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Abstract The equation of motion for the response of
SDOFsystems is presented in terms of energy for a gen-
eral class of hysteretic relationships that include stiff-
ness degrading inelastic and bilinear elastic behavior,
for systems subjected to earthquake ground motions in
the presence or absence of P-delta effects. The evalu-
ation of expended energy is presented in a continuous
form, along with the evaluation of input energy asso-
ciated with second-order geometric effects. Examples
illustrate the dissipation of energy through damping
and hysteretic response and the increase in input energy
associated with P-delta effects.
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(SDOF) systems in earthquake engineering has been
described by [7]. Energy spectra and the potential use of
earthquake input energy as a basis for seismic design is
addressed by [11], who considered differences between
absolute and relative energy and recognized value in
using a scalar parameter in design. Essential terminol-
ogy is summarized in textbooks on structural dynamics
for earthquake engineering, such as [5]. The present
article summarizes and extends this work to consider
nonlinear elastic systems and second-order (P-delta)
effects.

The equation of motion of a viscous damped single-
degree-of-freedom (SDOF) system subjected to ground
acceleration üg(t), can be expressed as:

mü(t) + cu̇(t) + fS = −müg(t) (1)

where m is the mass, c is the viscous damping coef-
ficient, fS is the spring force, ug is the earthquake
ground displacement, and u is the relative displace-
ment of the mass with respect to the ground (Fig. 1).
[11] describe fS as the “restoring force”, but it can also
be called the spring force. The only potential sources of
energy dissipation within Eq. (1) are the viscous damp-
ing and the spring force. The main point that we clarify
in this review is the concept of energy expended during
hysteretic behavior and energy associated with second-
order (P-delta) effects. From an external point of view,
during the loading process one does not know whether
the work done in straining the system is recoverable
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Fig. 1 Single-degree-of-freedom (SDOF) system used in earth-
quake engineering

or not, and to what degree. The strain energy consumed
through inelastic deformation (e.g., movement of dis-
locations within themicrostructure) can be known only
from an internal point of view, or based onmacroscopic
hysteretic rules defined a priori for a particular hys-
teretic model, [9] and [1].

Structural engineers may contemplate the two sys-
tems illustrated in Fig. 2—both are bilinear: one is
fully recoverable (i.e., elastic) and the other only par-
tially recoverable (i.e., inelastic). The elastic one may
represent a rocking wall, while the inelastic one may
represent a common reinforced concrete frame mem-
ber. Engineers usually consider the hysteretic behavior
of such systems in terms of generic categories rather
than considering in detail the internal behavior at a
local level, and modeling is considered from the point
of view of the response to externally applied loads.
This means that Point 3 can be reached in the two sys-
tems (Fig. 2a, b) without considering whether all strain
energy is recoverable (Fig. 2a) or if part of the strain
energy is expended and not recoverable (Fig. 2b).

Under some circumstances, stiffness degradation
may be modeled using the unloading stiffness degra-
dation index (USD index: a), see Eq. 2 [8].

ku = k

∣
∣
∣
∣

uy

umax

∣
∣
∣
∣

a

(2)

where k is the stiffness,αk is the post-yield stiffness and
ku is the degraded unloading stiffness. The degraded
stiffness is tracked separately in the positive and nega-
tive directions of loading. In reinforced concrete struc-
tures a typically varies from 0.0 to 0.5, umax is the peak
displacement amplitude reached in the past in the direc-
tion of loading (and increases as the peak displacement
increases).

A “snap-back” simulation can be represented by
the free release from Point 3 (Fig. 2) in the absence
of ground excitation. Under these circumstances, the
oscillator would reach the abscissa (Point 1 for bilinear
elastic and Point 4 for bilinear degrading) with a veloc-
ity that depends on the amount of damping and on the
hysteretic losses associated with inelastic behavior. In
the case of the bilinear elastic system (Fig. 2), Point
1 coincides with the origin, and thus the oscillator has
a re-centering capability, returning to the origin after
the external excitation ceases and the kinetic energy
has damped out. In the case of the bilinear degrad-
ing system, stiffness degradation is seen to move Point
4 closer to the origin, thus providing a degree of re-
centering capability. This is helpful for reducing peak
and residual displacements under earthquake loading.

2 Damping energy and total energy

In physics the traditional definition of damping is an
influence that restricts oscillations. Damping occurs
because there are processes that dissipate energy during
the oscillation. Damping typically has been modeled
as proportional to velocity of the mass relative to the
base. With the simple SDOF model of Eq. (1), only the
damping term provides for energy dissipation in the
case of elastic systems. Energy may also be dissipated
through the fS term if inelastic behavior is represented
in the hysteretic model.

