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Abstract The global dynamics of a viral model with
general incidence rate and CTL immune response is
investigated. We derive the basic reproduction number
for viral infection R0 and the immune response repro-
duction number RCTL for the viral infection model and
establish the global dynamics completely determined
by the values of R0 and RCTL. By constructing Lya-
punov functions andusingLaSalle invarianceprinciple,
the disease-free equilibrium E0 is globally asymptot-
ically stable when the basic reproduction number for
viral infection R0 < 1, and there exists a unique CTL-
inactivated infection equilibrium E1 which is globally
stable and the infection becomes endemic with no sus-
tained immune response when RCTL ≤ 1 < R0, and
then, the CTL-activated infection equilibrium E∗ of
the model exists and is also globally attractive when
the immune response reproduction number RCTL > 1.
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1 Introduction

Researching the viral infectious has been an increas-
ingly complex issue in recent years. For better under-
standing of the virus dynamics, mathematical mod-
els have been witnessed to be used rapidly. Many
mathematical models have been used to describe the
infection process with humoral immune response such
as human immunodeficiency virus (HIV), hepatitis B
virus (HBV) and human T-cell leukemia virus type 1
(HTLV-1) in [3,4,7,13]. In fact, cytotoxic T lympho-
cytes (CTL) immune response is universal and nec-
essary to eliminate or control the disease after viral
infection. Therefore, Nowak and Bangham [5] con-
structed a mathematical model to investigate dynamics
of the interaction between susceptible cells, infected
cells, viruses and immune cells with CTL immune
response.

We introduce the standard viral infection model in
Nowak [5].

x ′(t) = λ − dx(t) − βx(t)v(t),

y′(t) = βx(t)v(t) − ay(t) − py(t)z(t),

v′(t) = ky(t) − uv(t),

z′(t) = cy(t)z(t) − bz(t).

(1)

where x(t) denotes the number of healthy target cells,
y(t) denotes the number of actively infected target
cells, v(t) denotes the number of mature viruses and
z(t) denotes the number of CTL cells. Uninfected tar-
get cells are assumed to be generated at a constant rate
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λ and die at rate d. Infection of target cells by free
virus is assumed to occur at rate β. Infected cells die at
rate a and are removed at rate p by the CTL immune
response. New virus is produced from infected cells at
rate k and dies at rate u. The average lifetime of unin-
fected cells, infected cells and free virus is thus given by
1/d, 1/a and 1/u, respectively. c denotes rate at which
the CTL response is produced, and b denotes death rate
of the CTL response, respectively, with given constants
λ, β, a, p, d, k, u, c, b > 0.

Then, we assume our viral dynamics model with
general incidence rate x f (v). Here, the function f (v)

is assumed to be continuous on v ∈ [0,+∞) and con-
tinuously differentiable on v ∈ (0,+∞) and satisfies

⎧
⎪⎪⎨

⎪⎪⎩

f (0) = 0,

f ′(v) > 0, for all v ≥ 0,

f ′′(v) < 0, for all v ≥ 0.

(2)

With these assumptions, we have the following viral
model

x ′(t) = λ − dx(t) − x(t) f (v(t)),

y′(t) = x(t) f (v(t)) − ay(t) − py(t)z(t),

v′(t) = ky(t) − uv(t),

z′(t) = cy(t)z(t) − bz(t).

(3)

with the initial conditions of model (3) which is x(0) >

0, y(0) > 0, v(0) > 0 and z(0) > 0.
It is easy to check that class of functions f (v) satis-

fies (2). For instance, if f (v) = v, then the incidence
rate with time delay is used in Li and Shu [2] who have
studied global dynamics of an in-host viral model with
intracellular delay. And if f (v) = v

1+av
, then the inci-

dence rate is used inZhou [13]whomainly has obtained
sufficient conditions for the asymptotical stability of a
disease-free equilibrium, an immune-free equilibrium
and an endemic equilibrium.

