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Abstract In this paper, we investigate the elastic
inverted pendulumwith hysteretic nonlinearity (a back-
lash) in the suspension point. Namely, the problems
of stabilization and optimization of such a system are
considered. The algorithm (based on the bionic model)
which provides the effective procedure for finding of
optimal parameters is presented and applied to con-
sidered system. The results of numerical simulations,
namely the phase portraits and the dynamics of Lya-
punov function, are also presented and discussed.
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1 Introduction

As is known, the problem of inverted pendulum plays
a central role in the control theory [2,6,7,12,15,18,
24,26,28,29,36]. In particular, the problem of inverted
pendulum (as a test model) provides many challenging
problems to control design. Because of their nonlin-
ear nature, pendulums havemaintained their usefulness
and they are now used to illustrate many of the ideas
emerging in the field of nonlinear control [4]. Typi-
cal examples are feedback stabilization, variable struc-
ture control, passivity- based control, back-stepping
and forwarding, nonlinear observers, friction compen-
sation, and nonlinear model reduction. The challenges
of control made the inverted pendulum systems a clas-
sic tool in control laboratories.1 It should also be noted
that the problem of stabilization of such a system is a
classical problem of the dynamics and control theory.
Moreover, the model of inverted pendulum is widely
used as a standard for testing of the control algorithms

1 Here it should be noted that although a lot of control algo-
rithms are researched in the system control design, proportional-
integral-derivative (PID) controller is the most widely used con-
troller structure in the realization of a control system [36]. The
advantages of PID controller, which have greatly contributed to
its wide acceptance, are its simplicity and sufficient ability to
solve many practical control problems.
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678 M. E. Semenov et al.

(for PID controller, neural networks, fuzzy control,
etc.).

Such a mechanical system can be found in various
fields of technical science, from robotics to cosmic
technologies. E.g., the stabilization of inverted pen-
dulum is considered in the problem of missile point-
ing because the engine of missile is placed lower than
the center of mass and such a fact leads to an aero-
dynamical instability. Similar problem is solved in
the self-balancing transport device (the so-called seg-
way). Moreover, such a mechanical system can be
applied in various fields. Namely, themodel of inverted
pendulum (especially, under various kinds of control
of the suspension point motion) is widely used in
physics [32], applied mathematics [38], engineering
science [21,31,33], neuroscience [39], economics [30],
etc.

First theoretical description of the inverted pendu-
lum was carried out by Stephenson [34], and the first
experimental investigation of the stabilization process
for such a system (using oscillations of the suspension
point) was considered in the works of Kapitza [16,17].
In general, the problem of inverted pendulum is of
more than one hundred years of history, but it is still
relevant even in the present days (see, e.g., [1,7–
9,12,22,25,28,31,36,40] and related references). It
should also be pointed out that in recent time the sys-
tems of inverted pendula, namely, the double and triple
pendula (see [2,3] and related references) have a spe-
cial interest, especially, in connection with the fact
that in such systems can be realized the deterministic
chaos. The problem of stabilization of such an other-
wise unstable, autonomous, andmechanical system is a
fascinating task, both from a theoretical (various meth-
ods of nonlinear analysis) and practical (modeling of
the real mechanical systems) point of view.

According to control purposes of the inverted pen-
dulum, the control of inverted pendulum can be divided
into three aspects. The first widely researched aspect is
the swing-up control of inverted pendulum [12,24,28].
The interesting and important results on the time opti-
mal control of the inverted pendulum were obtained
in [12,28]. In particular, in [28], the optimal transients
(taking into account the cylindrical character of the
state space of the system under control) were built for
different values of the parameters and constraints on
the control torque. The second aspect is the stabiliza-
tion of the inverted pendulum [5,11]. The third aspect
is the tracking control of the inverted pendulum [10].

In practice, stabilization and tracking control are more
useful for application.

