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Abstract This paper is concernedwith the problemof
sampled-data control for master–slave synchronization
of chaotic Lur’e systemswith time delay. The sampling
periods are assumed to be arbitrary but bounded. A
new Lyapunov functional is constructed, in which the
information on the nonlinear function and the actual
sampling pattern have been taken fully into account.
By employing the Lyapunov functional and a tighter
bound technique to estimate the derivative of the Lya-
punov functional, a less conservative exponential syn-
chronization criterion is established by analyzing the
corresponding synchronization error systems. Further-
more, the derived condition is employed to design a
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sampled-data controller. The desired controller gain
matrix can be obtained by means of the linear matrix
inequality approach. Simulations are provided to show
the effectiveness and the advantages of the proposed
approach.
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1 Introduction

The problem of master–slave synchronization for
chaotic systems has arisen a great attention since the
master–slave concept has been proposed for achiev-
ing the synchronization of coupled chaotic systems
in [1–4]. This stems from its potential applications
in secure communication, image processing, biologi-
cal systems, chemical reaction, and information sci-
ence (see e.g., [5–7]). It has been shown that many
nonlinear systems can be represented in the form of
Lur’e systems [8–10]. Thus, the problem of master–
slave synchronization of chaotic Lur’e systems has
been widely studied, and many important results have
been proposed. For example, the robust synthesis prob-
lem of master–slave synchronization has been inves-
tigated for Lur’e systems in [11]. In [12], the prob-
lem of master–slave synchronization has been stud-
ied for Lur’e systems via a time delay feedback con-
trol. By employing the free-weightingmatrix approach,
some improved delay-dependent synchronization cri-
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teria have been obtained in [13] and [14]. In [15],
the problem of designing time-varying delay feed-
back controllers for master–slave synchronization of
Lur’e systemshas been investigatedbasedonLyapunov
functional approach, and some LMI-based synchro-
nization criteria have been obtained for two cases
of time-varying delays. These results were extended
to the fault-tolerant master–slave synchronization of
Lur’e systems in [16]. The master–slave synchroniza-
tion problem has been investigated for Lur’e systems
via delayed PD controller in [17].

It is well known that time delays exist in many
physical processes, such as nuclear reactors, chemi-
cal processes, and biological systems, and may lead
to instability or significantly deteriorate the perfor-
mance of the systems. Thus, a great attention has also
been paid to the synchronization of chaotic Lur’e sys-
tems with time delays. For example, in [18], an adap-
tive approach has been proposed for the master–slave
synchronization of chaotic Lur’e systems with time-
varying delays based on the invariant principle of func-
tional differential equations. The master–slave syn-
chronization problemhas been investigated for coupled
time delay Lur’e systems with parameter mismatch in
[19], where a general methodology has been proposed
to derive some delay-dependent quasi-synchronization
conditions.

Also, sampled-data control systems have received
much attention during the last decades due to the fact
that modern control systems usually employ digital
controllers instead of the traditional controllers imple-
mented by analog circuits [20–24]. The approach pro-
posed in [25], which requires multiple steps to syn-
chronize chaos, is too difficult to application. Based
on the input delay approach proposed in [20], the
sampled-data control was employed to investigate for
master–slave synchronization of chaotic Lur’e systems
in [26], where sufficient conditions have been derived
for global asymptotic synchronization of chaotic Lur’e
systems. Nevertheless, in [26], the enlargement of the
integral term and the neglect of some useful informa-
tion lead to conservativeness of the derived results. The
information that the change rate of the time-varying
delay transformed by sampling instants is equal to 1
was firstly taken into account in [27], but the discon-
tinuous characteristic of delay at the sampling instant
was ignored. In [28,29,32], some improved results
have been obtained by constructing a class of piece-
wise Lyapunov functionals. In [31], the synchroniza-

tion problem was investigated for chaotic Lur’e sys-
tems with quantized sampled-data controller, and a
new controller design method was obtained. All of
the above literatures are focused on delay-free chaotic
Lur’e systems. For chaotic Lur’e systems with time
delay, the master–slave synchronization problem has
been investigated based on sampled-data control, and
some exponential synchronization criteriawere derived
in [30]. However, the information on nonlinear func-
tion have not been taken into account in the construc-
tion of Lyapunov functional in [30]. Also, there are
some enlargements in evaluating the derivative of Lya-
punov functional. Therefore, the results given in [30]
are conservative, which motivates the study of this
paper.

This paper revisits the problemof sampled-data con-
trol for master–slave synchronization of chaotic Lur’e
systems with time delay. A new Lyapunov functional
is constructed for the corresponding synchronization
error systems, in which the information on the nonlin-
ear function and the actual sampling pattern has been
taken fully into account. A tight bound technique is
proposed to estimate the derivative of the Lyapunov
functional, which yields a less conservative exponen-
tial synchronization criterion. The derived condition
is employed to design a sampled-data controller, and
the desired controller gain matrix can be obtained by
means of the linear matrix inequality approach. The
Chua’s circuit is applied to verify the effectiveness of
the proposed approach.

Notation: Throughout this paper, the superscripts T
and −1 mean the transpose and the inverse of a matrix,
respectively; R

n denotes the n-dimensional Euclid-
ean space; Rn×m is the set of all n × m real matri-
ces; ‖ · ‖ refers to the Euclidean vector norm or the
induced matrix 2-norm; P > 0 (≥0) means that P is
a real symmetric and positive-definite (semi-positive-
definite) matrix; I stands for an appropriately dimen-
sioned identity matrix; diag{· · · } denotes a block-
diagonal matrix; and the symmetric terms in a sym-
metric matrix are denoted by ∗. Matrices, if not explic-
itly stated, are assumed to have compatible dimen-
sions.