The paper is organized as follows. In Sect. 2, we
deal with some basic properties, e.g., positivity and
boundedness of solutions, basic reproduction number
and existence of equilibria. In Sect. 3, we prove the
global dynamics of the disease-free equilibrium when
R0 < 1. In Sect. 4, we establish the global stability
of the CTL-inactivated infection equilibrium E1 when
RCTL < 1 < R0. In Sect. 5, we establish the global
attractivity of the CTL-inactivated infection equilib-
rium E∗ when RCTL > 1.

2 Basic properties

2.1 Positivity and boundedness

The dynamics of system (3) will be investigated in a
suitable phase space and a bounded feasible region.
Initial conditions for system (3) are chosen as

ϕ ∈ R+ × R+ × R+ × R+, ϕ(0) > 0. (4)

Proposition 1 Under initial conditions in (4), all solu-
tions of system (3) are nonnegative and ultimately
bounded in R×R×R×R. Furthermore, all feasible
solutions of the system (3) enter the region

Ω =
{

(x, y, v, z) ∈ R+ × R+ × R+ × R+ : ‖x‖

≤ λ

d
, ‖x + y + p

c
z‖ ≤ λ

μ̃
, ‖v‖ ≤ λk

uμ̃

}

,

where μ̃ = min{d, a, b}.
Proof We now show that x(t) > 0 for all t ≥ 0. In
fact, assuming the contrary, and letting t1 > 0 be the
first time such that x(t1) = 0, then by the first equation
of system (3) we obtain x ′(t1) = λ > 0, and hence
x(t) < 0 for t ∈ (t1 − ε, t1), where ε > 0 is enough
small. This contradicts x(t) > 0 for t ∈ (0, t1). Then,
we obtain x(t) > 0 for t > 0. The right-hand side
of the fourth equation of system (3) for z effectively
contains a factor of z(t). Positivity for z(t) therefore
follows by standard arguments. As same as x(t), we
can verify the positivity of solution v(t) under initial
conditions in (4). For v(t) of system (3), we let t2 > 0
be the first time such that v(t2) = 0. By the second
equation of system (3), we get

y′(t2) = y(t2)(−a − pz(t2)).

Then, we obtain y(t2) > 0. It follows that v′(t2) > 0,
and hence v(t) < 0 for t ∈ (t2 − ε, t2), where ε > 0 is
enough small. This contradicts v(t) > 0 for t ∈ (0, t2),
and hence, v(t) is positive for t > 0 and

y(t) =
(

y(0) +
∫ t

0
x(θ) f (v(θ))e(a+pz(t))θdθ

)

× e−(a+pz(t))t > 0.

Next, we show that positive solutions of (3) are ulti-
mately bounded for t ≥ 0. For the first equation of
system (3), we obtain x ′(t) ≤ λ − dx(t), and thus
lim supt→∞ x(t) ≤ λ

d . By system (3), we get

ẋ(t) + ẏ(t) + p

c
ż(t) ≤ λ − μ̃

(
x(t) + y(t) + p

c
z(t)

)
.
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where μ̃ = min{d, a, b}. Consequently, lim supt→∞
(x(t) + y(t) + p

c z(t)) ≤ λ
μ̃
. For v(t),

v̇(t) ≤ k
λ

μ̃
− uv(t),

then lim supt→∞ v(t) ≤ kλ
μ̃u . Therefore, every solution

of system (3) is ultimately bounded.

2.2 Basic reproduction number and existence of
equilibria

For studying existence of equilibria, the equilibria
equations for model (3) are given by

λ − dx̄ − x̄ f (v̄) = 0,

x̄ f (v̄) − a ȳ − pȳz̄ = 0,

k ȳ − uv̄ = 0,

cȳz̄ − bz̄ = 0.

(5)

Obviously, for system (3), there always exists an
infection-free equilibrium E0 = (x0, y0, v0, z0) =
( λ
d , 0, 0, 0). In addition to E0, the system may have
two types of chronic-infection equilibria E1 = (x1, y1,
v1, 0) and E∗ = (x∗, y∗, v∗, z∗) in Ω , where x1, y1,
v1, x∗, y∗, v∗, z∗ are all strictly positive. E1 is known
as a CTL-inactivated equilibrium (CTL-IE) if it exists
and E∗ is known as aCTL-activated equilibrium (CTL-
AE) if it exists. At a CTL-inactivated equilibrium, the
disease is persistent with a constant v1 > 0, whereas
the CTL response is absent. This corresponds to an
asymptomatic carrier. At a CTL-activated equilibrium,
the viral load and the CTL response persist at the level
of v∗ and z∗, respectively.