A backlash in the suspension point is a kind of hys-
teretic nonlinearity. The hysteretic phenomena (espe-
cially in the form of control parameters) play an impor-
tant role in such a fields as physics, chemistry, biology,
economics, etc. It should also be pointed out that the
hysteretic phenomena are insufficiently known in our
days. The purpose of this paper is investigation of the
possible stabilization (in a vicinity of vertical position)
of the elastic inverted pendulum in the presence of a
backlash in the suspension point together with investi-
gation of various aspects of such a dynamical system.

The paper is organized as follows. In the first sec-
tion, we consider the general view of elastic inverted
pendulum together with the operator technique for hys-
teretic nonlinearities. Also in this section, we obtain
the equation of motion of the elastic pendulum with a
hysteretic nonlinearity in the form of backlash in the
suspension point. The second section is dedicated to
numerical solution of the obtained equations (we use
the difference scheme). In the third section, we analyze
the problem of optimization for the system under con-
sideration. The numerical realization of optimization
procedure ismade using the so-called bionic algorithm.
In the next section, the results of numerical simulations
are discussed and analyzed. In the last section, themain
results are summarized.

2 Elastic inverted pendulum

2.1 Problem

Let us consider themodel of stabilization of the inverted
pendulum in the vicinity of the vertical position. The
pendulum is considered as an elastic rod which is
hingedly fixed on the cylinder. Motion of the cylin-
der is excited by the horizontal motion of a piston (see
the Fig. 1).

Mathematical model of a similar mechanical system
was considered in [37]. Investigation of the dynamics
of an elastic inverted pendulum was carried out in [13,
14,23,35].

Here (x, y) is the coordinates of an elastic rod with
mass m and density ρ; the Ox axis coincides with a
tangent to rod’s profile in the suspension point; θ is
an angle of slope for the coordinates of a rod, and I
is a centroidal moment of inertia of the rod’s section;
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Fig. 1 Model of elastic inverted pendulum: geometry of the
problem

(X, x̄) is the Cartesian coordinate system connected
with a considered mechanical system (namely the X
coordinate determines the position of the piston in a
cylinder), M is a mass of a cylinder with length L , and
F is a force joined to a piston with mass mp (such a
force is treated as control).

2.2 Hysteretic nonlinearity

In the following consideration, we use the operator
technique for the hysteretic nonlinearities following the
ideas of Krasnosel’skii and Pokrovskii [19]. Output of
the backlash operator on the monotonic inputs can be
described by the following expression:

X (t) = Γ [X0, L]Y (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

X0, |Y (t) − X0| � L
2 ;

Y (t)− L
2 , Y (t)−X0 > L

2 , Y (t) is an increasing function;
Y (t)+ L

2 , Y (t)−X0 <− L
2 , Y (t) is a decreasing function.

Here X0 is the initial position of the piston in a cylinder.
Such an expression (action of such an operator) can be
illustrated by the Fig. 2.2 The detailed description of
this operator as well as its properties is considered in
the book of Krasnosel’skii and Pokrovskii [19].

2 It should be noted that such an operator is considered on the
monotonic inputs. On the piecewise monotonic inputs, this oper-
ator can be determined using the semigroup identity [19]

Γ [X (t1), L]Y (t) = Γ [Γ [X0, L]Y (t1), L] Y (t).

And then, using the special limit construction, such an operator
can be redefined on the all continuous functions.

Fig. 2 Dynamics of input–output relation for the backlash
operator

Here X (t) is a displacement of the cylinder’s center,
and Y (t) is a displacement of a piston in the horizontal
plane (see Fig. 1).

2.3 Physical model

Let us assume that the deviation y and angle θ are small,
i.e., x ≈ x̄ and the boundary conditions that determine
the curvature of the pendulum are3:
{
y(0, t) = yxx (0, t) = 0,

yxx (l, t) = yxxx (l, t) = 0.
(1)

The function X (x̄, t) describes the behavior of the pen-
dulum’s profile in the time and shows the deviation
of the pendulum’s points relative to the vertical axis;
(X, x̄) are the coordinates of the pendulum’s profile,
and X (0, t) = s(t) is a displacement of the suspension
point in the horizontal plane.