The terms of Eq. (1) represent the forces involved in
the dynamic equilibrium of the mass as represented in
Fig. 1.Wemultiply the terms of Eq. (1) by a differential
of relative displacement du and integrate to obtain the
equation of motion in terms of relative energy [11]:
∫

mü(t)du+
∫

cu̇(t)du+
∫

fSdu = −
∫

müg(t)du

EK + ED + ES = Ei (3)

The system is excited by the ground excitation ug(t);
the integral on the right-hand side of Eq. (3) defines the
input energy, Ei .

The relative kinetic energy is:

EK =
∫

mü(t)du =
∫

m
du̇

dt
du =

∫

mu̇du̇ = m
u̇2

2
(4)

The damping energy, considering linear viscous damp-
ing, is:
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Fig. 2 Two bilinear SDOF
systems a fully recoverable,
b partially recoverable

(a) Bilinear elastic (nonlinear elastic) 
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ED =
∫

c
du

dt
du =

∫

c

(
du

dt

)2

dt (5)

In order to calculate ED , it is necessary to know u(t),
which can be determined by solving Eq. (1) for the
damped system.

In structural dynamics, damping is often specified
by setting the fraction of critical damping, ξ , equal to
a fixed value (e.g., 5%) and computing the damping
coefficient c from the definition

ξ = c

2mω
→ c = 2mωξ (6)

Different approaches are in use for determining the
damping coefficient for use in nonlinear analysis. If c
is calculated to obtain a desired ξ based on initial elas-
tic properties, relatively large damping forces can result
in systems undergoing nonlinear response [4]. Alterna-
tively, c can be recomputed based on the instantaneous
stiffness and associated natural circular frequency, ω.
This approach (e.g., Example 2) avoids the relatively
high damping forces but is not generally applicable
should the hysteretic response develop a zero or nega-
tive post-yield stiffness.

3 Expended energy

Traditionally the expended strain energy (ESE) has
been presented as energy dissipated through inelastic
hysteretic response, and has been calculated as the dif-
ference between the strain energy used in the loading
process (ES) and the strain energy recovered during
the unloading process (ESR), as illustrated in Fig. 3.

During the loading process (going from Point 1 to
Points 2 and 3), the external work used to deform the
system causes strain and possible damage within the
material. The energy (ES) absorbed in going fromPoint
1 to Point 3 is composed of recoverable strain energy
(ESR) and energy dissipated by inelastic deformation
(ESE). The recoverable strain energy is associated with
elastic deformation of the microstructure, while the
hysteretic losses, associated with damage and inelas-
tic deformation, are due to physical processes such as
movement of dislocations within the steel microstruc-
ture, cracking and fracture, and friction across cracked
surfaces. The work associated with these changes to
the internal microstructure, taken together, is termed
strain energy, ES , and is always positive (i.e., fS > 0
for du > 0 or fS < 0 for du < 0); this is a precept of
the energy-based pushover method of [6]:

ES =
∫

fS(u)du > 0 (7)

The strain energy associated with the recovery process
(3–4), shown in Fig. 3, involves elastic unloading and
is termed recoverable strain energy (ESR), shown in
Fig. 3. It is negative (i.e., fS > 0 for du < 0 or fS < 0
for du > 0):

ESR =
∫

fS(u)du < 0 (8)

Using the traditional approach, the expended strain
energy (ESE) is calculated at the end of each half-cycle
as the difference between the work done during load-
ing and the strain energy recovered during unloading
(ESE = ES − ESR); in this expression and in what
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Fig. 3 Decomposition of
strain energy in a half-cycle
of response of a nonlinear
system
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follows the negative sign of ESR is explicited, meaning
that the negative sign is due to the fact that ESR is < 0
(Eq. 8).

The dissipated energy represents losses under
dynamic loading and is given by the sum of the damp-
ing energy, ED , and the expended strain energy, ESE.

Nevertheless, in case of the model of Fig. 2b, when
Point 3 is reached, the damage associated with the
expended strain energy has already occurred; the recov-
ery segment from Point 3 to Point 4 is just a linear
elastic process with no hysteretic losses. Traditionally,
the loss of strain energy is evaluated based on internal
mechanisms or based on a previously defined hysteretic
model. As an alternative, we introduce a continuous
approach, in which the expended strain energy is eval-
uated incrementally.

