rely on
some approximate methods. Herein, the EPC method

is used and an approximate PDF solution
∼
p(x1, x2; a)

to Eq. (16) is assumed to be
∼
p(x1, x2; a) = C exp{Qn(x1, x2; a)} (17)

whereC is a normalization constant; exp {·} is an expo-
nential function; a is an unknownparameter vector con-
taining Np entries. The polynomial Qn(x1, x2; a) is
expressed as

Qn(x1, x2; a) =
n∑

i=1

i∑

j=0

ai j x
i− j
1 x j

2 (18)

which is an nth-degree polynomial in x1 and x2. It is
also required that

lim
xi→±∞ Qn(x1, x2; a) = −∞, i = 1, 2 (19)

Substituting
∼
p(x1, x2; a) for p(x1, x2) leads to the

following residual error

�(x1, x2; a) = −x2
∂

∼
p

∂x1
+ ∂

∂x2

{[
cx2 + kx1 + μx31

+ (1 − r)x2|x2|δ(x1)
] ∼
p
}

− λ[sgn(x1)]E[Y ] ∂
∼
p

∂x2
+ 1

2!λE[Y 2]∂
2
∼
p

∂x22

− 1

3!λ[sgn(x1)]E[Y 3]∂
3
∼
p

∂x32
+ 1

4!λE[Y 4]∂
4
∼
p

∂x42
(20)

Furthermore, only the terms up to fourth-order deriva-
tive are retained from Eq. (16) for analysis. It is based
on the assumption that higher-order terms have rela-
tively smallmagnitudes comparedwith the lower-order
terms. When the impulse arrival rate is moderate or
high, this assumption is usually satisfied. In such a case,
the approximate solution is expected to work well.

Substituting Eq. (17) into Eq. (20), the residual error
is formulated as

�(x1, x2; a) = F(x1, x2; a)
∼
p(x1, x2; a) (21)

where

F(x1, x2; a) = −x2
∂Qn

∂x1
+ [cx2 + kx1 + μx31

+ (1 − r)x2|x2|δ(x1)]∂Qn

∂x2

− λ[sgn(x1)]E[Y ]∂Qn

∂x2
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+ 1

2!λE[Y 2]
[

∂2Qn

∂x22
+

(
∂Qn

∂x2

)2
]

− 1

3!λ[sgn(x1)]E[Y 3]

×
[

∂3Qn

∂x32
+ 3

∂Qn

∂x2

∂2Qn

∂x22
+

(
∂Qn

∂x2

)3
]

+ 1

4!λE[Y 4]
[

∂4Qn

∂x42
+ 4

∂Qn

∂x2

∂3Qn

∂x32

+ 3

(
∂2Qn

∂x22

)2

+ 6

(
∂Qn

∂x2

)2
∂2Qn

∂x22
+

(
∂Qn

∂x2

)4
]

+ c + 2(1 − r)|x2|δ(x1) (22)

If the residual error is zero, the approximate PDF
solution can fully satisfy the reduced generalized
FPK equation with some lower-order terms. However,
the residual error generally cannot be zero because
∼
p(x1, x2; a) is a nonzero exponential function and
F(x1, x2; a) is not zero in general cases.

Therefore, another set of mutually independent
functions Hs(x1, x2) spanning space �Np is further
introduced to make the projection of F(x1, x2; a) on
�Np vanish, which leads to

∫ +∞

−∞

∫ +∞

−∞
F(x1, x2; a)Hs(x1, x2)dx1dx2 = 0

(23)

Selecting Hs(x1, x2) as:

Hs(x1, x2) = xm−l
1 xl2 f1(x1) f2(x2) (24)

where m = 1, 2, . . . , n; l = 0, 1, 2, . . . ,m and s =
1
2 (m + 2)(m − 1) + l + 1. This means that the reduced
generalized FPK equation is satisfied in a weak sense.