The coordinate system transformation in the matrix
form is given by
(
X

x̄

)

=
(
cos θ sin θ

− sin θ cos θ

) (
y

x

)

+
(
X (0, t)

0

)

. (2)

Let us construct the physicalmodel of the considered
mechanical system taking into account a backlash in the
suspension point of an elastic rod. In order to do this,
we use the Lagrange formalism.

3 In this paper, we use the following notations: ax = ∂a
∂x ,

at = ∂a
∂t .
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Taking into account that y and θ are small, the
Lagrange function can be written as:

L(t) = Ms2t
2

+ 1

2

l∫

0

[
ρs2t + ρy2t + ρ(xθt )

2

+ ρ(2st xθt + 2xθt yt + 2st yt )

+ 2ρgyθ − EIy2xx
]
dx, (3)

where E is the Young’s modulus, ρ is the density of a
rod, g is the gravitational acceleration.

We can integrate the Eq. (3) in the interval (t0, t f )
and obtain the action function:

W = 1

2

t f∫

t0

Ms2t dt + 1

2

t f∫

t0

l∫

0

[

ρ
(
s2t + y2t + x2θ2t

+ 2st xθt + 2xθt yt + 2st yt + 2gyθ
)

−EI

ρ
y2xx

]

dx dt. (4)

Using the variational principle and using the Tailor’s
expansion, we obtain the following equation:

ytt + EI

ρ
yxxxx = −stt − xθt t + gθ. (5)

Taking θ as the generalized coordinate in the Lagrange
function, we obtain:

d

dt

∂L

∂θt
− ∂L

∂θ
= 0. (6)

Substitution of (3) in (6) gives:

l∫

0

x (xθt t + ytt + stt ) dx = g

l∫

0

y dx . (7)

Taking into account (5), we have

l∫

0

x

(

gθ − EI

ρ
yxxxx

)

dx = g

l∫

0

y dx . (8)

or

gl2θ

2
− EI

ρ

l∫

0

xyxxxx dx = g

l∫

0

y dx . (9)

Using the boundary conditions (1), we can show
that the integral in the left part of (9) is equal to zero.
Then, multiplying both parts of this equality on ρ

g , we
obtain

mlθ

2
= ρ

l∫

0

y dx . (10)

Integrating (5) and multiplying on ρ, we have

ρ

l∫

0

(

ytt+EI

ρ
yxxxx

)

dx=ρ

l∫

0

(−stt−xθt t+gθ) dx,

or, by integration:

EI [yxxx (l, t) − yxxx (0, t)] + ρ

l∫

0

ytt dx

= −sttρl − ρl2θt t
2

+ ρglθ, (11)

Taking into account the relations ρl = m, yxxx (l, t) =
0 (from boundary conditions), and using

ρ

l∫

0

ytt dx = mlθt t
2

,

which follows from (10), we have the following equa-
tion:

mlθt t + mstt = mgθ + EIyxxx (0, t). (12)

In the next step, taking s as the generalized coordi-
nate in the Lagrange function, we obtain:

d

dt

∂L

∂st
− ∂L

∂s
= f (t). (13)

Here f (t) is the force joined to the suspension point of
a rod.

General peculiarity of the system under consider-
ation is the presence of a backlash in the suspension
point. Due to the fact that the backlash can be consid-
ered as a hysteretic nonlinearity, we can use the tech-
nique of hysteretic operators. According to classical
patterns of Krasnosel’skii and Pokrovskii [19], the hys-
teretic operators are treated in an appropriate function
spaces. The dynamics of such operators are described
by the relation of “input-state” and “state-output.”

Thus, the force joined to the suspension point can
be found from the relation:

f (t) = Γ [X (0, t),Y (t), L , F0] F

=
{
0, |X (0, t) − Y (t)| � L;
F, |X (0, t) − Y (t)| > L ,

(14)
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Elastic inverted pendulum with backlash in suspension 681

where L is the length of a cylinder and F is the force
(this force affects the piston) which can be treated as a
control.

