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Abstract Weconsidermemelements (memristors and
memductors) with special periodic responses (mixed-
mode oscillations) and 2D one-period loops yield-
ing constant parameters describing the memelements
as single units or components of oscillating circuits.
One of the parameters is the action parameter hav-
ing the dimensions of energy× time and the SI unit
Joule× second. The remaining loops and parameters
correspond to energy of magnetic and electric fields,
power and rms current and voltage values. Special
mixed one-period loops are also analyzed with pairs
of signals associated with two different components
of the circuits. The areas enclosed by various loops
result in special equations which can be derived from
the underlying ODE model of the circuits. The action
of a memelement is equivalent to the time integral of
the Lagrangian L(w,w′), where w is the internal state
variable of a memelement. The analysis of memris-
tive circuits and their parameters is considered in the
framework of mixed-mode oscillations. Also, the unit
of action for memelements is proposed to be called
Chua (=Joule× second) to honor L.O. Chua for his
work on memristors and memristive circuits.
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1 Introduction

There have been quite a few results reported on oscil-
latory memristor circuits in the literature recently, see
[1–11] and reference therein. The pinched hysteresis
loop for a single memelement and the area enclosed
by a one-period loop have been studied in [5,6,10,11],
with the x-controlled memelement described by the
following equations

y(t) = g(w(t))x(t), w′(t) = x(t), (1)

where y and x are the terminal memelement’s vari-
ables and w is the internal state variable. For exam-
ple, for a memductor the y, x and w are the current,
voltage and flux, respectively. For a memristor the y,
x and w are the voltage, current and charge, respec-
tively. Extensions tomemcapacitors andmeminductors
are also possible. For example, for a charge-controlled
memcapacitor the y, x and w stand for voltage, charge
and time-domain integral of charge, respectively. Inter-
preting the area of a one-period pinched hysteresis loop
has lead various authors tomove from the typical power
and energy quantities to thememory-content quantities
[6,11]. When a memelement is a component of a com-
plex nonlinear circuit, one may expect a much richer
spectrum of relations between variables than in a sim-
ple situation when a single memelement is considered
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620 W. Marszalek

only. Equation (1) involve only three variables (y,w and
x) and one pinched hysteresis loop of y versus x. In the
case of a memductor the charge variable q = ∫

i(t)dt
does not appear explicitly in (1). Similarly, for a mem-
ristor we have (1) in the form v(t) = g(q(t))i(t) with
g(q(t)) having the meaning of charge-dependent resis-
tance. The flux variable φ = ∫

v(t)dt does not appear
explicitly in (1) for amemristor.When all four variables
v, φ, i and q for a memelement are taken into consider-
ation and when the memelement is a component of an
oscillating circuit, a number of closed one-period 2D
loops can be analyzed, as shown through the numeri-
cal examples with figures in Sect. 5 of this paper. Most
of such loops will not be pinched. Some of the one-
period loops considered in this paper are such that a
moving (in time) trajectory point has the enclosed area
on one side only (left or right) for the entire time inter-
val 0 ≤ t < T , with T denoting period, while for
other loops a moving trajectory point traverses the area
between the left and right sides in one period. More-
over, the interpretation of one-period areas enclosed
by the loops depend on a particular pair of variables
in a loop. Because of an interaction of a memelement
with other elements in a circuit, it is also possible to
consider closed loops of a mixed nature, in which one
memelement’s variable (e.g., charge) pairs with some
other element’s variable (e.g., inductor’s flux). Exam-
ples of closed loops of mixed nature are also given in
Sect. 5.

The purpose of writing this paper is to examine the
phenomena occurring with various one-period loops
for a memelement in an oscillatory circuit, including
the loops ofmixed nature. We provide an interpretation
of the areas enclosed by such loops. In the process,
we propose a new quantity called action to assign to
memelements. The action quantity has the dimension
of energy× time, with the SI unit Joule× second.