A convenient and effective selection for f1(x1)
and f2(x2) is the PDF obtained with equivalent lin-
earization method or Gaussian closure method under
Gaussian excitation with the same intensity λE[Y 2] as
follows

f1(x1) = 1√
2πσ1

exp

{
− x21
2σ 2

1

}
(25)

f2(x2) = 1√
2πσ2

exp

{
− x22
2σ 2

2

}
(26)

According to Eqs. (23) through (26), nonlinear alge-
braic equations are formulated for the unknown para-
meter a. The conventional Newton–Raphson method
is adopted to solve the nonlinear algebraic equations.
The initial stationary solution of a can be adopted with
the result of equivalent linearization method. In gen-
eral, the EPC method uses an even-order polynomial
in Eq. (18) because the even-order polynomial can eas-
ily satisfy Eq. (19) with a negative coefficient for its
highest order terms. In addition, the EPC method with
a complete set of fourth- or sixth-order polynomial usu-
ally can present a satisfactory PDF solution compared
with available exact solutions or simulation results. At
present, it is still a difficult mathematical problem on
how to guarantee that the EPCmethod with a complete
set of fourth- or sixth-order polynomials is enough to
solve nonlinear systems with needed accuracy. A feasi-
ble way is to numerically show the convergence of the
PDF solution as the polynomial order increases from
two to either four or six, even to higher orders.

2.4 Probability density function formulation

After
∼
p(x1, x2; a) is obtained for

∼
p(z, ż), the PDF

solution of the original system can be also formulated

according to Eq. (5). Herein
∼
pY (y) and

∼
p
Ẏ (ẏ) denote

the PDFs of displacement and velocity of the origi-
nal system, respectively. Their formulations follow the
procedure given in Ref. [28] about the PDF distribution
of a function of random variables.

First, let us consider the PDF of y, namely
∼
pY (y).

Because y is a function of z with the relationship given
in Eq. (5), the relationship can be simply expressed as

y = |z| = g(z) (27)

where g(·) is a general function of z. In Ref. [28],

∼
pY (y) =

∑

j

∼
pZ [g−1

j (y)]
∣∣∣ dg(u)

du

∣∣∣
u=g−1

j (y)

(28)

with the summation being over all inverse points z =
g−1
j (y) that map from z to y. g−1(·) is the inverse

function of g(·); ∼
pZ (z) = ∫ +∞

−∞
∼
p(z, ż)dż and it is the

approximate PDF of z. g j (·) is a piecewise function as

y = |z| = g(z) =
⎧
⎨

⎩

z, z > 0
0, z = 0
−z, z < 0

(29)
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In terms of Eqs. (28) and (29),

∼
pY (y) = ∼

p
+
Z (y) + ∼

p
−
Z (−y), y > 0 (30)

where
∼
p

+
Z (·) and

∼
p

−
Z (·) are the PDFs located at the

positive domain and the negative domain of z, respec-

tively. Furthermore, it is defined that
∼
pY (0) = 2

∼
pZ (0)

because Eq. (28) is null for z = 0.

Second, let us consider the PDF of ẏ, namely
∼
p
Ẏ (ẏ).

Because ẏ is a function of multiple random variables
with the relationship in Eq. (5), it is defined in a similar
manner

ẏ = żsgn(z) = h(z, ż) (31)

where h(·) is also a general function of z and ż.
∼
p
Ẏ (ẏ)

canbe formulated in termsof its cumulative distribution
function FẎ (ẏ).

FẎ (ẏ) =
∫∫

h(z,ż)≤ẏ

∼
p(z, ż)dzdż (32)

The cumulative distribution function further reads in a
piecewise integral form

FẎ (ẏ) =
∫ +∞

0
dz

∫ ẏ

−∞
∼
p(z, ż)dż

+
∫ 0

−∞
dz

∫ +∞

−ẏ

∼
p(z, ż)dż (33)

Therefore, the PDF of ẏ is obtained by taking the deriv-
ative with respect to ẏ on Eq. (33)

∼
p
Ẏ (ẏ) =

∫ +∞

0

∼
p(z, ẏ)dz +

∫ 0

−∞
∼
p(z,−ẏ)dz (34)

In this paper, the complete sets of second-, fourth-
and sixth-order polynomials are adopted in the EPC
method, respectively. For the forms of Eqs. (30) and
(34), the integrals of the exponential function with the
complete sets of fourth- and sixth-order polynomials
are very hard to be explicitly obtained. Therefore, the
numerical integration is used on Eqs. (30) and (34) to
directly obtain the values of the PDF solutions. The
non-Gaussian behaviors of the PDF solutions are com-
pared and discussed in illustrative examples.