The equation of motion of the piston is:

mpYtt (t) = F. (15)

Here Y is a displacement of the piston in the horizontal
plane.

Substitution of (3) in (13) gives the following:

Mst t + ρ

l∫

0

(stt + xθt t + ytt ) dx = f (t). (16)

Using (5), we obtain

Mst t + ρ

l∫

0

(

gθ − EI

ρ
yxxxx

)

dx = f (t). (17)

Making the same transformations as in (11), we obtain
the following equality:

Mst t = f (t) − mgθ − EIyxxx (0, t). (18)

Thus, we have the following system of equations:
{
mlθt t + mstt = mgθ + EIyxxx (0, t),

Mst t = f (t) − mgθ − EIyxxx (0, t).
(19)

Passing to coordinate system (X, x̄) (using the
Eq. 2), the system of equation which describes the
physical model of the considered mechanical system
will have the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + EI
ρ
Xxxxx = gXx (0, t),

MXtt (0, t) = f (t) − mgXx (0, t) − EIXxxx (0, t),

ml(Xtt )x (0, t) + mXtt (0, t)

= mgXx (0, t) + EIXxxx (0, t),

f (t) = Γ [X (0, t),Y (t), L , F0] F,

mpYtt (t) = F,

(20)

where X = X (x, t) due to x̄ ≈ x .
Let us express Xtt (0, t) from the first equation of

the system and substitute it into the second equation:

g(M + m)Xx (0, t) − MEI

ρ
Xxxxx + EIXxxx = f (t).

(21)

Let us integrate the Eq. (21) over x . The result is

g(M + m)X (0, t) − MEI

ρ
Xxxx + EIXxx

=
l∫

0

f (t) dx = l f (t). (22)

Taking into account (1), we have:

g(M + m)X (0, t) − MEI

ρ
Xxxx = l f (t). (23)

Finally, the system of equations which describes the
dynamics of the system under consideration has the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + EI
ρ
Xxxxx = gXx (0, t),

MXtt (0, t) + mgXx (0, t) + EIXxxx (0, t) = f (t),

(M + m)Xtt (0, t) + ml(Xtt )x (0, t) = f (t),

g(M + m)X (0, t) − MEI
ρ

Xxxx = l f (t),

f (t) = Γ [X (0, t),Y (t), L , F0] F,

mpYtt (t) = F.

(24)

2.4 Stabilization

Let us consider the problem of control of the pendu-
lum using the feedback principles, i.e., the force which
affects the piston can be presented by the following
equality:

F = k sign(αe1 + e2), (25)

where α > 0, k > 0 and

e1 =
l∫

0

Xx dl, (26)

e2 =
l∫

0

(Xt )x dl. (27)

Here e1 is an average angle of the rod’s deviation, and
e2 is an average angular velocity of the rod.

Thus, in order to solve the stabilization problem for
the elastic inverted pendulum,we should use the system
of Eq. (24) together with the equalities (25)–(27):
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Fig. 3 Rectangular net which corresponds to domain of the
function X (x, t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + EI
ρ
Xxxxx = gXx (0, t),

MXtt (0, t) + mgXx (0, t) + EIXxxx (0, t) = f (t),

(M + m)Xtt (0, t) + ml(Xtt )x (0, t) = f (t),

g(M + m)X (0, t) − MEI
ρ

Xxxx = l f (t),

f (t) = Γ [X (0, t),Y (t), L , F0] F,

mpYtt (t) = F,

F = k sign(αe1 + e2),

e1 = ∫ l
0 Xx dl,

e2 = ∫ l
0 (Xt )x dl.

(28)

The solution of the posed problem on stabilization
of the elastic inverted pendulum in the vicinity of the
upper position is consisted in search of the optimal val-
ues for the coefficients α and k.

3 Numerical realization

3.1 Difference scheme

Let us introduce the rectangular net. In order to do this,
let us cross the domain of function X = X (x, t) by the
net of straight lines parallel to the coordinate axis (see
the Fig. 3).