With reference to Fig. 4, at displacement ui , the
recoverable strain energy is ESRi ; and at ui+1 the
recoverable strain energy is ESRi+1. The recoverable
strain energy during the process from ui to ui+1 is
�ESR = ESRi+1 − ESRi . In the case of the bilinear
degrading hysteretic model:

ESRi = 1

2
fSi ũi = f 2Si

2ki
(9a)

ESRi+1 = f 2Si+1

2ki+1
(9b)

�ESR = 1

2

(

f 2Si+1

ki+1
− f 2Si

ki

)

(9c)

During this loading process (from ui to ui+1), the
incremental strain energy is �ES and the incremental
expended strain energy is �ESE = �ES − �ESR. In
case of the bilinear degrading model of Fig. 4:

�ES = fSi + fSi+1

2
(ui+1 − ui ) (10a)

�ESE= 1

2

(

( fSi + fSi+1)(ui+1 − ui −
f 2Si+1

ki+1
+ f 2Si

ki

)

(10b)

At any time, the principle of conservation of energy can
be expressed as:

�Ei = �EK + �ED + �ES

= �EK + �ED + �ESE + �ESR

= �EK + �ESR + (�ED + �ESE) (11)

where Ei is the input energy for the damped nonlin-
ear oscillator. The term in parentheses is the dissipated
energy during the process, due to damping and inelas-
ticity.

In the following, several examples are used to illus-
trate the partitioning of the energy during response. In
most cases, the oscillator is loaded quasi-statically to
an initial displacement of u0 = 0.03m and released.
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Fig. 4 Continuous
decomposition of the strain
energy in a nonlinear
system
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Fig. 5 Example 1: free vibration response of a bilinear elastic system having no damping

In this “snap-back” type of analysis, the input energy
is fixed and the dissipated energy is free of external
influence.

Example 1 A bilinear elastic system is considered in
this example, having: m = 1 kg, ξ = 0 (no damp-
ing), T = 0.25s, uy = 0.015 m, u0 = 0.03 m, and
α = 0.05. The solution was obtained using the lin-
ear acceleration method [5] with a time step of 0.001s.
The numerical error is negligible for the time interval
studied. The oscillator was loaded quasi-statically up

to Point 3 (see Fig. 2a), being this point the starting
point of the dynamic problem. In accordance with the
principle of conservation of energy, the total energy
(EK + ED + ES = Ei ) is constant along the dura-
tion of free vibration response and is equal to 0.217J;
during the loading process this energy was stored as
strain energy, to be released at the start of the free
(unforced) vibration response. Figure 5 shows the first
3 s of dynamic response and the partitioning of the total
energy into strain energy and kinetic energy during this
time interval.
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Fig. 6 Example 2: free vibration of a damped bilinear elastic system (ξ = 0.05)

Example 2 The only change in this example relative to
Example 1 is the introduction of instantaneous damping
equal to 5%of critical damping (ξ = 0.05). To evaluate
the damping energy, Eqs. 5 and 7 are considered in their
incremental form:

ED = 2ξm
∑

i

ωv2�ti

ES =
∑

i

fSi+1 + fSi
2

(ui+1 − ui )

where �ti is the time interval associated with the i th
step.

At any instant of time the sum of the accumu-
lated damping energy and instantaneous kinetic and
strain energies is the total energy (0.217 J); this sum
(EK + ED + ES) is constant during the free vibration
(snap-back) response. In this system the only energy
sink is associated with viscous damping. In Fig. 6e,
four plateaus can be observed in the damping energy
plot before 0.5 s. These plateaus occur in the displace-
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Fig. 7 Example 3: free vibration of a bilinear degrading model having no damping

ment versus time plot (Fig. 6a), where the displacement
exceeds±uy . These plateaus are due to the fact that the
damping force associated with maintaining ξ = 0.05 is
very small (c = 2ξmω)where the stiffness has reduced
from k to αk. More specifically:

c =
⎧

⎨

⎩

2ξm
√

k
m in the elastic zone

2ξm
√

αk
m in the plastic zone

Example 3 A bilinear degrading model is used in
Example 3, as illustrated in Fig. 2b, with stiffness
degradation described by Eq. 2. In this case no damp-
ing is considered: m = 1 kg, ξ = 0, T = 0.25 s,
uy = 0.015 m, u0 = 0.03 m, a = 0.4, and
α = 0.05.