2 System description

Consider the master–slave synchronization scheme as
follow:
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M :
{
ẋ(t) = Ax(t) + Bx(t − d) + Wϕ(Dx(t))

p(t) = Cx(t)

S :
{
ż(t) = Az(t)+Bz(t−d)+Wϕ(Dz(t))+u(t)

q(t) = Cz(t)

C : u(t) = K (p(tk) − q(tk)), tk � t < tk+1 (1)

which comprises master system M, slave system S,
and controller C. M and S with u(t) = 0 are identi-
cal chaotic Lur’e systems with time delay, where x(t),
z(t) ∈ R

n are state vectors and p(t), q(t) ∈ R
l are

outputs of subsystems. u(t) ∈ R
n is the control input

of the slave system; A ∈ R
n×n , B ∈ R

n×n , C ∈ R
l×n ,

D ∈ R
nh×n , and W ∈ R

n×nh are known constant
matrices; K ∈ R

n×l is the sampled-data controller to
be designed later; d > 0 represents the time delay;
ϕ(·) : Rnh → R

nh is a diagonal nonlinearity with ϕi (·)
belonging to sector [0, fi ] for i = 1, 2, . . . , nh .

For sampled-data control, only discrete measure-
ments of p(t) and q(t) can be utilized for synchroniza-
tion purposes, i.e., we only get the measurements p(tk)
and q(tk) at the sampling instant tk . It is assumed that
the control signal is generated by using a zero-order
hold with a sequence of hold times 0 � t0 < t1 <

· · · < tk < · · · < limk→+∞ tk = +∞. The sampling
periods are arbitrary but bounded, i.e.,

tk+1 − tk = hk � h (2)

for all k � 0, where h > 0 is the upper bound of the
sampling periods.

Defining r(t) = x(t) − z(t) yields the following
synchronization error system:

ṙ(t) = Ar(t) + Br(t − d) + Wη(Dr(t)) − KCr(tk),

tk � t < tk+1 (3)

where η(Dr(t)) = ϕ(D(r(t) + z(t))) − ϕ(Dz(t)).
Since ϕi (·) belongs to sector [0, fi ], it can be derived
that for any i = 1, 2, . . . , nh , and ∀r, z,

0�
ηi (dTi r)

dTi r
= ϕi (dTi (r+z))−ϕi (dTi r)

dTi r
� fi , d

T
i r 	=0

(4)

where dTi denotes the i th row vector of D.

It is easily obtained from (4) that for any i =
1, 2, . . . , nh , and ∀r ,

ηi (d
T
i r)

[
ηi (d

T
i r) − fi d

T
i r
]

� 0. (5)

Next, we present the following definition and lem-
mas, which will be used to derive our main result.

Definition 1 The master systemM and the slave sys-
tem S in (1) are said to be exponentially synchronous
if the synchronization error system (3) is exponentially
stable, that is, there exist two constants α > 0 and
β > 0 such that

||r(t)|| � βe−αt ||r0||c, ∀t � 0 (6)

where ||rt ||c = sup−d�θ�0{||r(t + θ)||, ||ṙ(t + θ)||}.
Lemma 1 [33] For R > 0, and a vector function x :
[α, β] → R

n such that the integrations concerned are
well defined, the following inequality holds:(∫ β

α

x(s)ds

)T

R
∫ β

α

x(s)ds

≤ (β − α)

∫ β

α

x(s)TRx(s)ds (7)

Lemma 2 For a scalar τ > 0, matrices R > 0 and Y ,
the following inequality holds:

1

τ
R ≥ Y + Y T − τY TR−1Y (8)

Proof It is noted that

1

τ
(R − τY )TR−1(R − τY ) ≥ 0, (9)

then, it is easy to obtain from (9) that

1

τ
R − Y − Y T + τY TR−1Y ≥ 0. (10)

Rearranging the terms in (10), we can get (8) and this
completes the proof. ��
Lemma 3 [30] Consider the synchronization error
system (3). Then the following inequality holds:

||r(t)||2�θ1||r(tk)||2+θ2

tk∫
tk−d

||r(α)||2 dα, tk � t< tk+1

(11)

123



854 H.-B. Zeng et al.

where

θ1 = 5(1+||KC ||2h2)e5(||A||2+||W ||2||FD||2+||B||2)h2

θ2 = 5||B||2he5(||A||2+||W ||2||FD||2+||B||2)h2

F = diag{ f1, f2, . . . , fnh }
Our goal in this paper is to design a sampled-data

controller C in (1) such that the master system M and
the slave system S in (1) are exponentially synchro-
nous.

3 Main results

In this section, we shall present the result of the
master–slave synchronization for chaotic Lur’e sys-
tem (1). Firstly, we discuss system (1) with a given
controller gain. In this case, the following criterion is
obtained.

Theorem 1 Given a scalar α > 0, the master system
M and the slave system S in (1) are exponentially
synchronous if there exist matrices P > 0, Q > 0, Z >

0, U > 0,

[
R1 R2

∗ R3

]
> 0, X1, X2, X3, X4, X5, G1, G2,

G3, Y , N = [
N1 N2 N3 N4

]
, H = [

H1 H2 H3 H4
]
,

and diagonal matrices � > 0, V1 > 0, and V2 > 0
such that (12) and (13) is feasible for h̄ = 0, h

Ξ1(h̄) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ11 + Θ11 Ξ12 + Θ12 Ξ13 + Θ13 Ξ14 + Θ14 G1W + DTFV1 Ξ16