The paper is organized as follows. In Sect. 2we show
examples of various time-series mixed-mode oscil-
lations (MMOs) and one-period loops obtained for
the memristive circuits proposed in [7]. The circuits’
responses in the form of MMOs are used only for illus-
trative purposes, as we introduce in Sect. 3 the defini-
tions of six quantities in the general form
∫

�

f dh =
∫ T

0
f (t)h′(t)dt (2)

for various pairs ( f (t), h(t)) of periodic responses.
Next, in Sect. 4, we provide an interpretation of the

six quantities as energy, power and root-mean-square
(rms) values of the periodic responses. Special atten-
tion is paid to one of the six quantities, the action
quantity, and its relation to the Lagrangian L(w,w′)
of the memelement. Section 5 includes further analysis
of the one-loop areas, including those of mixed nature.
In Sect. 6 an extension of the analysis from Sects. 3
and 4 is carried out for memcapacitors and meminduc-
tors. Conclusions are given in Sect. 7.

The term memelements is used in Sects. 2–5 for
memristors and memductors.

2 Memristive circuits with MMOs

MMOs are periodic responses in many electrical,
mechanical, chemical, astronomical or biological sys-
tems [12–21]. The MMOs comprise both large- and
small-amplitude oscillations, or LAOs and SAOs,
respectively, in various periodic sequences denoted by
Ls1
1 Ls2

2 , . . . , Lsn
n , where Li and si are positive integers

for i = 1, 2, . . . , n. It is possible that MMOs occur for
one set of system’s parameters, while chaotic responses
appear in the same system for another set of para-
meters. Also, bifurcations of systems, canards, Farey
sequences, Arnold’s tongues, fractals and devil’s stair-
cases are typical phenomena and properties associated
with such systems [7,14,15,18,20,21].

Memristive circuitswith interestingdynamical prop-
erties and MMOs have been proposed in [7] (see
also [17]). A two-dimensional bifurcation diagram for
MMOs of type Ls (single values of L and s) and
pinched hysteresis loops for both LAOs and SAOs have
also been shown in [7]. Several typical MMOs are
shown in Figs. 1 (time-series responses) and 2 (pinched
hysteresis loops). The pinched hysteresis loops in Fig. 2
are for the three types of MMOs shown on the left
side in Fig. 1. Those three graphs denoted as 61, 23

and 11 illustrate the MMOs having periods consisting
of 6 LAOs and 1 SAO, 2 LAOs with 3 SAOs, and
1 LAO with 1 SAO, respectively. Also, Fig. 3 shows
examples of four one-period loops for MMOs 23. The
time instants a, . . . , v in Fig. 3 are also shown explic-
itly in the time-series graphs of one-period MMO 23

responses x(t) and w(t) in Fig. 4. Each period begins
at the time instant t = a, goes through the instants
b, c, . . . , and ends at the instant t = v. Placing those
time instants in the two-dimensional plots in Fig. 3 clar-
ifies the time-domain motion of the four trajectories.
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Fig. 1 A few typical
time-series MMOs
responses with t and s
(horizontal axes) denoting
the time variable and its unit
(s), respectively
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Fig. 2 Pinched hysteresis
loops: LAOs (left panels),
SAOs (right panels) for
oscillations 61 (top), 23

(middle) and 11 (bottom).
These are the y versus x
plots as defined in (1) with
g(w) = a + 3bw2
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All the above responses illustrate interesting dynam-
ics of two dual memristive circuits shown in Fig. 7a, b
in the Appendix. Each circuit is described by the fol-
lowing ODE model [7]