It can be observed in the load-displacement graph of
Fig. 7 that the starting point (Point 3) is in the plastic
range. During the loading process, the expended strain
energy (associated with inelastic behavior) is 0.1134J.
During segment 3–4–5, the system has linear elastic
behavior with no loss of energy. Due to strain harden-

Table 1 Expended strain energy per half-cycle

Half-cycle Expended strain energy

1st 0.1134J

2nd 0.0117J

3rd and subsequent 0 J

ing (α = 0.05), the recoverable strain energy at Point
3 (or potential energy) is sufficient to drive the oscil-
lator past Point 5 where it begins yielding to Point 6.
During segment 5–6, the expended energy associated
with inelastic response is 0.0117J. After Point 6, the
system oscillates in perpetuity with no further energy
dissipation.

Following the traditional approach, the expended
strain energy is computed for each half-cycle, i.e., each
time that the spring force reaches is null. Only the
first two half-cycles present expended strain energy
(Table 1); the system remains elastic for all subsequent
cycles (Fig. 8).
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Fig. 8 Example 3: recoverable and expended strain energy

The use of the proposed formulation allows a con-
tinuous accounting of the expended strain energy, plot-
ted in Fig. 8c. The initial expended energy of 0.217J
was required to reach Point 3 in quasi-static loading
from the origin; this energy consists of components
(EK + ED + ES = Ei ) whose sum remains constant
throughout the free vibration snap-back response.

Example 4 Several changes in relation with previous
examples are considered, to better observe the energy
losses: m = 1 kg, ξ = 0.04, T =0.25 s, uy = 0.015m,
u0 = 0.05 m, a = 0.4, and α = 0.10. The total dissi-
pated energy (i.e., damping energy plus expended strain
energy) is shown in Fig. 9c. The quasi-static loading to
u0 = 0.05 m requires 0.441J.

4 Consideration of P-delta effects

The P-delta effect is a second-order effect associated
with the evaluation of equilibrium in the deformed con-
figuration. In order to account for P-delta effects, addi-
tional variables are considered for the SDOF system:
the height of the system, h, and applied vertical load, P

(e.g., [10]). As shown in Fig. 10, the deformation of the
SDOF system is concentrated at an elasto-plastic spring
located at the base of the rigid column. The rotational
stiffness at the base is kr . Equilibrium of moments in
the undeformed configuration (first-order equilibrium)
provides:

f h = krϕ ⇒ f = kr
h

ϕ = kr
h2

u = fS(u) (12)

Equilibrium in the deformed configuration (second-
order equilibrium), not accounting for large displace-
ments, is given by:

f h+Pu = krϕ ⇒ f =
(
kr
h2

− P

h

)

u = fS(u)− P

h
u

(13)

Thus, one way to view the two previous equations is
to consider that for a fixed relative displacement u, a
smaller external force f is needed to equilibrate the sys-
tem when P-delta effects are considered. This is obvi-
ous from the equilibrium of moments (left side of the
arrow in Eqs. 12 and 13): in order to obtain the same
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Fig. 9 Example 4: bilinear degrading model with damping

rotation ϕ, only f contributes in the first case, while P
also contributes in the second case. Thus, it has been
convenient in the case of linear analysis to consider
the compressive load P to cause a reduction in stiffness
(from k to k − P/h) and therefore a reduction in the
period of vibration of the system.

In Eqs. 12 and 13 fS(u) is the internal force asso-
ciated with deformation of the spring component. In
the first-order approximation (Eq. 12), the spring force
fS(u) coincideswith the applied force f . In the second-
order approximation, the external force f induces the
spring force fS(u) given by Eq. 13. This is illustrated
in Fig. 10, where the external applied force fi causes a
displacement ui , with spring force fSi greater than fi .

In many cases, the applied force P represents the
self-weight or dead load of the oscillator mass. In a
more general formulation, the vertical load P is con-
sidered to be composed of dead (D) and live (L) load
components. An effective height, heff , associated with
self-weight (dead load) alone can be used to simplify
the representation of seismic demands in the presence
of P-delta effects [2]. With reference to Fig. 11, heff
can be established as

P

h
u = D + L

h
u = D

heff
u ⇒ heff = D

D + L
h (14)

where W is the reactive weight of the system (equal
to D) and Vy is the base shear at yield. Thus, the con-
ventional representation of Fig. 10 can be replaced by
the normalized representation of Fig. 11. (Note that the
first-order stiffness, k, is based on the actual geometry,
and is not influenced by heff .)