It is evident that the value of X (x, t) in the knots of
presented net is:

Xi, j = X (ihx , jht ), (29)

where hx is the step of a net by the x axis, ht is the step
of a net by the t axis, i = 0, n, j = 0,m, hx = L

n ,
ht = T

m , T is the time interval for calculation of the
single iteration by the time.

For calculation of the derivatives, we can use the
right finite difference:

Xx (x, t) ≈ Xi+1, j − Xi, j

hx
, (30)

Xt (x, t) ≈ Xi, j+1 − Xi, j

ht
. (31)

Then, the system (28) in the finite differences will
have the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi, j+2 − 2Xi, j+1 + Xi, j

h2t
+

+ E I

ρ

6Xi+2, j −4Xi+1, j −4Xi+3, j +Xi+4, j +Xi, j

h4x
= g

X1, j−X0, j
hx

,

M
X0, j+2 − 2X0, j+1 + X0, j

h2t
+ mg

X1, j − X0, j

hx

+E I
3X1, j − 3X2, j + X3, j − X0, j

h3x= f j ,

(M + m)
X0, j+2 − 2X0, j+1 + X0, j

h2t

+ml
2X0, j+1−X0, j+2−2X1, j+1+X1, j+2−X0, j +X1, j

h2t hx= f j ,

g(M + m)X0, j − ME I

ρ

3X1, j − 3X2, j + X3, j − X0, j

h3x= f j hx ,
f j = Γ

[
X0, j , Y j , L , F0

]
Fj ,

mp
Y j+2 − 2Y j+1 + Y j

h2t
= Fj ,

Fj = k sign(αe1 j + e2 j ),

e1 j =
n∑

i=0

(
Xi+1, j − Xi, j

)
,

e2 j =
n∑

i=0

Xi, j − Xi, j+1 − Xi+1, j + Xi+1, j+1

ht
,

(32)

together with the initial conditions, namely the angle,
linear and angular velocities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,0 − X0,0

hx
= ϕ,

X0,1 − X0,0

ht
= V,

X0,0 − X0,1 − X1,0 + X1,1

hthx
= Vϕ,

X2, j − 2X1, j + X0, j

h2x
= 0.

(33)

123



Elastic inverted pendulum with backlash in suspension 683

Fig. 4 Calculation scheme

On the basis of (32) and (33), we can obtain the
explicit difference scheme. In the Fig. 4, we show all
the knots of a net that take part in the solution of the
system (28) on each consequent iteration together with
the direction of calculation. In brackets, we show the
number of equation in the system (32).

In the next step, we would like to construct the
algorithm for solution of (28) taking into account the
explicit difference scheme (32) together with the initial
conditions (33).

3.2 Algorithm

The algorithm contains two stages of calculations,
namely the forward and inverse stages. In the forward
stage, we compute the lower four layers by i , i.e., the
values of Xi, j , where i = 0, 3, j = 0,m. In the inverse
stage,we compute the residuary layers, i.e., Xi, j , where
i = 4, n, j = 0,m. At the same time, in order tofind the
position of the rod’s profile at the present timemoment,
it is enough to find the values of Xi, j in the region bor-
dered by a triangle (see Fig. 5). In other words, we need
to organize the net with n = 2m for the comfortable
simulations.

The algorithm

1. Let us assign the parameters of the system m, M ,
l, I , E , ρ;

2. Let us assign the initial conditions X0,0, Y0, ϕ, V ,
Vϕ ;

3. Let us assign the parameters of the difference
schema n, m, hx, ht;

4. Let us assign the parameters of the control F0, α,
k.

5. Forward stage From the initial conditions (33) and
fourth equation of the system (32), we find:

Fig. 5 Domain of calculations

f j = Γ
[
X0, j ,Y j , L , F0

]
F;