εx ′ = sc[−y/η − g(w)x]
y′ = scα(ηx − Ky − z)
z′ = −scβy
w′ = scηx

(3)

where g(w) = a + 3bw2, the prime ′ denotes the
time derivative, ε = C1 � 1, α = 1/L , K = R,
β = γ /C2 for the circuit in Fig. 7a and ε = L1 � 1,
α = 1/C , K = G, β = γ /L2 for the circuit
in Fig. 7b. The current-controlled current source and
voltage-controlled voltage source in the circuits are
described through the expression (1+γ )y with γ > 0.
The g(w) = a + 3bw2 with various values of a and
b were used in the above simulations. Those a and b
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Fig. 3 Four one-period
loops of MMOs 23 for
g(w) = a + 3bw2 and
G(w) = ∫

g(w)dw =
aw + bw3, G(0) = 0
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Fig. 4 One-period MMOs 23 with consecutive time instants
a, b, . . . , u, v. The SAOs occur between u and v. a One period
of x(t) for MMOs 23. b One period of w(t) for MMOs 23

values in g(w) should not be confused with the time
instants a and b in the series of time instants a, b, . . . , v
used in Figs. 3 and 4. The scaling factor η > 1was cho-
sen to reduce the variable x and its derivative (important
in circuit simulation in SPICE [22]), since x = x/η,
with x being the memductor’s voltage in the circuit in
Fig. 7a and memristor’s current in the circuit in Fig. 7b.
The sc > 0 is a time-scaling coefficient. The small val-

ues of C1 and L1 in Fig. 7a, b make both circuits sin-
gularly perturbed ones. In some examples in this paper
we also consider (3) with the second equation replaced
by y′ = scα(ηx − Ky − z ± as), that is, a small
biasing constant source as of order ε is used. When
as �= 0 we used zero initial conditions in our analysis.
Otherwise, with as = 0, the following nonzero ini-
tial conditions were used [x(0), y(0), z(0), w(0)] =
[2.22, 1.105,−0.00628, 0.375]. The current through
the memelement in Fig. 7a equals g(w)x , where w and
x are the flux and voltage, respectively. For the dual
circuit in Fig. 7b the voltage equals g(w)x with w and
x being the memristor’s charge and current. The partic-
ular choice of g(w(t)) = a + 3bw2 in (1) was for the
purpose of illustration only (creation of all the above
figures). A general integrable function g(w) is consid-
ered in the next sections of the paper.

The MATLAB’s procedure ode15s with abserr =
relerr =10−10 and various parameters in (3) were used
to obtain the solutions shown in Figs. 1, 2, 3 and 4 for
MMOs Ls :

61: α = 1, β = 0.1, a = −0.5, b = 0.078,

K = 0, as = 0

23: α = 1, β = 0.1, a = −0.7, b = 0.335,

K = 0, as = 0

11: α = 1.55, β =0.15, a=−0.5, b=0.05,

K = 2, as =0.04
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On the action parameter and one-period loops 623

16: α = 1.55, β =0.15, a=−0.34, b=0.05,

K = 2, as =0.04

1s: α = 1, β = 0.15, a = −0.64, b = 0.5,

K = 0, as = 0.04

2s: α = 1, β =0.15, a = −0.44, b = 0.15,

K = 2.3, as =0.04

Parameter η = 1 in all six cases considered above,
while sc = 1 in the first four cases, sc = 26 in the 1s

case and sc = 2 for the 2s case above. The s in 1s and
2s indicates very large numbers of SAOs, all with very
small amplitudes.

3 One-period loops

The pinched hysteresis loops shown in Fig. 2 (and in
the left upper corner in Fig. 3), i.e., the graphs of the
memelement’s current versus voltage, are not the only
loops one may consider for MMOs. The current ver-
sus charge loop for the circuit in Fig. 7a (or voltage vs.
flux for the circuit in Fig. 7b) shown in the upper right
corner in Fig. 3 is another example. Also, the current
versus flux loop (circuit in Fig. 7a) or voltage versus
charge (circuit in Fig. 7b) shown in the lower left corner
in Fig. 3 can also be considered. A fourth example of
a one-period loop is shown in the right lower corner in
Fig. 3 (x vs.

∫
g(w)dw with g(w) = a + 3bw2). The

four loops in Fig. 3 are examples of one-period loops
with pairs of variables associated with one memele-
ment only. However, when a memristive circuit is ana-
lyzed, we can also construct one-period loops linking
variables of two different elements, for example, the
memelement’s current versus the current of inductor L
in Fig. 7a or the memelement’s current versus the volt-
age of capacitor C2. Equivalently, one may consider a
loop of the memelement’s voltage versus the voltage of
capacitor C in Fig. 7b, or a loop of the memelement’s
voltage versus the current of inductor L2. Several other
one-period loops are also possible.