∗ Ξ22 + h̄U Ξ23 + Θ23 h̄X3 + 2NT
2 −�D + G2W G2B

∗ ∗ Ξ33 + Θ33 Ξ34 + Θ34 G3W G3B
∗ ∗ ∗ Ξ44 + Θ44 0 0
∗ ∗ ∗ ∗ −2V1 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (12)

Ξ2(h̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 G1W + DTFV2 Ξ16

√
h̄HT

1 h̄
√
h̄NT

1 0

∗ Ξ22 Ξ23 2NT
2 −�D + G2W G2B

√
h̄HT

2 h̄
√
h̄NT

2 0

∗ ∗ Ξ33 Ξ34 G3W G3B
√
h̄HT

3 h̄
√
h̄NT

3 0

∗ ∗ ∗ Ξ44 0 0
√
h̄HT

4 h̄
√
h̄NT

4

√
h̄Y T

∗ ∗ ∗ ∗ −2V2 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −e−2αhU 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −3e−2αhU 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −e2αh R1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (13)

where

Ξ11 = 2αP + Q − X1 − XT
1 − e−2αd

d
Z + H1 + HT

1

+G1A+ATGT
1 +2αDTF�D − h̄N1 − h̄NT

1 ,

Ξ12 = P + H2 − G1 + ATGT
2 + DTF�D − h̄N2,

Ξ13 = X1 − X2 + H3 − HT
1

−G1KC + ATGT
3 − h̄N3 − h̄NT

1 ,

Ξ14 = −X3 + H4 + 2NT
1 − h̄N4,

Ξ16 = e−2αd

d
Z + G1B,

Ξ22 = dZ − G2 − GT
2 ,

Ξ23 = −HT
2 − G2KC − GT

3 − h̄NT
2 ,

Ξ33 = X2 + XT
2 − H3 − HT

3 − G3KC − CTKTGT
3

− e−2αh h̄R3 − h̄N3 − h̄NT
3 ,

Ξ34 = −X4 − e−2αh RT
2 − H4 + 2NT

3 − h̄N4,

Ξ44 = −X5 − XT
5 − e−2αh(Y + Y T) + 2N4 + 2NT

4 ,

Ξ66 = −e−2αd Q − e−2αd

d
Z ,

Θ11 = 2αh̄(X1 + XT
1 ) + h̄X3 + h̄XT

3 + h̄ R1

+ h̄N1 + h̄NT
1 ,

Θ12 = h̄(X1 + XT
1 ) + h̄N2,
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Θ13 = 2αh̄(−X1+X2) +h̄ XT
4 + h̄ R2 + h̄N3 + h̄NT

1 ,

Θ14 = 2αh̄X3 + h̄(X5 + XT
5 ) + h̄N4,

Θ23 = h̄(−X1 + X2) + h̄NT
2 ,

Θ33 = 2αh̄
(
−X2 − XT

2

)
+ h̄ R3 + e−2αh h̄R3 + h̄N3 + h̄NT

3 ,

Θ34 = 2αh̄X4 + h̄N4,

Θ44 = 2αh̄(X5 + XT
5 ).

Proof Choose the following Lyapunov functional can-
didate for the synchronization error system (3):

V (t) =
7∑

i=1

Vi (t), t ∈ [tk, tk+1) (14)

where

V1(t) = e2αt r(t)TPr(t),

V2(t) =
t∫

t−d

e2αsr(s)TQr(s) ds,

V3(t) =
0∫

−d

t∫
t+θ

e2αs ṙ(s)TZṙ(s) ds dθ,

V4(t) = 2e2αt
nh∑
i=1

λi

dTi r∫
0

( fi s − ηi (s))ds,

V5(t) = (tk+1 − t)

t∫
tk

e2αs ṙ(s)TUṙ(s) ds,

V6(t) = (tk+1 − t)

t∫
tk

e2αs
[
r(s)
r(tk)

]T

×
[
R1 R2

∗ R3

] [
r(s)
r(tk)

]
ds,

V7(t) = (tk+1 − t)e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

×

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦ ,

and

X̄ =
⎡
⎣ X1 + XT

1 −X1 + X2 X3

∗ −X2 − XT
2 X4

∗ ∗ X5 + XT
5

⎤
⎦ .

It is noted that V5(t), V6(t), and V7(t) vanish before
tk and after tk , i.e., limt→tk V (t) = V (tk), then it can
be obtained that V (t) is a continuous function in time.
Calculating the derivative of V (t) along the trajectories
of system (3) yields

V̇1(t) = 2e2αt r(t)TPṙ(t) + 2αe2αt r(t)TPr(t), (15)

V̇2(t) = e2αt r(t)TQr(t) − e2αte−2αdr(t − d)TQ

× r(t − d), (16)

V̇3(t) = de2αt ṙ(t)TZṙ(t) −
t∫

t−d

e2αs ṙ(s)TZṙ(s) ds

� de2αt ṙ(t)TZṙ(t) − e2αt
t∫

t−d

e−2αd ṙ(s)TZ

× ṙ(s) ds, (17)

V̇4(t) = 2e2αt (r(t)TDTF − η(Dr(t))T)�Dṙ(t)

+ 4αe2αt
nh∑
i=1

λi

dTi r∫
0

( fi s − ηi (s))ds

� 2e2αt (r(t)TDTF − η(Dr(t))T)�Dṙ(t)

+ 2αe2αt r(t)TDTF�Dr(t), (18)

V̇5(t) = (tk+1 − t)e2αt ṙ(t)TUṙ(t) −
t∫

tk

e2αs ṙ(s)T

Uṙ(s) ds

� (tk+1 − t)e2αt ṙ(t)TUṙ(t)

− e2αt
t∫

tk

e−2αhṙ(s)TUṙ(s) ds, (19)

V̇6(t) = −
t∫

tk

e2αs
[
r(s)
r(tk)