The global dynamics of model (3) is determined by
the basic reproduction number R0 for viral infection:

R0 = kλ f ′(0)
aud

.

and RCTL for the CTL response:

RCTL = kx∗ f (v∗)
auv∗ .

Here, we can see that RCTL < R0 always holds.

Proposition 2 System (3) always has a disease-free
equilibrium E0. Moreover, if RCTL < 1 < R0, then
system (3) has a unique chronic-infection equilibrium
E1 = (x1, y1, v1, 0) satisfying (5). If RCTL > 1, then
system (3) has a unique CTL-activated equilibrium E∗
satisfying (5).

Proof By (5), chronic-infection equilibrium E1 should
satisfy the following equations

λ − dx1 − x1 f (v1) = 0,

x1 f (v1) − ay1 = 0,

ky1 − uv1 = 0.

(6)

We consider the following function H(v) defined by

H(v) = λ − dau

k

v

f (v)
− au

k
v, (7)

and we know

H ′(v) = −au

k
− dau

k

f (v) − v f ′(v)

f 2(v)
.

From the properties of the function f (v) by (2), in
particular, from f (0) = 0 and f ′′(v) < 0, it illustrates
that f (v) − v f ′(v) > 0 for all v > 0, and we have
H ′(v) < 0. Therefore, there exists a positive root of
H(v) = 0when R0 > 1, H(v) has to satisfy H(0) > 0,
i.e.,

H(0) = λ − dau

k f ′(0)
= λ

(

1 − 1

R0

)

.

Secondly, the CTL-AE equilibrium E∗ = (x∗, y∗,
v∗, z∗) satisfies (5), and then, the CTL-AE equilibrium
E∗ exists as the following form

x∗ = λ

d+ f (v∗)
> 0, y∗ = b

c
> 0, v∗ = k

u
y∗ > 0,

z∗ = x∗ f (v∗) − ay∗

py∗ = a

p
(RCTL − 1) .

if and only if RCTL > 1.

3 Global stability when R0 < 1

Furthermore, it is important to analyze the stability of
trivial equilibrium (see [6,8,11,12]), as it will indicate
whether the virus will die out eventually, or it will per-
sist for all time. The characteristic equation associated
with the linearization of the system (3) near the steady
state E0 gives

(ξ + d)(ξ + b)
[
(ξ + a)(ξ + u) − kx0 f

′(0)
]=0. (8)

the eigenvalues are ξ1 = −d < 0 and ξ2 = −b < 0,
and the steady state E0 is locally asymptotically stable
if all eigenvalues of

(ξ + a)(ξ + u) − kx0 f
′(0) = 0. (9)
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All eigenvalues of Eq. (9) have negative real parts. That
is, we need that

ξ2 + (a + u)ξ + au − kx0 f
′(0) = 0

has negative real parts.
Obviously, when R0 < 1, au − kx0 f ′(0) < 0. All

eigenvalues of Eq. (9) have negative real parts.
We arrive at the following result.

Theorem 1 If R0 < 1, then the disease-free equilib-
rium E0 of system (3) is locally asymptotically stable.
Moreover, if R0 > 1, then the disease-free equilibrium
E0 of system (3) is unstable.

Next, we analyze the global stability of disease-free
equilibrium by constructing Lyapunov function.

Theorem 2 If R0 < 1, then the disease-free equilib-
rium E0 of system (3) is globally asymptotically stable
in Ω .

Proof We construct the following Lyapunov function
V : R × R × R × R → R:

V (t) = x0g

(
x(t)

x0

)

+ y(t) + a

k
v(t) + p

c
z(t). (10)

where g(x) = x − 1 − ln x, x ∈ R+, has the global
minimum at x = 1 and g(1) = 0.

We easily obtain the Lyapunov function V is non-
negative and defined in Ω with respect to the trivial
equilibrium E0.