Two natural questions arise now: What do the sur-
face areas enclosed by various one-period loops rep-
resent and how are the enclosed areas related to each
other?

The literature on memelements provides an analy-
sis of the pinched hysteresis loop and an interpreta-
tion of the enclosed area only in the case of a single
memelement driven by periodic sinusoidal signal x(t)
in (1), either voltage or current [6,10,11]. The analysis

of various types of closed loops for complex circuits
with memelements is different not only because of the
nonsinusoidal shapes of the involved signals, but also
because other components (parameters) of the circuits
must be taken into account.

Let g(w) in (1) be an integrable function with the
integral G(w) = ∫

g(w)dw. Consider the following
quantities (with their units) representing the above-
mentioned areas of one-period loops of (the SI units
for the memristor circuit in Fig. 7b) are given in paren-
theses if they differ from the units for the memductor
circuit in Fig. 7a:

P ≡
∫

�1

g(w)xdx, [P] = V × A

EC(L) ≡
∫

�2

xd(G(w)), [EC(L)] = V × A × s

EL(C) ≡
∫

�3

g(w)xdw, [EL(C)] = V × A × s

T EM ≡
∫

�4

G(w)dw, [T EM ] = V × A × s2

DI (V ) ≡
∫

�5

g(w)xd(G(w)), [DI ] = A2 × s,

[DV ] = V 2 × s

DV (I ) ≡
∫

�6

xdw, [DV ] = V 2 × s,

[DI ] = A2 × s

and examples of closed loops for pairs of mixed vari-
ables

W ≡
∫

�7

zd(G(w)), [W] = V × A × s

Y ≡
∫

�8

g(w)xdy, [Y]

= A2 or V 2 (depends on memelement)

Z ≡
∫

�9

g(w)xdz, [Z] = V × A.

The notation EC(L) means that we use EC for the
circuit in Fig. 7a and EL for the circuit in Fig. 7b. On
the other hand, the notation EL(C) means that we use
EL for the circuit in Fig. 7a and EC for the circuit in
Fig. 7b. The quantities EC and EL have the meaning
of one-period energy with EC being the energy due to
an electric field and EL is the energy due to a mag-
netic field. Also, the DI (V ) indicates that this quantity
is linked to current of the memductor in Fig. 7a and to
voltage of the memristor in Fig. 7b. The reverse holds

123



624 W. Marszalek
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Fig. 5 SixquantitiesP ,T EM ,EC ,EL ,DI andDV for the circuits
in Fig. 7a, b

for DV (I ). More details about the physical interpreta-
tion of the above quantities are given is Sect. 4.

Notice that the first six quantities defined above
involve the four variables (signals) x , w, g(w)x and
G(w) whose interpretation depends on the memele-
ment under consideration. For example, for a mem-
ductance we have the following: x =voltage, w=flux,
g(w)x =current and G(w)=charge and for a mem-
ristance: x =current,w=charge, g(w)x =voltage and
G(w)=flux. Similar assignments can be done formem-
capacitors and meminductors, see Sect. 6.

A taxonomy of the six quantities for memelements
is shown in Fig. 5. Similar diagrams can be cre-
ated for charge- and voltage-controlled memcapacitors
and flux- and current-controlled meminductors (see
Sect. 6). As shown below, theDI andDV quantities in
Fig. 5 are equivalent to the period of MMOs multiplied
by the squared values of memductor’s and memristor’s
rms current and voltage, respectively.

Each of the remaining three quantities (Y ,Z andW)
involves pairs of variables of two different elements.
For example, the Y defines an area of a loop with the
memelement’s variable g(w)x (current in Fig. 7a and
voltage in Fig. 7b) and the variable y, which is the
inductor’s current in Fig. 7a and capacitor’s voltage in
Fig. 7b. Other cases of one-period loops with mixed
variables are defined in a similar way.