To account for P-delta effects on dynamic response,
a new term is introduced into the equation of motion.
The response of a viscous damped SDOF system
having bilinear hysteretic behavior, considering small
deformations, and in the presence of a vertical load P
(represented by gravity acting on the mass of the oscil-
lator having height heff ) is given by

mü(t)+cu̇(t)+ fS(u(t))− mg

heff
u(t) = −müg(t) (15)

The forces expressed in Eq. (15) can be multiplied by a
differential relative displacement du and integrated to
obtain the equation of motion in terms of energy:
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Fig. 10 Model for
considering P-delta effects
for a
single-degree-of-freedom
system
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∫

mü(t)du +
∫

cu̇(t)du +
∫

fSdu −
∫

mg

heff
udu

= −
∫

müg(t)du

EK + ED + ES − EG = Ei (16)

The geometric energy term, EG , introduced above, is
defined as:

EG =
∫

mg

heff
udu = mg

2heff
u2 (17)

Of course, the termmg/heff can be replaced by P/h for
a more traditional representation. The terms of Eq. (16)
can be rearranged to show the geometric energy term
(or P-delta effect) as an external loading, acting along
with the input energy Ei :
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Fig. 12 Example 5: dynamic response of bilinear degrading model with P-delta effects present. Total energy during free vibration
snap-back varies due to the vertical force, P, acting through the relative displacement

EK + ED + ES = Ei + EG (18)

Example 5 Example 4 is reconsidered with P-delta
effects present. Parameter values are unchanged (m =
1 kg, ξ = 0.04, T = 0.25 s, uy = 0.015, u0 = 0.05m,
a = 0.4 and α = 0.10), with period T referenced
to the first-order system, not considering P-delta. The
assumed height of the system is 1m, h=1m. The sta-
bility coefficient, defined in [3] as θ = kG/k, is equal
to 0.0155 for this example.

A slight difference in the hysteretic response can be
appreciated. In Example 4 (without P-delta effects) a
force of 11.7N was applied. Now, with P-delta effects
present, a force of 11.2N is required to reach u0 =
0.05 m. The hysteretic response in Fig. 12 compares
both responses; the gray line is the applied horizontal
force, while the black line corresponds to fS .

It can be appreciated in Fig. 12c how the sum of the
EK , ES and ED is affected by the geometric energy. In
the presence of P-delta effects, the total energy (EK +

Geometric Energy (EG)    

0.441 J

Input Energy   (Ei) 

0.429 J

t (s)

E
n

er
g

y 
(J

)

Fig. 13 Example 5: external loading of bilinear degradingmodel
with P-delta effects: input energy and geometric energy

ED + ES) increases in the presence of P-delta effects
as displacements increase (or decrease) relative to the
origin.

As previously mentioned, P-delta effects tradition-
ally have been viewed as a reduction in resistance,
but alternatively can be considered as an increment in
the action. Figure 13 plots the right side of Eq. 18,
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Fig. 14 Example 6: displacement versus time curves

(i.e., Ei + EG). Because the horizontal force needed
to reach u0 is smaller (due to the presence of P-delta
effects), the input energy Ei associatedwith the applied
lateral force is smaller (Ei = 0.429 J); the additional
energy to reach 0.441J is provided by the P-delta effect.
The total input energy is the sum of the input energy
Ei and the geometric energy EG .

Example 6 Example 1 is modified to show P-delta
effects for a bilinear elastic system. Because P-delta
effects depend on the height of the system, as shown in
Fig. 10, a smaller value of h (=0.1 m) is considered
in order to amplify this effect. Two different initial
displacements are considered: 0.03m (twice the dis-
placement of 0.015m associated with the change in
stiffness) and 0.13m (approaching the displacement of
0.136m associated with collapse—where the applied
lateral force is zero). Figure 14 shows the displace-
ment versus time curves for these initial displacements
with and without P-delta effects; it is apparent that P-
delta effects (dashed lines) cause a large reduction in
stiffness and increase the time required for each com-
plete cycle of oscillation For values of u0 greater than
0.136m, the displacement increases without limit.

Figure 15 shows the hysteretic curves for the applied
force f (u) and for the strain force fS(u) and the dis-
tribution of potential and kinetic energy.

5 Conclusions

The traditional treatment of dynamic response of SDOF
oscillators in terms of energywas reviewed. Extensions
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Fig. 15 Example 6: hysteretic curve and energy distribution for
u0 = 0.13 m. Total energy varies due to the variable contribution
from geometric energy

were made to address bilinear elastic systems, the eval-
uation of expended energy in a continuous form, and
to define the geometric energy associated with P-delta
effects. An instantaneous form of viscous damping
energy was used to illustrate interrelationships among
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these energy terms in several examples. The examples
illustrated “snap-back” response, in which the oscilla-
tors are released from a quasi-statically imposed initial
displacement. The examples illustrate that total energy
is a constant in first-order systems, while total energy
varies due to increases associated with P-delta effects
as displacements deviate from zero.
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