3 Illustrative examples

In this section, four illustrative examples are further
studied to show the effectiveness of the proposed solu-
tion procedure. According to Eqs. (1), (2) and (4), the

Table 1 Parameter settings in the parametric study

Items μ λE[Y 2] Remarks

Case 1 0.1 0.1 Lightly nonlinear system with a
low-level excitation intensity

Case 2 0.1 1.0 Lightly nonlinear system with a
high-level excitation intensity

Case 3 1.0 0.1 Highly nonlinear system with a
low-level excitation intensity

Case 4 1.0 1.0 Highly nonlinear system with a
high-level excitation intensity

parameters of the Duffing system are given as follows:
c = 0.1, k = 1, r = 0.98, λ = 1.0 and Y is a zero-
mean Gaussian variable. Therefore, E[Y ] = 0 and
E[Y 3] = 0 in Eq. (22). Other parameters are various
in each example and listed in Table 1. A Monte Carlo
simulation (MCS) is also conducted, and the simula-
tion procedure following the techniques introduced in
Refs. [20,32,45]. A sample size of 1 × 107 is adopted
to provide adequate evaluation on the tail of the PDF
solution.

3.1 Case 1: Lightly nonlinear system with a low-level
excitation intensity

Case 1 is about a lightly nonlinear system under Pois-
son impulses with a low-level excitation intensity by
setting μ = 0.1 and λE[Y 2] = 0.1. EPC (n = 2)
denotes the PDF solution obtained with the proposed
solution procedure when the polynomial order equals
two in the EPC method. Similarly, EPC (n = 4) and
EPC (n = 6) denote the PDF solutions obtained with
the proposed solution procedure when the polynomial
order equals four and six, respectively. MCS denotes
the simulated result given with Monte Carlo simula-
tion. These symbols are also used in the same manner
in the following cases.

The numerical analysis shows that EPC (n = 2)
is the same as that given by equivalent linearization
method in the case of Gaussian white noise. Therefore,
EPC (n = 2) denotes the result obtained by a Gaussian
PDF in terms of Eqs. (30) and (34). It can be regarded
as a special Gaussian PDF in the case of vibro-impact
vibration. Figure 2a, b presents a comparison on the
PDF solution of displacement. Both EPC (n = 2) and
EPC (n = 6) are close to MCS showing that the PDF

123



1008 H. T. Zhu

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

 P
D

F

EPC n=2
EPC n=4
EPC n=6
MCS

(a)

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

y

 L
og

10
(P

D
F)

EPC n=2
EPC n=4
EPC n=6
MCS

(b)

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ẏ
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Fig. 2 Comparison of PDFs in Case 1: a PDFs of displacement; b logarithmic PDFs of displacement; c PDFs of velocity; d logarithmic
PDFs of velocity

distribution of displacement is almost Gaussian. How-
ever, EPC (n = 4) differs a lot from the simulation in
the tail as shown in Fig. 2b. By contrast, in the case of
velocity as shown in Fig. 2c, d, EPC (n = 6) agrees
well with MCS and they differ significantly from EPC
(n = 2) (denoting a Gaussian PDF). This difference
indicates that the PDF distribution of velocity becomes
non-Gaussian. EPC (n = 4) differs from the simulation
result unlike EPC (n = 2) and EPC (n = 6) .

The reasons of the non-Gaussian PDF distribution
formulation are as follows. When the nonlinearity in
displacement is light and the excitation intensity is low,
the cubic terms in Eqs. (1) and (13) have small mag-
nitudes. Meanwhile, the impulse arrival rate is mod-
erate, in which Poisson impulses approach Gaussian
white noise. Furthermore, the restitution factor is close
to unity. Under these situations, the lightly nonlin-

ear system behaves more like a linear system under
Gaussian white noise. Therefore, the PDF of displace-
ment is almost Gaussian. On the other hand, as Eq. (14)
shows, Poisson impulses are imposed in the differen-
tial equation of velocity, which inevitably has an effect
on the PDF distribution of velocity. This leads the PDF
distribution of velocity to becoming non-Gaussian in
the tail region. In the following three cases, the effects
of the nonlinearity in displacement and the excitation
intensity are examined by increasing their magnitudes,
respectively. It is expected that the PDF solutions of
the response become more non-Gaussian when these
parameters increase in their magnitudes.