Interestingly, some of the loops are such that a mov-
ing (in time) trajectory point always has the enclosed
area on the right side (e.g., trajectories for quantities
DI and DV ), left side (e.g., trajectory for quantity P),
while for other loops the orientation is changed a num-
ber of times in one period (e.g., the trajectory for quan-
tities EC and EL ). This statement is truewhenwe ignore
SAOs and consider LAOs only as shown in Fig. 3 with
the consecutive time instants marked by lowercase let-
ters a, . . . , v covering one period of MMOs 23. The

big hysteresis loop (g(w)x vs. x) occurs in very short
time intervals: a–e and k–o for the loop with negative
x(t) and the intervals f – j and p–t for the loop with
positive x(t)—compare the graph g(w)x versus x in
Fig. 3 with the graphs in Fig. 4. Ignoring SAOs is jus-
tified by a simple fact that the areas enclosed by SAOs
are a tiny fraction (negligible) compared with the areas
enclosed by LAOs and therefore can be neglected. An
obvious consequence of ignoring SAOs in the pinched
hysteresis graph is that the crossing of the point (0, 0)
is of type II, as described in [10], rather than type I as
it would be if SAOs were not ignored. In Sects. 4 and
5 we provide an interpretation of various one-period
loops defined above and show relationships between
the loops. Without losing generality we assume that
sc = 1 in (3).

4 Interpretation of the quantities P , EC(L), EC(L),
DI (V ), DV (I) and T EM

Notice that

DI (V ) ≡
∫

�5

g(w)xd(G(w))=
∫ T

0
g(w)x

d(G(w))

dw
w′dt.

(4)

Since w′ = x , and d(G(w))/dw = g(w), therefore

DI (V ) =
∫ T

0
(g(w)x)2dt = T

({g(w)x}rms
)2

. (5)

Thus, the area enclosed byDI (V ) is equal to the period
T multiplied by the square of the rms value of g(w)x ,
the current for a memductor, voltage for a memristor
and, as discussed in Sect. 6, the respective rms values
of charge and voltage for memcapacitors, as well as
the rms values of flux and current for meminductors.
Also, it is obvious, that sincew′ = x , we haveDV (I ) =
∫ T
0 xw′dt = T ({x}rms)

2.
Next, we have EC(L) ≡ ∫

�2
xd(G(w)) =

∫ T
0 x d(G(w))

dw
w′dt = ∫ T

0 x2g(w)dt , which has the
meaning of one-period energy. Similarly, EL(C) ≡
∫
�3

g(w)xdw = ∫ T
0 g(w)x2dt with the samemeaning.

For the pinched hysteresis loop and quantity P ≡∫
�1

g(w)xdx the interpretation is reported in [11] in
terms of the memory effect and the concept of content.
However, in the framework of our analysis, the quantity
P has the meaning of power with its unit V × A.
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We now focus on the remaining quantity, namely
T EM ≡ ∫

�4
G(w)dw. Notice that if we consider one

full period 0 ≤ t < T , then T EM = 0. This follows
from the fact that for G(w) = ∫

g(w)dw and periodic
w(t) we have w(0) = w(T ) = w∗ for some value
of w∗. This yields T EM ≡ ∫ w∗

w∗ G(w)dw = 0. The
quantity T EM ≡ ∫

�4
G(w)dw = ∫ w1

w0
G(w)dw, w0 =

w(t0), w1(t1), defined over time interval t0 ≤ t ≤ t1
does not represent any area enclosed by a loop, but
T EM is a very interesting quantity of memelements as
shown below.