]T [
R1 R2

∗ R3

] [
r(s)
r(tk)

]
ds

+ (tk+1 − t)e2αt
[
r(t)
r(tk)

]T [
R1 R2

∗ R3

] [
r(t)
r(tk)

]
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� − e2αt
t∫

tk

e−2αh
[
r(s)
r(tk)

]T [
R1 R2

∗ R3

] [
r(s)
r(tk)

]
ds

+ (tk+1 − t)e2αt
[
r(t)
r(tk)

]T [
R1 R2

∗ R3

] [
r(t)
r(tk)

]

= − e2αt
t∫

tk

e−2αhr(s)TR1r(s) ds

− 2e2αt r(tk)
Te−2αh RT

2

t∫
tk

r(s) ds

− e2αt (t − tk)r(tk)
Te−2αh R3r(tk)

+ (tk+1 − t)e2αt
[
r(t)
r(tk)

]T [
R1 R2

∗ R3

] [
r(t)
r(tk)

]
, (20)

V̇7(t) = − e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦

+ 2α(tk+1 − t)e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦

+ 2(tk+1 − t)e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

⎡
⎣ṙ(t)0
r(t)

⎤
⎦

� − e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦

+ 2α(tk+1 − t)e2αt

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦
T

X̄

⎡
⎢⎢⎣

r(t)
r(tk)

t∫
tk
r(s) ds

⎤
⎥⎥⎦

+ 2(tk+1 − t)e2αt r(t)T(X1 + XT
1 )ṙ(t)

+ 2(tk+1 − t)e2αt r(tk)
T(−X1 + X2)

Tṙ(t)

+ 2(tk+1 − t)e2αt
t∫

tk

r(s)T dsXT
3 ṙ(t)

+ 2(tk+1 − t)e2αt r(t)TX3r(t)

+ 2(tk+1 − t)e2αt r(tk)
TX4r(t)

+ 2(tk+1 − t)e2αt
t∫

tk

r(s)T ds(X5 + XT
5 )r(t),

(21)

where F = diag{ f1, f2, · · · , fnh }. ��
Applying Lemmas 1 and 2, we have

−
t∫

t−d

e−2αd ṙ(s)TZṙ(s) ds

�
[

r(t)
r(t − d)

]T [− e−2αd

d Z e−2αd

d Z

∗ − e−2αd

d Z

][
r(t)

r(t − d)

]
(22)

and

−
t∫

tk

e−2αhr(s)TR1r(s) ds �

−
t∫

tk

r(s)T ds
e−2αh

t − tk
R1

t∫
tk

r(s) ds

�e−2αh

t∫
tk

r(s)T ds(−2Y + (t − tk)(Y
TR−1

1 Y ))

×
t∫

tk

r(s) ds. (23)

Applying (22) and (23) to (18) and (20), respectively,
we can get

V̇3(t) � de2αt ṙ(t)TZṙ(t)

+ e2αt
[

r(t)
r(t − d)

]T [− e−2αd

d Z e−2αd

d Z

∗ − e−2αd

d Z

]

×
[

r(t)
r(t − d)

]
(24)

and

V̇6(t) � e2αt
t∫

tk

r(s)T dse−2αh(−2Y

+ (t − tk)(Y
TR−1

1 Y ))

t∫
tk

r(s) ds

− 2e2αt r(tk)
Te−2αh RT

2

t∫
tk

r(s) ds
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− e2αt (t − tk)r(tk)
Te−2αh R3r(tk)

+ (tk+1 − t)e2αt
[
r(t)
r(tk)

]T [
R1 R2

∗ R3

] [
r(t)
r(tk)

]
.

(25)

Furthermore, based on the Schur complement [34], it
can be found that for any appropriately dimensioned
matrices H and N ,

⎡
⎣HTe2αhU−1H HTe2αhU−1N HT

∗ NTe2αhU−1N NT

∗ ∗ e−2αhU

⎤
⎦ � 0 (26)

which implies

t∫
tk

⎡
⎣ φ(t)
g(s)φ(t)
ṙ(s)

⎤
⎦
T ⎡
⎣HTe2αhU−1H HTe2αhU−1N HT

∗ NTe2αhU−1N NT

∗ ∗ e−2αhU

⎤
⎦

⎡
⎣ φ(t)
g(s)φ(t)
ṙ(s)

⎤
⎦ ds � 0 (27)

where φ(t) =
[
r(t)T ṙ(t)T r(tk)T

t∫
tk
r(s)Tds

]T
and

g(s) = t + tk − 2s.
From (27), we can get that

−
t∫

tk

e−2αhṙ(s)TUṙ(s)ds

� (t − tk)φ(t)THTe2αhU−1Hφ(t)

+ (t − tk)3

3
φ(t)TNTe2αhU−1Nφ(t)

+ 2φ(t)THT(r(t)−r(tk)) + 4φ(t)TNT

×
t∫

tk

r(s)Tds − 2(t − tk)φ(t)TNT(r(t) + r(tk)).