We calculate the time derivative of V (t) along the
solutions of system (3) and obtain

dV

dt
|(3) =

(
1 − x0

x

)
ẋ(t) + ẏ(t) + a

k
v̇(t) + p

c
ż(t)

= λ − dx(t) − x0
x

(λ − dx(t))

+ x0 f (v(t)) − au

k
v(t) − pb

c
z(t)

= dx0

(

2 − x(t)

x0
− x0

x(t)

)

+ au

k
v(t)

(
kx0 f (v(t))

auv(t)
− 1

)

− pb

c
z(t)

≤ dx0

(

2 − x(t)

x0
− x0

x(t)

)

+ au

k
v(t) (R0 − 1) − pb

c
z(t). (11)

From x(t) > 0, we obtain

2 − x(t)

x0
− x0

x(t)
≤ 0.

Hence, V̇ |(3) ≤ 0. From (11), we know that V̇ |(3) = 0
if and only if x(t) = λ/d, v(t) = 0 and z(t) = 0. Let

S = {(λ/d, ϕ1, 0, 0) ∈ Ω̄|V̇ |(3) = 0},
and M is the largest positive invariant set in S, where
Ω̄ is the closure of Ω .

From system (3), we get y(t) = 0. Thus, it follows
that M = {(λ/d, 0, 0, 0)} = {E0}. By the LaSalle
invariance principle [1], E0 is globally attractive. This
confirms the globally asymptotical stability of E0 inΩ .

4 Global attractivity when RCTL < 1 < R0

In this section, we show that the CTL-inactivated equi-
librium E1 of system (3) is globally attractivity if
RCTL < 1 < R0 by using a Lyapunov function.

For confirming result on dynamics of CTL-IE E1,
we require a additional assumptions.

(H) b − cy1 > 0.

Theorem 3 Assume that (H) is satisfied. If RCTL <

1 < R0, then the CTL-inactivated equilibrium E1 of
system (3) is globally attractive.

Proof We construct the following Lyapunov function
V : R × R × R × R → R:

V (t) = x(t) − x1 −
∫ x(t)

x1

x1
ξ
dξ + y1g

(
y(t)

y1

)

+ a

k
v1g

(
v(t)

v1

)

+ p

c
z(t).

where g(x) = x − 1 − ln x, x ∈ R+, has the global
minimum at x = 1 and g(1) = 0.

We calculate the time derivative of V along the pos-
itive solutions of system (3). Firstly, we have

V̇ (t)|(3)
= ẋ(t) − x1

x(t)
ẋ(t) + ẏ(t) − y1

y(t)
ẏ(t)

+ a

k

(

v̇(t) − v1

v(t)
v̇(t)

)

+ p

c
ż(t)

= λ − dx(t) − x1
x(t)

(λ − dx(t) − x(t) f (v(t)))

− y1
y(t)

(x(t) f (v(t)) − ay(t))

+ py1z(t) − au

k
v(t) − a

k

v1

v(t)
(ky(t)

− uv(t)) − pb

c
z(t) (12)
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Using λ = dx1 + x1 f (v1), x1 f (v1) = ay1 and ky1 =
uv1, we obtain

V̇ (t)|(3)
= dx1

(

2 − x(t)

x1
− x1

x(t)

)

+ ay1 − ay1
v(t)

v1

− ay1
x1
x(t)

+ ay1
f (v(t))

f (v1)

− ay1
y1
y(t)

x(t)

x1

f (v(t))

f (v1)
+ ay1

− ay1
v1

v(t)

y(t)

y1
+ ay1 + pz(t)

(

y1 − b

c

)

= dx1

(

2 − x(t)

x1
− x1

x(t)

)

+ ay1

(

1 − x1
x(t)

+ f (v(t))

f (v1)

)

+ ay1

(

1 − y1
y(t)

x(t)

x1

f (v(t))

f (v1)

)

+ ay1

(

1− v(t)

v1
− v1

v(t)

y(t)

y1

)

+ pz(t)

(

y1− b

c

)

= dx1

(

2 − x(t)

x1
− x1

x(t)

)

+ ay1

(

−1 − v(t)

v1
+ f (v(t))

f (v1)
+ v(t)

v1

f (v1)

f (v(t))