Action = T EM : Let T EM = ∫ t1
t0
G(w)w′dt and

denote L(w,w′) = G(w)w′. It is easy to check that
with G(w) = ∫

g(w)dw, the L(w,w′) satisfies the
Euler–Lagrange equation

∂L

∂w
− ∂

∂t

(
∂L

∂w′

)

= 0, (6)

indicating that G(w)w′ is a Lagrangian and since
the time integral of Lagrangian is called action1

with dimensions energy× time; therefore, we pro-
pose to assign the quantity action (= ∫

G(w)dw) to
any memductor or memristor. The unit of action is
Joule× second. Notice, that T EM = ∫

�
(charge) ·

d( f lux) for a memductor, while T EM = ∫
�
( f lux) ·

d(charge) for a memristor. The term action fits well
with the dynamical properties of a memelement, being
a circuit component whose present state depends on
the history of trajectorymotion (memory). The number
T EM = ∫

�4
G(w)dw takes into account the amount of

charge G(w) passed in the interval t0 ≤ t < t1 for
a memductor or the amount of flux G(w) through a
memristor for t0 ≤ t < t1. There is also a link of
T EM with quantum mechanics since the Planck’s con-
stant has also the same unit (Joule× second) as T EM

does [24]. The Planck’s constant is used in the rela-
tionship between energy and frequency of an electro-
magneticwave, known as the Planck–Einstein equation
E = hν (or h = E/ν = T E), where E is the energy of
the charged atomic oscillator, ν is the frequency of an

1 “In physics, action is an attribute of the dynamics of a physical
system. It is a mathematical functional which takes the trajec-
tory, also called path or history, of the system as its argument
and has a real number as its result. Generally, the action takes
different values for different paths. Action has the dimensions
of (energy)× (time), and its SI unit is joule-second. This is the
same unit as that of angular momentum” [23].

associated electromagnetic wave and h is the Planck’s
constant.

The unit of action The flux and charge quantities are
the twovariables definingmemductors andmemristors,
whose existence was predicted in 1971 by professor
Chua [1,2], leading to a successful construction of a
memelement by the HP team [4]. The unit of the quan-
tityT EM is of course the same as the unit of the product
flux×charge, that is V × A × s2 = Wb × C = J × s
(with V , A, Wb, C and J chosen to honor Volta,
Ampère, Weber, Coulumb and Joule, respectively).
Since the unit V × s × A × s links the magnetic
flux with electric charge, which is the essence of the
memelements’ existence, we propose that the unit of
flux×charge is called Chua, to honor L.O. Chua, the
pioneer of memelements. That is, let 1 Chua = 1
V×A×s2 = 1Wb×C = 1 J×s = 1T ×A×m2×s2 =
108 Mx × A × s with T and Mx standing for Tesla
and Maxwell, respectively.

We discuss further the concept of action for mem-
capacitors and meminductors in Sect. 6.

5 Further relations between areas of various
one-period loops

Based on the ODE model (3) with sc = 1 and various
one-period loops (including those of mixed nature) we
have the following.

Theorem 1 εP = Z/β − DI (V ).

Proof Substituting x ′ = −[y+g(w)x]/ε from (3) into
P = ∫

0
T g(w)x ′dt we obtain

P = −1

ε

∫

0

T

g(w)x[y + g(w)x]dt, (7)

which can be, with the help of y = −z′/β (see (3)),
further changed to

P = 1

ε

[
1

β

∫

0

T

g(w)xz′dt −
∫

0

T

(g(w))2x2dt

]

. (8)

From (8) we obtain

εP = 1

β

∫

0

T

g(w)xdz −
∫

0

T

g(w)xd(G(w))

= Z/β − DI (V ). (9)

This completes the proof. 	
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A note of caution: Theorem 1 should be understood
with all the quantities representing the enclosed areas
bearing the correct signs, either positive or negative.
In this paper the following rule is applied: If a trajec-
tory point moves clockwise around the enclosed area,
then the integral is assumed to be positive. On the other
hand, if a trajectory point is moving counterclockwise
around the encircled area, then the integral is negative
[10]. This is important in the case of numerical com-
putation of the enclosed areas by using, for example,
the procedure polyarea in MATLAB, which uses the
opposite rule.