(28)

Applying the above inequality to (19), we obtain that

V̇5(t) � e2αt (t − tk)φ(t)THTe2αhU−1Hφ(t)

+ e2αt
(t − tk)3

3
φ(t)TNTe2αhU−1Nφ(t)

+ 2e2αtφ(t)THT(r(t) − r(tk))

+ 4e2αtφ(t)TNT

t∫
tk

r(s)Tds

− 2e2αt (t − tk)φ(t)TNT(r(t) + r(tk))

+ (tk+1 − t)e2αt ṙ(t)TUṙ(t). (29)

On the other hand, according to system (3), for any
appropriately dimensioned matrices G1,G2, and G3,
the following equation holds:

2e2αt
[
r(t)TG1 + ṙ(t)TG2 + r(tk)

TG3

]
[−ṙ(t)

+ Ar(t)+Br(t−d)+Wη(Dr(t))−KCr(tk)] = 0.
(30)

In addition, it can be derived form (5) that, for any
matrices Vj = diag{v j1, v j2, · · · , v jnh } � 0, j =
1, 2, the following inequality holds,

2e2αt
tk+1 − t

hk

[
r(t)TDTFV1η(Dr(t))

−η(Dr(t))TV1η(Dr(t))
]

+ 2e2αt
t − tk
hk

×
[
r(t)TDTFV2η(Dr(t))−η(Dr(t))TV2η(Dr(t))

]
�0. (31)

Then, adding the left-hand side of (30) and (31) to
V̇ (t), we obtain from (16), (17), (19), (21), (24), (25),
and (29) that for t ∈ [tk, tk+1),

V̇ (t) � e2αtχ(t)T
[
tk+1−t
hk

Ξ1(hk)

+ t−tk
hk

Ξ̂2(hk)
]
χ(t) (32)

where
χ(t) = [φ(t)T η(Dr(t))T r(t − d)T

]T
and

Ξ̂2(hk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 G1W + DTSV2 Ξ16

∗ Ξ22 Ξ23 2NT
2 −�D + G2W G2B

∗ ∗ Ξ33 Ξ34 G3W G3B
∗ ∗ ∗ Ξ44 0 0
∗ ∗ ∗ ∗ −2V2 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤
⎥⎥⎥⎥⎥⎥⎦

+ hk

⎡
⎢⎢⎢⎢⎢⎢⎣

HT
1

HT
2

HT
3

HT
4
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
e2αhU−1

⎡
⎢⎢⎢⎢⎢⎢⎣

HT
1

HT
2

HT
3

HT
4
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T
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+ h3k
3

⎡
⎢⎢⎢⎢⎢⎢⎣

NT
1

NT
2

NT
3

NT
4
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
e2αhU−1

⎡
⎢⎢⎢⎢⎢⎢⎣

NT
1

NT
2

NT
3

NT
4
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

+ hk

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
Y T

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
e−2αh R−1

1

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
Y T

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

.

Noticing that

Ξ1(hk) = hk
h

Ξ1(h) + h − hk
h

Ξ1(0) (33)

and

Ξ̂2(hk) = hk
h

Ξ̂2(h) + h − hk
h

Ξ̂2(0), (34)

we get from (12) that

Ξ1(hk) < 0. (35)

Similarly, it can be obtained from (13) that

Ξ̂2(hk) < 0 (36)

by means of the Schur complement. Thus, we obtain
from (32), (35) and (36) that

V̇ (t) < 0, t ∈ [tk, tk+1). (37)

Thus, it follows that for t ∈ [tk, tk+1),

V (t) � V (tk) � V (tk−1) � · · · � V (0). (38)

From Lemma 3 and (38), it can be concluded that for
tk � t < tk+1

||r(t)||2 � θ1||r(tk)||2 + θ2

tk∫
tk−d

||r(α)||2 dα

= θ1

λmin(P)e2αtk
e2αtkλmin(P)||r(tk)||2

+ θ2

λmin(Q)e2αtk
e2αtkλmin(Q)

tk∫
tk−d

||r(α)||2 dα

� θ1

λmin(P)e2αtk
e2αtk r(tk)

TPr(tk)

+ θ2e2αd

λmin(Q)e2αtk

tk∫
tk−d

e2αsr(s)TQr(s) ds

�
max

{
θ1

λmin(P)
, θ2e2αd

λmin(Q)

}
e2αtk

(V1(tk) + V2(tk))

�
max

{
θ1

λmin(P)
, θ2e2αd

λmin(Q)

}
e2αtk

V (tk)

�
max

{
θ1

λmin(P)
, θ2e2αd

λmin(Q)

}
e2αtk

V (0)

= max

{
θ1

λmin(P)
,

θ2e2αd

λmin(Q)

}
e−2αte2α(t−tk )V (0)

� e2αhmax

{
θ1

λmin(P)
,

θ2e2αd

λmin(Q)

}
e−2αt V (0). (39)

In addition, we can get that

V (0) = r(0)TPr(0) +
0∫

−d

e2αsr(s)TQr(s) ds

+
0∫

−d

0∫
θ

e2αs ṙ(s)TZṙ(s) ds dθ

+ 2
nh∑
i=1

λi

dTi r(0)∫
0

( fi s − ηi (s))ds

� r(0)TPr(0) +
0∫

−d

r(s)TQr(s) ds

+ d

0∫
−d

ṙ(s)TZṙ(s) ds + 2
nh∑
i=1

λi

dTi r(0)∫
0

fi sds

� (λmax(P) + λmax(D
T�FD))||r(0)||2

+ dλmax(Q) sup
−d�θ�0

||r(θ)||2

+ d2λmax(Z) sup
−d�θ�0

||ṙ(θ)||2

� θ3

(
sup

−d�θ�0
{||r(θ)||, ||ṙ(θ)||}

)2

(40)

where

θ3 = λmax(P) + λmax(D
T�FD) + dλmax(Q)

+ d2λmax(Z).

123



Further results on sampled-data control for master–slave synchronization 859

From (39) and (40), we get

||r(t)|| � eαh

√
max

{
θ1

λmin(P)
,

θ2e2αd

λmin(Q)

}
θ3e

−αt ||r0||c.
(41)

Thus, it can be concluded from Definition 1 that the
master system M and the slave system S in (1) are
exponentially synchronous. This concludes the proof.