)

+ ay1

(

4− x1
x(t)

− y1
y(t)

x(t)

x1

f (v(t))

f (v1)
− v1

v(t)

y(t)

y1

−v(t)

v1

f (v1)

f (v(t))

)

+ pz(t)

(

y1 − b

c

)

(13)

Because of satisfying the conditions (H) and

2 − x(t)

x1
− x1

x(t)
≤ 0,

−1 − v(t)

v1
+ f (v(t))

f (v1)
+ v(t)

v1

f (v1)

f (v(t))
≤ 0,

4 − x1
x(t)

− y1
y(t)

x(t)

x1

f (v(t))

f (v1)
− v1

v(t)

y(t)

y1

−v(t)

v1

f (v1)

f (v(t))
≤ 0.

thus V̇ (t) ≤ 0 holds. Hence, the solutions of system
(3) must converge to M , the largest positive invariant
set of M = {V̇ (t) = 0}.

Next, we analyze that M consists of only the inte-
rior equilibrium E1. We see that V̇ (t) = 0 if and only
if x(t) = x1, y(t) = y1, v(t) = v1. From system
(3), we get z1 = 0. Thus, it follows that M = {E1}.

By the LaSalle invariance principle [1], E1 is globally
attractive.

5 Global attractivity when RCTL > 1

We have proved in above sections that, if RCTL > 1,
the CTL-AE E∗ exists in the interior of Ω . We will
investigate the attractivity of E∗ in following section.

Theorem 4 If RCTL > 1, then theCTL-activated equi-
librium E∗ is globally attractive.

Proof We construct the following Lyapunov function
V : R × R × R × R → R:

V (t) = x(t) − x∗ −
∫ x(t)

x∗
x∗

ξ
dξ

+ y∗g
(
y(t)

y∗

)

+ a + pz∗

k
v∗g

(
v(t)

v∗

)

+ p

c
z∗g

(
z(t)

z∗

)

,

where g(x) = x − 1 − ln x, x ∈ R+, has the global
minimum at x = 1 and g(1) = 0.

We calculate the time derivative of V along the pos-
itive solutions of system (3). Firstly, we have

V̇ (t)|(3)
= ẋ(t) − x∗

x(t)
ẋ(t) + ẏ(t) − y∗

y(t)
ẏ(t)

+ a + pz∗

k

(

v̇(t) − v∗

v(t)
v̇(t)

)

+ p

c

(

ż(t) − z∗

z(t)
ż(t)

)

= λ − dx(t) − x∗

x(t)
(λ − dx(t) − x(t) f (v(t)))

− y∗

y(t)
(x(t) f (v(t)) − ay(t))

+ py∗z(t) − au

k
v(t) − pz∗u

k
v(t)

− a

k

v∗

v(t)
(ky(t) − uv(t))

− pz∗

k

v∗

v(t)
(ky(t) − uv(t)) − pb

c
z(t) + pb

c
z∗

= λ − dx(t) − x∗

x(t)
(λ − dx(t) − x(t) f (v(t)))

− y∗

y(t)
x(t) f (v(t)) + ay∗
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− au

k
v(t) − pz∗u

k
v(t) − a

v∗

v(t)
y(t) + a

u

k
v∗

− pz∗ v∗

v(t)
y(t) + pz∗ u

k
v∗ + pz∗ b

c
(14)

Using λ = dx∗ + x∗ f (v∗), x∗ f (v∗) = ay∗ + pz∗y∗
and ky∗ = uv∗, we obtain

V̇ (t)|(3) = dx∗ + x∗ f (v∗) − dx(t) − x∗
x(t)

(dx∗ + x∗ f (v∗)

− dx(t)) − x∗ f (v(t))

− y∗
y(t)

x(t) f (v(t)) + ay∗ − au

k
v(t)

− pz∗u
k

v(t) − a
v∗
v(t)

y(t)

+ ay∗ − pz∗ v∗
v(t)

y(t) + 2pz∗y∗

= dx∗
(

2 − x(t)

x∗ − x∗
x(t)

)

+ x∗ f (v∗)