j = 0,

X1,0 = ϕhx + X0,0,

X2, j = 2X1, j − X0, j ,

X3, j = [
(M + m)gX0, j − f j hx

] ρh3x
MEI

+ 3X2, j + X0, j − 3X1, j ;
j = 1,

X0,1 = Vht + X0,0,

X1,1 = Vϕhthx − X0,0 + X0,1 + X1,0,

X2, j = 2X1, j − X0, j ,

X3, j = [
(M + m)gX0, j − f j hx

] ρh3x
MEI

+ 3X2, j + X0, j − 3X1, j ;
6. Let us calculate the residuary points at i = 0, 3,

j = 0,m:

j = 0 . . . (m − 2),

Y j+2 = Fh2t
mp

+ 2Y j+1 − Y j ,

f j = Γ
[
X0, j , Y j , L , F0

]
F,

X0, j+2 = h2t
M

(

f j − mg
X1, j − X0, j

hx

−EI
3X1, j − 3X2, j + X3, j − X0, j

h3x

)

+ 2X0, j+1 − X0, j ,

X1, j+2 = h2t hx
ml

×
[

f j −(M+m)
X0, j+2−2X0, j+1+X0, j

h2t

]

+2X0, j+1 + X0, j+2 + 2X1, j+1

+ X0, j − X1, j ,

X2, j+2 = 2X1, j+2 − X0, j+2,
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684 M. E. Semenov et al.

X3, j+2 = [
(M + m)gX0, j+2 − f j hx

] ρh3x
MEI

+ 3X2, j+2 + X0, j+2 − 3X1, j+2;

7. Inverse stageLet us find Xi, j at i = 4, n, j = 0,m:

i = 0 . . . (n − 4), j = 0 . . . (m − 2),

Xi+4, j

=
(

g
X1, j −X0, j

hx
− Xi, j+2−2Xi, j+1+Xi, j

h2t

)

×ρh4x
EI

−6Xi+2, j + 4Xi+1, j + 4Xi+3, j −Xi, j ;
8. Let us redefine the initial parameters X0,0, ϕ, V ,

Vϕ ;
9. Let us redefine the control parameters

e1 =
n∑

i=0

(
Xi+1,0 − Xi,0

)
,

e2 =
n∑

i=0

Xi,0 − Xi,1 − Xi+1,0 + Xi+1,1

ht
,

F = k sign(αe1 + e2);
10. Let us turn to the step 5.

As we can see from this algorithm, the numerical
value of the force F should be recalculated in the each
new time interval T .

4 Optimization problem

Aswasmentioned above, the solution of the problemon
stabilization of elastic inverted pendulum in the vicin-
ity of the upper position is consisted in search of the
optimal values for coefficients α and k from the equal-
ity (25).

In many technical problems, the question on stabi-
lization has a general interest. However, together with
the stabilization of the system, there is the problem
of optimization (this problem corresponds to asymp-
totically optimal characteristics of the system). In the
system under consideration, the problem of optimiza-
tion corresponds to minimizing of the functional which
determines the deviation of the pendulum from the ver-
tical position. Let us consider the functional (the so-
called objective functional) as follows:

J = 1

T

T∫

0

⎧
⎨

⎩

l∫

0

(Xx )
2 dl +

l∫

0

[(Xt )x ]
2 dl

⎫
⎬

⎭
dt. (34)

Here T is the time interval in which we find an optimal
control.

Solution of the Eq. (28) that describes the dynamics
of the system under consideration should be obtained
under conditions that provide the minimization of the
functional (34). Physically, this means that the problem
is equivalent to minimization of the mean-square devi-
ation of the pendulum relative to the vertical position.

In order to solve the optimization problem in the sys-
tem under consideration, we use the bionic algorithms
of adaptation because the hysteretic peculiarities in the
considered pendulum’s model lead to some difficulties
in use of the classical optimization algorithms due to
nondifferentiability of the functions in the system of
equations.

Such algorithms are the part of the line of investi-
gation which can be called as an “adaptive behavior.”
Main method of this line consists in the investigation
of artificial organisms (in the form of computer pro-
gram or a robot) that can be named as animats (these
animats can be adapted to environment). The behavior
of animats emulates the behavior of animals.