Remark 1 Theorem 1 provides a new synchronization
criterion for the master systemM and the slave system
S in (1). It should be pointed out that it is very important
to consider the synchronization control design problem
under a bigger sampling period since a longer sampling
period will lead to lower communication channel occu-
pation, fewer actuation of the controller, and less signal
transmission [26,27].

Remark 2 Compared with the results in [30], the less
conservative of the criteria provided in this paper relies
on the constructedLyapunov functional and themethod
of estimation of its derivative. First, V4(t) is consid-
ered in this paper, while this term is neglected in
[30]. Second, Lemma 2 is used to handle the term

− ∫ ttk r(s)R1r(s)ds instead of using Jenson inequal-

ity. Finally, in bounding − ∫ ttk e−2αhṙ(s)TUṙ(s)ds, the
function, g(s), is firstly proposed and a free-matrix N
is introduced. When setting N = 0, (29) reduces to
(28) in [30]. It should be noted that the Theorem 1 pro-
vides less conservative result than the ones obtained in
[30] but at an increasing computation burdenbecause of
introducing the free-matrix N and the Lyapunov func-
tional V4(t).

Next, Theorem 1 is extended to design a sampled-
data controller to assure that system M and the slave
system S in (1) are exponentially synchronous. Setting
G1 = εG, G2 = G, G3 = γG in (12) and (13) and
letting L = GK , we have the following result.

Theorem 2 Given scalars α > 0, ε, and γ , the master
system M and the slave system S in (1) are exponen-
tially synchronous if there exist matrices P > 0, Q >

0, Z > 0, U > 0,

[
R1 R2

∗ R3

]
> 0, X1, X2, X3, X4, X5,

G, L, Y , N = [N1 N2 N3 N4
]
, H = [H1 H2 H3 H4

]
,

and diagonal matrices � > 0, V1 > 0, and V2 > 0
such that (42) and (43) is feasible for h̄ = 0, h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̂11 + Θ11 Ξ̂12 + Θ12 Ξ̂13 + Θ13 Ξ14 + Θ14 εGW + DTFV1 Ξ̂16

∗ Ξ̂22 + h̄U Ξ̂23 + Θ23 h̄X3 + 2NT
2 −�D + GW GB

∗ ∗ Ξ̂33 + Θ33 Ξ34 + Θ34 γGW γGB

∗ ∗ ∗ Ξ44 + Θ44 0 0

∗ ∗ ∗ ∗ −2V1 0

∗ ∗ ∗ ∗ ∗ Ξ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (42)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̂11 Ξ̂12 Ξ̂13 Ξ14 εGW + DTFV2 Ξ̂16

√
h̄HT

1 h̄
√
h̄NT

1 0

∗ Ξ̂22 Ξ̂23 2NT
2 −�D + GW GB

√
h̄HT

2 h̄
√
h̄NT

2 0

∗ ∗ Ξ̂33 Ξ34 γGW γGB
√
h̄HT

3 h̄
√
h̄NT

3 0

∗ ∗ ∗ Ξ44 0 0
√
h̄HT

4 h̄
√
h̄NT

4

√
h̄Y T

∗ ∗ ∗ ∗ −2V2 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −e−2αhU 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −3e−2αhU 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −e2αh R1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (43)
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where

Ξ̂11 = 2αP + Q − X1 − XT
1 − e−2αd

d
Z + H1

+ HT
1 + εGA + εATGT

+ 2αDTF�D − h̄N1 − h̄NT
1 ,

Ξ̂12 = P + H2 − εG + ATGT + DTF�D − h̄N2,

Ξ̂13 = X1 − X2 + H3 − HT
1

− εLC + γ ATGT − h̄N3 − h̄NT
1 ,

Ξ̂16 = e−2αd

d
Z + εGB,

Ξ̂22 = dZ − G − GT,

Ξ̂23 = −HT
2 − LC − γGT − h̄NT

2 ,

Ξ̂33 = X2 + XT
2 − H3 − HT

3 − γ LC

− γCTLT − e−2αh h̄R3 − h̄N3 − h̄NT
3 ,

and the other parameters are defined in Theorem 1. Fur-
thermore, the controller gain matrix in (1) is given by

K = G−1L . (44)

4 Numerical example and simulation

In this section, a numerical example will be provided
to demonstrate the effectiveness and the benefits of the
proposed method.

Example 1 Consider the following Chua’s circuit [35]⎧⎪⎪⎨
⎪⎪⎩
ẋ1(t) = a(x2(t)−m1x1(t)+g(x1(t)))−cx1(t−d)

ẋ2(t) = x1(t) − x2(t) + x3(t) − cx1(t − d)

ẋ3(t) = −bx2(t) + c(2x1(t − d) − x3(t − d))

p(t) = x1(t)

(45)

with the nonlinear characteristics

g(x1(t)) = 1

2
(m1 − m0)(|x1(t) + 1| − |x1(t) − 1|)

and parameters m0 = −1/7, m1 = 2/7, a = 9, b =
14.28, c = 0.1, d = 1.

It is obvious that this circuit can be rewritten as the
time delay Lur’e system with

A =
⎡
⎣−am1 a 0

1 −1 1
0 −b 0

⎤
⎦ , B =

⎡
⎣−c 0 0

−c 0 0
2c 0 −c

⎤
⎦

W =
⎡
⎣a(m1 − m0) 0 0

0 0 0
0 0 0

⎤
⎦ , D =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

C = [
1 0 0

]
with ϕ1(x1(t)) = 1

2 (|x1(t)+1|−|x1(t)−1|) belonging
to sector [0, 1], and ϕ2(x2(t)) = ϕ3(x3(t)) = 0.