− x∗
x(t)

x∗ f (v∗) + x∗ f (v∗)
v(t)

v∗

− x∗ f (v∗)
y∗
y(t)

x(t) f (v(t))

x∗ f (v∗)
+ 2x∗ f (v∗)

− au

k
v(t) − pz∗u

k
v(t)

− a
v∗
v(t)

y(t) − pz∗ v∗
v(t)

y(t)

= dx∗
(

2 − x(t)

x∗ − x∗
x(t)

)

+ x∗ f (v∗)

(

1 − x∗
x(t)

+ f (v(t))

f (v∗)

)

+ x∗ f (v∗)

(

1 − y∗
y(t)

x(t)

x∗
f (v(t))

f (v∗)

)

+ x∗ f (v∗)

(

1 − v(t)

v∗ − v∗
v(t)

y(t)

y∗
)

= x∗ f (v∗)

(

2 − x(t)

x∗ − x∗
x(t)

)

+ x∗ f (v∗)

(

−1 − v(t)

v∗ + f (v(t))

f (v∗)

+v(t)

v∗
f (v∗)

f (v(t))

)

+ x∗ f (v∗)

(

4 − x∗
x(t)

− y∗
y(t)

x(t)

x∗
f (v(t))

f (v∗)

− v∗
v(t)

y(t)

y∗ − v(t)

v∗
f (v∗)

f (v(t))

)

. (15)

Because of satisfying the following conditions

2 − x(t)

x∗ − x∗

x(t)
≤ 0,

−1 − v(t)

v∗ + f (v(t))

f (v∗)
+ v(t)

v∗
f (v∗)
f (v(t))

≤ 0,

4 − x∗

x(t)
− y∗

y(t)

x(t)

x∗
f (v(t))

f (v∗)
− v∗

v(t)

y(t)

y∗

−v(t)

v∗
f (v∗)
f (v(t))

≤ 0.

thus V̇ (t) ≤ 0 holds. Hence, the solutions of system
(3) must converge to M , the largest positive invariant
set of M = {V̇ (t) = 0}.

Next, we analyze that M consists of only the interior
equilibrium E∗. We see that V̇ (t) = 0 if and only if
x(t) = x∗, y(t) = y∗, v(t) = v∗. Thus, it follows
that M = {E∗}. From system (3), we get z(t) = z∗.
By the LaSalle invariance principle [1], E∗ is globally
attractive.

6 Simulations

In this section, we carry out some numerical simula-
tions to support our theoretical analysis. Reasonable
choices for f (v) include the case f (v) = βv(β > 0).
The following viral model is

x ′(t) = λ − dx(t) − βx(t)v(t),

y′(t) = βx(t)v(t) − ay(t) − py(t)z(t),

v′(t) = ky(t) − uv(t),

z′(t) = cy(t)z(t) − bz(t).

(16)

Then, R0 = kλβ
aud and RCTL = kx∗β

au .

Corollary 1 (i) If R0 < 1, then the disease-free equi-
librium E0 of system (16) is globally asymptoti-
cally stable in Ω;

(ii) Assume that (H) is satisfied. If RCTL < 1 < R0,
then the CTL-inactivated equilibrium E1 of sys-
tem (16) is globally attractive;

(iii) If RCTL > 1, then the CTL-activated equilibrium
E∗ of system (16) is globally attractive.

Next, we consider three sets of parameters values:

(1) λ = 165, β = 0.001, d = 0.015, a = 1.64,
u = 0.18, p = 0.2, c = 0.2, k = 0.25, b = 0.05
and R0 = 0.4695 < 1.