Actual line of investigation in the frame of the ani-
mat approach is an emulation of searching behavior of
the animals [20,27]. Let us consider the bionicmodel of
adaptive searching behavior on the example of caddis-
flies larvae or Chaetopteryx villosa. The main schema
of searching behavior can be characterized by the two
stages:

– Motion in a chosen direction (conservative tactics);
– Random change of the motion direction (stochastic
searching tactics).

Weconsider thismodel for the simple case ofmaximum
search for the function of two variables. Let us describe
the main stages of the considered model:

1. We consider an animat which is moved in the two-
dimensional space x, y. Main purpose of animat is
maximum search for the function f (x, y).

2. Animat is functioned in discrete time t = 0, 1,
2, . . .. Animat estimates the change of current value
of f (x, y) in comparison with the previous time
Δ f (t) = f (t) − f (t − 1).

3. Every time animat moves so its coordinates x and
y change by Δx(t) and Δy(t), respectively.

4. Animat has two tactics of behavior: a) conservative
tactics; b) stochastic searching tactics.

The displacement of an animat in the next time
Δx(t + 1), Δy(t + 1) for these tactics determines in
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different ways. Switching between the cycles drives by
M(t). Time dependence of M(t) can be determined
using the equation:

M(t) = k1M(t − 1) + ξ(t) + I (t), (35)

where k1 is a parameterwhich determines the switching
persistence of tactics (0 < k1 < 1), ξ(t) is a normal
distributed variate with an average value equal to zero
and mean-square deviation equal to σ , and I (t) is an
intensity of irritant. For the value of I (t), there are two
possibilities:

I (t) = k2� f (t) (36)

and

I (t) = k2
� f (t)

f (t − 1)
, (37)

where k2 > 0. As follows from (36) and (37), the inten-
sity is positivewhen the step leads to increasing of func-
tion; otherwise, the intensity is negative. It should be
noted also that the Eq. (37) can be applied in the case
f (t) > 0.
We assume that at M(t) > 0 the animat follows

the tactic a) and at M(t) < 0 it follows tactic b). So,
the value of M(t) can be considered as a motivation to
selection of tactic a).

Thus, the algorithm of maximum search can be con-
sidered as follows:

Tactics a Animat moves in the chosen direction. The
displacement of an animat is determined by R0

Δx(t + 1) = R0 cosϕ0, (38)

Δy(t + 1) = R0 sin ϕ0, (39)

where the angle ϕ0 defines the constant direction of
motion of the animat:

cosϕ0 = �x(t)
√

Δx2 + Δy2
, (40)

sin ϕ0 = �y(t)
√

Δx2 + Δy2
. (41)

Tactics b Animat makes an accidental turn. The dis-
placement of the animat is determined by r0, but the
direction of motion is accidentally varied

Δx(t + 1) = r0 cosφ, (42)

Δy(t + 1) = r0 sin φ, (43)

where ϕ = ϕ0 + w, ϕ0 is an angle which characterizes
the direction of motion at current time t , w is a normal
distributed variate (average value of w equal to zero

and mean-square deviation equal to w0), and ϕ is an
angle which characterizes the direction of motion at
time t + 1.

In that way, we can use the proposed algorithm for
searching the optimal control in the problem of stabi-
lization of the elastic inverted pendulum. Taking into
account the reasoning presented above, we can apply
the presented algorithm to the functional J(α, k)where
the coefficients α and k determine the character of con-
trol of the mechanical system under consideration fol-
lowing the Eq. (25). Due to the fact that the presented
bionic algorithm is used to maximum search of the
function of two variables, we will consider the mini-
mization of the functional (34) as a procedure for find-
ing the coefficients α and k that lead to realization of
the condition

− J(α, k) → max . (44)

5 Simulation results

5.1 Elastic inverted pendulum

Nowwecanmake a simulationof the behavior of elastic
inverted pendulum using the corresponding difference
scheme in the absence of a backlash (L = 0). Using
the bionic algorithm, we can find the optimal values of
the coefficients α and k.