Applying Theorem 2 with ε = 0.5 and γ = 2, for
different α, the maximum values of the upper bound
h are obtained and summarized in Table 1, along with
the results given in [30]. From Table 1, it can be seen
that the criterion proposed in this paper can get larger h
than [30]. On the other hand, for given largest sampling
interval h, the corresponding maximum decay rate α is
obtained and listed in Table 2, which shows that our
approach can achieve faster synchronization than [30]
under the same h. It can be also concluded that a smaller
sampling period can achieve a faster synchronization
of the master and slave systems.

Choosing α = 0.2 and h = 0.3919, and using Mat-
lab LMI Toolbox to solve the LMIs (12) and (13), we
can get the following gain matrix in (1):

K = [3.6620 0.6363 −2.4233
]T

that is, for any sampling period hk � 0.3919, the mas-
ter and slave systems are exponentially synchronized
by the given sampled-data controller. The initial con-
ditions of the master and slave systems are chosen as

x(t) = [
0.5 0.3 0.2

]T
and z(t) = [−0.3 −0.1 0.4

]T
,

t ∈ [−1, 0], and the response curves of error system
(3) are given in Figs. 1 and 2 under the obtained con-
troller gain matrix. It can be seen from Fig. 1 that the

Table 1 Maximum values of the upper bound h for different α

α 0.1 0.2 0.3 0.4 0.5

[30] 0.3247 0.2941 0.2658 0.2396 0.2154

This paper 0.4381 0.3919 0.3519 0.3164 0.2847

Table 2 Maximum values of α for different upper bound h

h 0.10 0.15 0.20 0.25 0.30

[30] 1.1650 0.8240 0.5683 0.3596 0.1802

This paper 1.5103 1.1223 0.8399 0.6238 0.4503
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Fig. 1 State response of error system (3)

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

Time t

u1(t)
u2(t)
u3(t)

Fig. 2 Input response of error system (3)

synchronization error is tending to zero, which implies
that the synchronization of the master and slave sys-
tems can be achieved by the designed sampled-data
controller.

Choosing c = 0, the Chua’s circuit (45) reduces
to a Lur’e system without time delay, which has been
discussed in [26–32]. It was reported in [26–32] that the
maximum values of the upper bound h, which assure
the synchronization of the master and slave systems,
are 0.17, 0.21, 0.33, 0.3914, 0.3981, 0.45, and 0.48,
respectively. While utilizing Theorem 2 with α = 0
given in this paper, the maximum value of h is 0.5463,
and the corresponding gain matrix is

K = [2.8724 0.2754 −1.9238
]T

0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t

r1(t)
r2(t)
r3(t)

Fig. 3 State response of error system (43)
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−3

−2

−1

0

1

2

3

4

5

Time t

u1(t)
u2(t)
u3(t)

Fig. 4 Input response of error system (43)

Obviously, the criterion given in this paper can pro-
vided larger upper bound of h than [26–32]. Choos-
ing the initial conditions of the master and slave

systems as x(0) = [
0.7 −0.3 0.4

]T
and z(0) =[−0.7 −0.5 0.5

]T
, the response curves of error system

(43) under the obtained controller, are given in Figs.
3 and 4, which show that the synchronization error is
tending to zero.

5 Conclusions

In this paper, the problem ofmaster–slave synchroniza-
tion for chaotic Lur’e systems with time delay has been
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862 H.-B. Zeng et al.

investigated via a sampled-data control approach. A
new Lyapunov functional has been constructed for the
synchronization error systems, in which the informa-
tion about the actual sampling pattern and the nonlin-
ear function has been taken fully into account. A tighter
bounding technique is proposed to handle the derivative
of the Lyapunov functional, which yields a less conser-
vative synchronization criterion. The derived criterion
is extended to design a sampled-data controller and the
desired controller gain matrix has been given. Finally,
the Chua’s circuit has been applied to verify the effec-
tiveness of the proposed approach.

Acknowledgments This work of H.B. Zeng was supported
in part by the National Natural Science Foundation of China
under Grant Nos. 61304064 and 61273157. Also, the work
of J.H. Park was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2013R1A1A2A10005201).

References

1. Carroll, T.L., Pecora, L.M.: Synchronizing chaotic systems.
IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 38,
453–456 (1991)

2. Miao, Q., Tang, Y., Lu, S., Fang, J.: Lag synchronization of
a class of chaotic systems with unknown parameters. Non-
linear Dyn. 57, 107–112 (2009)

3. Zhang, J., Tang, W.: Control and synchronization for a class
of new chaotic systems via linear feedback. Nonlinear Dyn.
58, 675–686 (2009)

4. Lee, T.H., Park, J.H., Jung, H.Y., Lee, S.M., Kwon, O.M.:
Synchronization of a delayed complex dynamical network
with free coupling matrix. Nonlinear Dyn. 69, 1081–1090
(2012)

5. Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized
state-space observers for chaotic synchronization and secure
communication. IEEE Trans. Circuits Syst. I Fundam. The-
ory Appl. 49, 345–349 (2002)

6. Hu, G., Feng, Z., Meng, R.: Chosen ciphertext attack on
chaos communication based on chaotic synchronization.
IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50,
257–279 (2003)

7. Fradkov, A.L., Andrievsky, B., Evans, R.J.: Synchronization
of passifiable Lur’e systems via limited-capacity communi-
cation channel. IEEE Trans. Circuits Syst. I Reg. Pap. 56,
430–439 (2009)

8. Liu,M.:Delayed standard neural networkmodels for control
systems. IEEE Trans. Neural Netw. 18, 1376–1391 (2007)

9. Liu, M., Zhang, S., Fan, Z., Qiu, M.: H∞ state estimation
for discrete-time chaotic systems based on a unified model.
IEEE Trans. Syst. Man Cybern. B Cybern. 42, 1053–1063
(2012)