(2) λ = 165, β = 0.001075, d = 0.15, a = 1.64,
u = 0.18, p = 0.2, c = 0.2, k = 0.25, b = 0.05
and RCTL < 1 < R0.
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Fig. 1 Numerical
simulations for system (16)
with λ = 165
cells/mm3/day,
β = 0.001mm3/cells/day,
d = 0.015day−1,
a = 1.64day−1,
u = 0.18day−1,
p = 0.2mm3/cells/day,
c = 0.2mm3/cells/day,
k = 0.25day−1,
b = 0.05day−1 and
R0 = 0.932 < 1, then the
corresponding solution
converges to the viral-free
equilibrium E0, and it
indicates that the virus will
die out eventually

0 500 1000 1500 2000
816

817

818

819

820

821

822

823

824

825

826

Time t

S
us

ce
pt

ib
le

 c
el

ls
 x

(t)

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

In
fe

ct
ed

 c
el

ls
 y

(t)

0 500 1000 1500 2000
−0.5

0

0.5

1

1.5

2

Time t

V
iru

se
s 

v(
t)

0 500 1000 1500 2000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time t

C
TL

 c
el

ls
 z

(t)

816
818

820
822

824
826

−1

0

1

2
−0.5

0

0.5

1

1.5

2

x
y

v

(3) λ = 165, β = 0.002, d = 0.15, a = 1.64, u =
0.18, p = 0.2, c = 0.2, k = 0.25, b = 0.05 and
RCTL > 1.

From numerical simulations, it is deduced that the
infection rate constant β will increase the density of
infected cells and of free virus particles at equilibrium
condition; meanwhile, it increases the effect of CTL
immune response (Figs. 1, 2, 3).

7 Summary and discussion

As we know, Nowak and Bangham [5] added the
effect of CTL immune response to the classical virus
model, which exists in lots of biological organisms,
to obtain model (1). Meanwhile, it is difficult to obtain
the global properties of amodelwith nonlinear function
responses. Zhou [13] studied the dynamical behavior of
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Fig. 2 Numerical
simulations for system (16)
with λ =
165cells/mm3/day, β =
0.001075mm3/cells/day,
d = 0.15day−1,
a = 1.64day−1,
u = 0.18day−1,
p = 0.2mm3/cells/day,
c = 0.2mm3/cells/day,
k = 0.25day−1,
b = 0.05day−1 and RCTL =
0.997 < 1 < R0 = 1.0014,
then the corresponding
solution converges to the
immune-free equilibrium
E1, as it implies that the
infection becomes endemic
with no sustained immune
responses
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a virus dynamicsmodel with CTL immune response, as
the nonlinear incidence rate is bT V

1+aV , and for the model
with Logistic growth, they discussed the orbital stabil-
ity of bifurcating limit cycle using Poores condition.
Wang [9] studied the global stability of viral dynam-
ics model with Beddington–DeAngelis infection rate

βxv
1+mx+nv

and CTL immune response by constructing
Lyapunov functions. Wang and Elaiw [10] studied a
six-dimensional human immunodeficiency virus (HIV)

modelwith time delay andCTLs immune response, and
their model described the interaction of HIV with two
target cells: CD4+ T cells and macrophages, and they
derived that the global asymptotic attractivity of the
model was completely determined by the basic repro-
duction number R0 and the immune reproduction num-
ber R∗

0 for the viral infection.
In this paper, a generalized viral dynamics model

with CTL immune response is studied. Based on the
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Fig. 3 Numerical
simulations for system (16)
with λ = 165
cells/mm3/day,
β = 0.002mm3/cells/day,
d = 0.15day−1,
a = 1.64day−1,
u = 0.18day−1,
p = 0.2mm3/cells/day,
c = 0.2mm3/cells/day,
k = 0.25day−1, b = 0.05
day−1 and
RCTL = 1.855 > 1, then the
corresponding solution
converges to the
CTL-activated infection
equilibrium E∗, as it implies
that the infection becomes
endemic with sustained
immune responses
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in-host viral model with different incidence rate, we
extend the known results and describe nonlinear inci-
dence rate to be x(t) f (v(t)). By constructing Lya-
punov functions and using Lyapunov–LaSalle invari-
ance principle, we obtain the following results on the
global behaviors of the endemic equilibria and the
disease-free equilibrium:

(1) If R0 < 1, then the viral-free equilibrium E0 is
globally asymptotically stable, as it indicates that
the virus will die out eventually;

(2) If RCTL < 1 < R0, then the immune-free equilib-
rium E1 is globally attractive;

(3) If RCTL > 1, then all positive solutions converge to
the chronic-infection equilibrium E∗, as it implies

123



722 H. Yang, J. Wei

that the infection becomes endemic with sustained
immune responses.
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