In the MMOs 23 example with ε = 0.01 and
β = 0.1, we obtain by using the MATLAB polyarea
function:P = −22281.1457,DI (V ) = 222.7570,Z =
−0.0054 and |εP − Z/β + DI (V )| = 1.9192 × 10−7

for the numerically identified period T = 7.3518. On
the other hand, for the MMOs 61 we obtain: P =
−78691.0617, DI (V ) = 786.7352 and Z = −0.0175
with T = 13.2690 to yield |εP − Z/β + DI (V )| =
4.14670 × 10−7.

Theorem 2 Y = α(EL(C) + KZ/β − W).

Proof Substituting y′ = α(x − Ky − z) (see (3))
into Y = ∫

0
T g(w)xy′dt , making use of x = w′ and

y = −z′/β, yield Y = α
∫
0
T g(w)x(x − Ky − z)dt

= α
∫
0
T g(w)xw′dt + (αK/β)

∫
0
T g(w)xz′dt − α

∫
0
T

g(w)xzdt . Since g(w)x = d(G(w))/dt , and there-
fore, the last expression is equivalent to Y = αEL(C) +

Table 1 Memcapacitors and meminductors

y x w g(w) G(w)

QCMC v q TIQ (MC(w))−1
∫
(MC(w))−1dw

VCMC q v φ MC(w)
∫
MC(w)dw

FCML i φ TIF (ML(w))−1
∫
(ML(w))−1dw

CCML φ i q ML(w)
∫
ML(w)dw

αKZ/β − α
∫
0
T zd(G(w)), which further yields Y =

α(EL(C) + KZ/β − W). This ends the proof. 	

Using the polyarea function from MATLAB for the

MMOs 23 with α = 1, K = 0 and β = 0.1, we
obtain Y = 0.00181133, EL(C) = 0.00181305, Z =
−0.00544598 and W = 8.6797 × 10−8 to yield |Y −
α(EL(C) +KZ/β −W)| = 1.6325×10−6. In the case
of MMOs 61 we obtain Y = 0.00808594, EL(C) =
0.00809422, Z = −0.01753621 and W = 7.6720 ×
10−7 to yield |Y−α(EL(C)+KZ/β−W)| = 7.5149×
10−6.

6 Memcapacitors and meminductors

It is possible to consider the action quantity for mem-
capacitors and meminductors, too. Variables x, y and w
for these four memelements: voltage-controlled mem-
capacitor (VCMC), charge-controlled memcapacitor
(QCMC), flux-controlled meminductor (FCML) and
current-controlled meminductor (CCML) are given in
Table 1with theTIQ andTIF denoting the time-domain
integrals of charge and flux, respectively. The g(w) and
G(w) variables are also included for completeness. The
i, v,q andφ denote, as usual, the current, voltage, charge
and flux, respectively. Also, MC = memcapacitance,
ML = meminductance.

The six quantities defined in Sect. 3 for memductors
and memristors in terms of variables x , w, g(w)x and
G(w), see Fig. 5, can also be computed for memca-
pacitors and meminductors as shown in Table 2. The
meaning of the six quantities is now different than the
meaning of the same quantities for memductors and
memristors with the action parameters marked bold-
face in Table 2 and illustrated for a QCMCand a FCML
in Fig. 6. The quantities in the last two columns in
Table 2 are equivalent to the product of period T and
square rms values of voltage and charge formemcapac-
itors and the product of period T and square rms values

Table 2 The six parameters for memcapacitors and meminductors
∫
�1

g(w)xdx
∫
�2

xd(G(w))
∫
�3

g(w)xdw
∫
�4

G(w)dw
∫
�5

g(w)xd(G(w))
∫
�6

xdw

QCMC Energy Action Action Action× time T {v}2rms T {q}2rms

VCMC Energy Action Action Action× time T {q}2rms T {v}2rms

FCML Energy Action Action Action× time T {i}2rms T {φ}2rms

CCML Energy Action Action Action× time T {φ}2rms T {i}2rms
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Fig. 6 One-period
quantities of QCMC and
FCML. a One-period
quantities of a QCMC,
b one-period quantities
of a FCML

TIQ q

q
MC(TIQ)

d(TIQ)
MC(TIQ)

DV

DQ

energyaction × time

action

action

T IF φ

φ
ML(TIF )

d(TIF )
ML(TIF )

DI

DΦ

energyaction × time

action

action

(a) (b) 

of current and flux for meminductors. The previously
discussed quantity action (

∫
�4

G(w)dw) for memduc-
tors and memristors in Sect. 4 has now the meaning
of action× time for memcapacitors andmeminductors.
Figure 6a, b show all the quantities for the QCMC and
FCML only. Similar diagrams can be constructed for
VCMC and CCML.