In addition, a complete set of eighth-order polyno-
mial has been also used to examine the convergence of
the EPC method in each case (i.e., EPC n = 8). How-
ever, the conventional Newton–Raphson method solv-
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Fig. 3 Comparison of PDFs in Case 2: a PDFs of displacement; b logarithmic PDFs of displacement; c PDFs of velocity; d logarithmic
PDFs of velocity

ing Eq. (23) becomes non-convergent for EPC (n = 8)
in the four examined cases. It seems that the nonlinear
algebraic equations with the set of eighth-order poly-
nomial are hardly solved by the conventional Newton–
Raphson method. On the other hand, extensive com-
putational efforts are also taken during each iteration
for EPC (n = 8). An adequate solution technique to
solve the nonlinear algebraic equations is worth fur-
ther investigating for the EPC method in such cases.

3.2 Case 2: Lightly nonlinear system
with a high-level excitation intensity

In Case 2, the excitation intensity increases from 0.1
in Case 1 to 1.0 to show the effect of the excitation
intensity. The nonlinearity coefficient in the displace-

ment term is unchanged asμ = 0.1. Figure 3a, b gives a
comparison on the PDF solution of displacement in this
case. Different fromCase 1, the comparison shows that
EPC (n = 2) differs significantly from the simulated
result showing that the PDF of displacement becomes
non-Gaussian due to the increase in excitation intensity.
When the excitation intensity increases, the response of
the system correspondingly increases in its magnitude
and the nonlinear displacement term becomes larger.
Compared with EPC (n = 2), EPC (n = 4) provides
an improved result for the PDF of displacement, but it
still differs a lot from the simulation result as shown
in Fig. 3b. In such a case, EPC (n = 6) coincides well
with the simulated result, especially in the tail region
as shown in Fig. 3b. In the case of velocity as shown in
Fig. 3c, d, EPC (n = 2) and EPC (n = 4) are different
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Fig. 4 Comparison of PDFs in Case 3: a PDFs of displacement; b logarithmic PDFs of displacement; c PDFs of velocity; d logarithmic
PDFs of velocity

from MCS, whereas EPC (n = 6) agrees well with the
simulated result. In this case, the PDF distribution of
velocity is also non-Gaussian.

3.3 Case 3: Highly nonlinear system with a low-level
excitation intensity

In the third case, the large nonlinearity coefficient is
used as μ = 1.0 and the level of excitation intensity is
low with λE[Y 2] = 0.1. This case shows the effect of
the nonlinear displacement term on the PDF solutions.
Figure 4a, b exhibits the obtained PDF distributions of
displacement using each method. Compared with Case
1, EPC (n = 2) departs from the simulated result due to
the increase in the nonlinearity coefficient. The highly
nonlinear term leads displacement to exhibiting a more

non-Gaussian behavior. Similar to Case 2, EPC (n = 4)
gave a better result compared to EPC (n = 2). In such
a case, EPC (n = 6) agrees well with the simulated
result. In the case of velocity as shown in Fig. 4c, d, the
PDF distribution of velocity is non-Gaussian because
EPC (n = 2) differs from the simulated result. Com-
paratively, EPC (n = 6) is in good agreement with the
simulated result, which is better than EPC (n = 2) and
EPC (n = 4).

3.4 Case 4: Highly nonlinear system with a high-level
excitation intensity

In the last case, a highly nonlinear system under Pois-
son impulses with a high-level excitation intensity is
studied by setting μ = 1.0 and λE[Y 2] = 1.0. As
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Fig. 5 Comparison of PDFs in Case 4: a PDFs of displacement; b logarithmic PDFs of displacement; c PDFs of velocity; d logarithmic
PDFs of velocity

shown in Fig. 5a, b , the simulated result differs a lot
from EPC (n = 2) (i.e., a Gaussian PDF) in the case of
displacement. This significant difference is formulated
due to both the highly nonlinear displacement term and
high-level excitation intensity which drive the system
behave in a highly nonlinear manner. In such a case,
both EPC (n = 4) and EPC (n = 6) can present a sat-
isfactory PDF solution compared with the simulated
result, especially in the tail region. In the case of veloc-
ity in Fig. 5c, d, the similar observation to those of
the above cases can be found. EPC (n = 2) differs
from MCS, whereas EPC (n = 4) and EPC (n = 6)
agree well with the simulated result. In this case, the
PDFdistribution of velocity also shows a non-Gaussian
behavior. Furthermore, EPC (n = 6) is more accurate
than EPC (n = 4) as shown in Fig. 5a, d.