10. Liao, X., Yu, P.: Absolute Stability of Nonlinear Control
Systems. Springer, New York (2008)

11. Suykens, J.A.K., Curran, P.F., Chua, L.O.: Robust synthesis
for master-slave synchronization of Lur’e systems. IEEE
Trans. Circuits Syst. I Fundam. Theory Appl. 46, 841–850
(1999)

12. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Master-slave
synchronization of Lur’e systems with time-delay. Int. J.
Bifurc. Chaos 11, 1707–1722 (2001)

13. He, Y., Wen, G.L., Wang, Q.G.: Delay-dependent synchro-
nization criterion forLur’e systemswith delay feedback con-
trol. Int. J. Bifurc. Chaos 16, 3087–3091 (2006)

14. Liu, X., Gao, Q., Niu, L.: A revisit to synchronization of
Lurie systems with time-delay feedback control. Nonlinear
Dyn. 59, 297–307 (2010)

15. Han, Q.L.: On designing time-varying delay feedback con-
trollers for master-slave synchronization of Lur’e systems.
IEEE Trans. Circuits Syst. I-Regul. Pap. 54, 1573–1583
(2007)

16. Zhong, M., Han, Q.L.: Fault-tolerant master-slave synchro-
nization for Lur’e systems using time-delay feedback con-
trol. IEEETrans. Circuits Syst. I-Reg. Papers 56, 1391–1404
(2009)

17. Ji, D.H., Park, J.H., Lee, S.M., Koo, J.H., Won, S.C.: Syn-
chronization criterion for Lur’e systems via delayed PD con-
troller. J. Optim. Theory Appl. 147, 298–317 (2010)

18. Lu, J., Cao, J., Ho, D.W.C.: Adaptive stabilization and syn-
chronization for chaotic Lur’e systems with time-varying
delay. IEEE Trans. Circuits Syst. I-Reg. Pap. 55, 1347–1356
(2008)

19. He, W., Qian, F., Han, Q.L., Cao, J.: Synchronization error
estimation and controller design for delayed Lur’e sys-
temswith parameter mismatches. IEEE Trans. Neural Netw.
Learn. Syst. 23, 1551–1563 (2012)

20. Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data
stabilization of linear systems: an input delay approach.
Automatica 40(8), 1441–1446 (2004)

21. Gao, H., Wu, J., Shi, P.: Robust sampled-data H∞ con-
trol with stochastic sampling. Automatica 45, 1729–1736
(2009)

22. Fridman, E.: A refined input delay approach to sampled-data
control. Automatica 46, 421–427 (2010)

23. Seuret, A.: A novel stability analysis of linear systems under
asynchronous samplings. Automatica 48, 177–182 (2012)

24. Wu, Z.G., Shi, P., Su, H., Chu, J.: Stochastic synchronization
ofMarkovian jump neural networkswith time-varying delay
using sampled data. IEEE Trans. Cybern. 43, 1796–1806
(2013)

25. Barajas-Ramirez, J.G., Chen, G., Shieh, L.S.: Fuzzy chaos
synchronization via sampled driving signals. Int. J. Bifurc.
Chaos 14, 2721–2733 (2004)

26. Lu, J.G., Hill, D.J.: Global asymptotical synchronization of
chaotic Lur’e systems using sampled data: a linear matrix
inequality approach. IEEE Trans. Circuits Syst. II Exp.
Briefs 55, 586–590 (2008)

27. Zhang, C.K., He, Y., Wu, M.: Improved global asymptotical
synchronization of chaotic Lur’e systemswith sampled-data
control. IEEE Trans. Circuits Syst. II Exp. Briefs 56, 320–
324 (2009)

28. Zhu, X.L., Wang, Y., Yang, H.: New globally asymptoti-
cal synchronization of chaotic Lur’e systems using sampled
data. In: American Control Conference, Baltimore, MD,
pp. 1817–1822 (2010)

123



Further results on sampled-data control for master–slave synchronization 863

29. Chen, W.H., Wang, Z., Lu, X.: On sampled-data control
for master-slave synchronization of chaotic Lur’e systems.
IEEETrans. Circuits Syst. II Exp. Briefs 59, 515–519 (2012)

30. Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data synchro-
nization of chaotic Lur’e systems with time delays. IEEE
Trans. Neural Netw. 24, 410–421 (2013)

31. Xiao, X., Zhou, L., Zhang, Z.: Synchronization of chaotic
Lur’e systemswith quantized sampled-data controller. Com-
mun. Nonlinear Sci. Numer. Simul. 19, 2039–2047 (2014)

32. Zhang, C.K., Jiang, L., He, Y., Wu, Q.H., Wu, M.: Asymp-
totical synchronization for chaotic Lur’e systems using
sampled-data control. Commun. Nonlinear Sci. Numer.
Simulat. 18, 2743–2751 (2013)

33. Gu, K.: An integral inequality in the stability problem of
time-delay systems. In: Proceedings of 39th IEEE Confer-
ence on Decision and Control, Sydney, Ausralia (2000)

34. Boyd, S., Ghaoui, L.E., Feron, E.: Linear Matrix Inequality
in System and Control Theory, SIAM Studies in Applied
Mathematics. SIAM, Philadelphia (1994)

35. Matsumoto, T., Chua, L.O., Komuro, M.: The double scroll.
IEEE Trans. Circuits Syst. CAS–32, 797–818 (1985)

123


	Further results on sampled-data control for master--slave synchronization of chaotic Lur'e systems with time delay
	Abstract
	1 Introduction
	2 System description
	3 Main results
	4 Numerical example and simulation
	5 Conclusions
	Acknowledgments
	References