7 Conclusions

The well-known pinched hysteresis loops for oscil-
lating memristive circuits have been considered in a
broader spectrum of other one-period loops represent-
ing various quantities of memelements as well as the
loops with pairs ofmixed variables. The areas enclosed
by various one-period loops for memductors and mem-
ristors are related to power, energy and rms values of
periodic responses and other equations resulting from
mathematical models of the circuits, as shown in The-
orems 1 and 2. For a single memelement there exists
six quantities relating the four variables x, w, g(w)x
and G(w). One of the six quantities, T EM , has the
meaning of action, the quantity that is well known in
physics, but rather unknown (or forgotten) in the cir-
cuit theory. Finally, the author strongly believes that
the proposal made in this paper of honoring professor
Chua and assigning the unitChua to the action quantity
is justified and will be accepted.

Acknowledgments The author would like to thank the three
anonymous reviewers for their helpful comments.

8 Appendix

Equation (3) describes the memristive circuits with
MMOs shown in Fig. 7. For bifurcation diagrams,more

im

C1 x

L y R

C2z (1 + γ)y

(a)

vm

L1
x

G Cy

L2
z

+
− (1 + γ)y

(b)

Fig. 7 Two dual memristive circuits described by (3) with x =
ηx . a TheM+CLRC circuit with memductance g(w) forw = φ,
b The M+LGCL circuit with memristance g(w) for w = q

time-domain responses and pinched hysteresis loops
see [7].

Finally, suppose thatweuse [x(0), y(0), z(0), w(0)]
as the nonzero initial conditions of (3). It is possible to
transform system (3) into a singularly perturbed scalar
ODE in variable w(t) and use it in a SPICE [22] real-
ization of the circuits in Fig. 7a, b. The scalar equation
is (the modified version of the second equation in (3)
with as is used as discussed in Sect. 2):

εw′′′′ + {sc(a + 3bw2) − εscαK }w′′′

+ {s2cα(1 − K (a + 3bw2)) − εs2cαβ

+ 18scbww′}w′′ −
{
s3cαβ(a + 3bw2) (10)

− 6scbw
′2 + 6s2cαbKww′} w′ = 0.

In the process of deriving (10) we also obtain the fol-
lowing initial conditions in addition to w(0)

w′(0) = scγ x(0)

w′′(0) = −s2c [y(0) + γ (a + 3bw2(0))x(0)]/ε
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w′′′(0) =
{[

−s3cαγ − sc(a + 3bw2(0))

− 6s3c γ
2bw(0)x(0)

]
x(0)

+ (s3cαK + s3c (a + 3bw2(0))y(0)/ε

+ s3cαz(0) ∓ s3cαas
} /

ε. (11)

A similar approach was successfully used in [17,21]
for a third-order jerk equation yielding MMOs in a cir-
cuit with a nonlinear element of third-degree polyno-
mial current–voltage characteristic. Moreover, it was
shown that some of the singularly perturbed jerk equa-
tions were Newtonian, since they were obtained after
differentiation of the Newton’s second law of the type
w′′ = F(t, w,w′)/m with m being constant. In such
a situation, the w′′ has the meaning of acceleration,
F(t, w,w′) is a nonlinear force (with a memory term)
and w′′′, being derivative of w′′ has the meaning of
jerk. If the same analysis can be extended to (10), then
w′′′′ will have the meaning of jounce, the second deriv-
ative of acceleration w′′. Such an approach will link
the memristive MMOs circuits with their equivalent
mechanical realizations.
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