4 Conclusions

A recently proposed solution procedure is extended to
the case of a lightly vibro-impact system under exter-
nal Poisson impulses. The system has a one-sided con-
straint located at the equilibrium position of the system
with instantaneous repetitive impacts. The solution pro-
cedure consists of three steps. First, the Zhuravlev non-
smooth coordinate transformation is utilized to con-
vert the original vibro-impact system into a new sys-
tem without any barrier by introducing an additional
damping term. Second, the PDF of the new system
is obtained with the exponential–polynomial closure
method by solving the generalized FPK equation. Last
the PDF of the original system is formulated in terms of
the methodology on seeking the PDF of a function of
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random variables. Different nonlinearity degrees and
excitation intensities are used in four numerical exam-
ples to show the effectiveness of the proposed solution
procedure. The numerical results show that the PDFs
obtained with the proposed solution procedure agree
well with the simulated results when the polynomial
order equals six. The tail region of the PDF is also
approximated well for both displacement and velocity.

Acknowledgments This research is jointly supported by the
National Basic Research Program of China (973 Program) under
Grant No. 2013CB035904, the Programme of Introducing Tal-
ents of Discipline to Universities under Grant No. B14012, the
National Natural Science Foundation of China under Grant No.
51478311, the Natural Science Foundation of Tianjin, China,
under Grant No. 14JCQNJC07400 and the Innovation Founda-
tion of Tianjin University under Grant No. 60301014. The con-
structive suggestions from the anonymous reviewers are greatly
appreciated.

References

1. Babitsky, V.I.: Theory of Vibro-Impact Systems and Appli-
cations. Springer, Berlin (1998)

2. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Map-
ping and Applications. Springer, New York (2009)

3. Luo, A.C.J., Guo, Y.: Vibro-Impact Dynamics. Wiley, West
Sussex (2013)

4. Holmes, P.J.: The dynamics of repeated impacts with a sinu-
soidally vibrating table. J. Sound Vib. 84, 173–189 (1982)

5. Shaw, S.W., Holmes, P.: Periodically forced linear oscillator
with impacts: chaos and long-period motions. Phys. Rev.
Lett. 51, 623–626 (1983)

6. Shaw, S.W., Holmes, P.J.: A periodically forced impact
oscillator with large dissipation. J. Appl. Mech. 50, 849–
857 (1983)

7. Janin, O., Lamarque, C.H.: Stability of singular periodic
motions in a vibro-impact oscillator. Nonlinear Dyn. 28,
231–241 (2002)

8. Zhuravlev, V.F.: A method for analyzing vibration-impact
systems by means of special functions. Mech. Solids 11,
23–27 (1976)

9. Ivanov, A.P.: Impact oscillations: linear theory of stability
and bifurcations. J. Sound Vib. 178, 361–378 (1994)

10. Pilipchuk, V.N.: Some remarks on non-smooth transforma-
tions of space and time for vibrating systems with rigid bar-
riers. PMM J. Appl. Math. Mech. 66, 31–37 (2002)

11. Grace, I.M., Ibrahim, R.A., Pilipchuk, V.N.: Inelastic impact
dynamics of ships with one-sided barriers. Part I: analytical
and numerical investigations. Nonlinear Dyn. 66, 589–607
(2011)

12. Grace, I.M., Ibrahim, R.A., Pilipchuk, V.N.: Inelastic impact
dynamics of ships with one-sided barriers. Part II: experi-
mental validation. Nonlinear Dyn. 66, 609–623 (2011)

13. Dimentberg, M.F., Iourtchenko, D.V.: Random vibrations
with impacts: a review. Nonlinear Dyn. 36, 229–254 (2004)

14. Kovaleva, A.: Stochastic dynamics of flexible systems with
motion limiters. Nonlinear Dyn. 36, 313–327 (2004)

15. Namachchivaya, N.S., Park, J.H.: Stochastic dynamics of
impact oscillators. J. Appl. Mech. 72, 862–870 (2005)

16. Feng, J.Q., Xu,W.,Wang, R.: Stochastic responses of vibro-
impact duffing oscillator excited by additive Gaussian noise.
J. Sound Vib. 309, 730–738 (2008)