The characteristics and initial conditions for the
mechanical system under consideration are:

m = 1, M = 10, l = 1, ρ = 0.5, E = 10,

I = 4, θ0 = 0.06◦.

In the searching process for optimization (using the
bionic algorithm), we have obtained the following val-
ues of the coefficients: α = 22.04 and k = 1.15.

In order to estimate the stability of the system under
consideration, we use the Lyapunov criterion. Namely,
we use the following Lyapunov function:

V = e21 + e22.

The phase trajectory of such a system together with
the dynamics of Lyapunov function in time (namely
in discrete time which corresponds to the difference
scheme) are presented in the Fig. 6. In this figure, the
integral angle e1 and integral angular velocity e2 cor-
respond to Eqs. (26) and (27), respectively.
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Fig. 6 Phase trajectory (left
panel) and dynamics of
Lyapunov function (right
panel) in the absence of a
backlash (L = 0). The
parameters are α = 22.04
and k = 1.15

Fig. 7 The same as in
Fig. 6 but for another values
of parameters α and k,
namely α = 50 and k = 0.4

In theFig. 7,wepresent the phase trajectory andLya-
punov function for another values of α and k, namely
α = 50 and k = 0.4.

As we can see from the presented figures, the Lya-
punov function satisfies the following condition (dur-
ing all the considered time interval):

Vt (t) � 0.

This means that the considered inverted pendulum
eventually tends to stable vertical position.

5.2 Elastic inverted pendulum with backlash in
suspension

Now, let us add a backlash in the suspension point of
a considered mechanical system and let us investigate
the behavior of such a systemwith the same parameters
as in previous subsection. Using the bionic algorithm,
we have obtained the following optimal values of the
coefficients: α = 9 and k = 2.

The mass of a piston is mp = 1 kg. The main para-
meters of the system are the same as in previous sec-
tion. The phase trajectories of such a system (as previ-
ously we use (e1, e2) coordinates) and dynamics of the

Lyapunov function for different values of the control
coefficients are presented in the Fig. 8.

As we can see from the presented figure (both from
the phase trajectories and Lyapunov function), the con-
sidered system (at the same main parameters and dif-
ferent values of L and control coefficients α and k) also
eventually tends to stable state.

6 Conclusions

In this paper, we have considered the stabilization
problem of the elastic inverted pendulum under hys-
teretic control in the form of a backlash in the suspen-
sion point. Also the problem of optimization for the
system under consideration is analyzed. Main coeffi-
cients, namely α and k, that provide the solution of
the optimization problem for the considered system are
obtained using the so-called bionic algorithm. In partic-
ular, in the case of the absence of a backlash in the sus-
pension point (L = 0), we have obtained the following
values of the coefficients: α = 22.04 and k = 1.15 (for
the parameters of the systempresented in themain text).
In the case of a backlash in the suspension point (corre-
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Fig. 8 Phase trajectories
(left panels) and dynamics
of Lyapunov function (right
panels) in the presence of a
backlash in the suspension
point. Parameters of the
backlash and the control
coefficients are as follows: a
L = 0.01m, α = 9, k = 2;
b L = 0.02m, α = 9,
k = 2; c L = 0.02m,
α = 10.5, k = 1.5

(a)

(b)

(c)

sponding characteristics of a backlash are L = 0.01m
and mp = 1 kg), the corresponding coefficients are
α = 9 and k = 2. All the results on stabilization of
the system under consideration have obtained using
the corresponding numerical methods based on the dif-
ference scheme. The results of numerical simulations
show that the considered system eventually tends to the
stable state both in the case of the absence of a backlash
and in the case of its presence. These facts are presented
in the form of the corresponding phase portraits for the
considered system. Moreover, in order to estimate the
stability of the elastic pendulum with the hysteretic
nonlinearity in the suspension point, we have used

the Lyapunov criterion and the dynamics of the corre-
sponding Lyapunov function has also been presented.
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