17. Feng, J.Q., Xu, W., Rong, H.W., Wang, R.: Stochastic
responses of Duffing–Van der Pol vibro-impact system
under additive and multiplicative random excitations. Int.
J. Non Linear Mech. 44, 51–57 (2009)

18. Li, C., Xu, W., Feng, J.Q., Wang, L.: Response probabil-
ity density functions of Duffing–Van der Pol vibro-impact
system under correlated Gaussian white noise excitations.
Phys. A 392, 1269–1279 (2013)

19. Huang, Z.L., Liu, Z.H., Zhu, W.Q.: Stationary response of
multi-degree-of-freedom vibro-impact systems under white
noise excitations. J. Sound Vib. 275, 223–240 (2004)

20. Iourtchenko, D.V., Song, L.L.: Numerical investigation of a
response probability density function of stochastic vibroim-
pact systemswith inelastic impacts. Int. J. NonLinearMech.
41, 447–455 (2006)

21. Dimentberg,M.F., Gaidai, O., Naess,A.: Randomvibrations
with strongly inelastic impacts: response PDF by the path
integration method. Int. J. Non Linear Mech. 44, 791–796
(2009)

22. Zhu, H.T.: Probabilistic solution of vibro-impact systems
under additive Gaussian white noise. J. Vib. Acoust. 136,
031018 (2014)

23. Zhu, H.T.: Stochastic response of vibro-impact Duffing
oscillators under external and parametric Gaussian white
noises. J. Sound Vib. 333, 954–961 (2014)

24. Zhu, H.T.: Response of a vibro-impact Duffing system with
a randomly varying damping term. Int. J. Non Linear Mech.
65, 53–62 (2014)

25. Er, G.K.: An improved closure method for analysis of
nonlinear stochastic systems. Nonlinear Dyn. 17, 285–297
(1998)

26. Zhu, H.T.: Nonzero mean response of nonlinear oscillators
excited by additive Poisson impulses. Nonlinear Dyn. 69,
2181–2191 (2012)

27. Guo, S.S., Er, G.K., Lam, C.C.: Probabilistic solutions
of nonlinear oscillators excited by correlated external and
velocity-parametric Gaussian white noises. Nonlinear Dyn.
77, 597–604 (2014)

28. Lutes, L.D., Sarkani, S.: Random Vibrations: Analysis of
Structural and Mechanical Systems. Elsevier, New York
(2004)

29. Di Matteo, A., Di Paola, M., Pirrotta, A.: Probabilistic char-
acterization of nonlinear systems under Poisson white noise
via complex fractional moments. Nonlinear Dyn. 77, 729–
738 (2014)

30. Ibrahim, R.A., Chalhoub, N.G., Falzarano, J.: Interaction
of ships and ocean structures with ice loads and stochastic
ocean waves. Appl. Mech. Rev. 60, 246–289 (2007)

31. Roberts, J.B.: System response to random impulses. J. Sound
Vib. 24, 23–34 (1972)

32. Cai, G.Q., Lin, Y.K.: Response distribution of non-linear
systems excited by non-Gaussian impulsive noise. Int. J.
Non Linear Mech. 27, 955–967 (1992)

123



Stochastic response of a vibro-impact Duffing system 1013

33. Di Paola, M., Pirrotta, A.: Direct derivation of corrective
terms in SDE through nonlinear transformation on Fokker–
Planck equation. Nonlinear Dyn. 36, 349–360 (2004)

34. Pirrotta, A.: Multiplicative cases from additive cases: exten-
sion of Kolmogorov–Feller equation to parametric Poisson
white noise processes. Probab. Eng. Mech. 22, 127–135
(2007)

35. Vasta, M.: Exact stationary solution for a class of non-linear
systems driven by a non-normal delta-correlated process.
Int. J. Non Linear Mech. 30, 407–418 (1995)

36. Proppe, C.: The Wong–Zakai theorem for dynamical sys-
tems with parametric Poisson white noise excitation. Int. J.
Eng. Sci. 40, 1165–1178 (2002)

37. Proppe, C.: Exact stationary probability density functions
for non-linear systems under Poisson white noise excitation.
Int. J. Non Linear Mech. 38, 557–564 (2003)
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