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Abstract In this paper, an adaptive fast terminal slid-
ing mode control technique combined with a global
sliding mode control scheme is investigated for the
tracking problem of uncertain nonlinear third-order
systems. The proposed robust tracking controller is for-
mulated based on the Lyapunov stability theory and
guarantees the existence of the sliding mode around
the sliding surface in a finite time. Under the uncer-
tainty and nonlinearity effects, the reaching phase is
removed and the chattering phenomenon is eliminated.
This scheme guarantees robustness against nonlinear
functions, parameter uncertainties and external distur-
bances. The derivative of the state variable is replaced
by a delay term in the form of an Euler approxima-
tion of the derivative function. Furthermore, the knowl-
edge of upper bounds of the system uncertainties is not
required, which is more flexible in the real implemen-
tations. Simulation results are presented to show the
effectiveness of the suggested method.
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1 Introduction

1.1 Background and motivations

A rigorous foundation for the theory of finite time stabi-
lization was primarily presented by Bhat and Bernstein
[1]. The stabilization and tracking control of nonlinear
and time-varying systems have important applications
in electronics, mechanics and robotic systems [2–6].
Conventional feedback control methods do not obtain
robustness and high performance when facing with the
nonlinearities, uncertainties and external disturbances
[7–10]. Sliding mode control (SMC) as an effective
robust control technique that has been successfully
applied to control or track certain linear and nonlin-
ear systems such as robotic manipulators [11], non-
holonomic systems [12], aircraft [13], underwater vehi-
cles [14], spacecraft [15], flexible space structures [16],
chaotic systems [17], electrical motors [18] and power
systems [19]. The significant features of SMC are the
fast response, robustness against uncertainties, insensi-
tivity to the bounded disturbances, good transient per-
formance and computational easiness with respect to
other robust control methods [20–22]. The procedure
of SMC design can be divided into two phases, namely,
the sliding phase and the reaching phase. In the slid-
ing phase, a switching surface is defined such that the
closed-loop system exhibits desired dynamic behav-
ior during sliding mode [23]. In the reaching phase,
the sliding mode controller is employed to derive the
system states to the sliding surface [24]. Because of the
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influence of sliding surface on the stability and transient
performance of the system, the design of switching sur-
face is the major subject in the SMC method [25]. In
the conventional SMC, during the reaching phase, the
controlled system is not robust and even matched dis-
turbances can destabilize the system [26]. Actually, the
robust tracking performance is guaranteed only after
the system states reach the sliding surface, and hence
robustness is not satisfied during the reaching phase
[24–26]. Recently, there is more interest in the use of
SMC and new researches have been proposed.

1.2 Literature review

In [27], an adaptive self-tuning fuzzy SMC com-
pensator is proposed for velocity control of electro-
hydraulic displacement-controlled system for which
the proposed scheme can design the SMC with no
requirement on the systemdynamicalmodel. In [28], an
adaptive fuzzy controller is applied to active vibration
control of a smart flexible beam with mass uncertain-
ties. In [29], a stable decentralized adaptive fuzzy SMC
structure is offered for reconfigurable modular manip-
ulators to fulfill the concept of modular software and
a first-order Takagi–Sugeno fuzzy-logic system is pre-
sented to approximate the unknown dynamics of sub-
system by using adaptive SMC. In [30], an adaptive
fuzzy SMC law is used for the stabilization of unstable
periodic orbits in a chaotic pendulum where the adap-
tive fuzzy inference system is embedded in a smooth
SMC to cope with both structured and unstructured
uncertainties. In [31], an adaptive fuzzy SMC is applied
for a benchmark problemon a seismically excited high-
way bridge and is also integrated with clipped-optimal
strategy to demonstrate its efficiency for semi-active
dampers. In [32], an adaptive SMC scheme is proposed
for the robust tracking and model following of uncer-
tain time-delay systemswith input nonlinearity. In [33],
a robust adaptive SMC strategy is presented for a new
introduced class of uncertain chaotic systems in the
absenceof anyknowledgeon the uncertainty bounds. In
[34], an adaptive integral slidingmode controller is pro-
posed for multi-input multi-output (MIMO) systems
affected by unknown matched or mismatched uncer-
tainties. All of the mentioned works are performed in
infinite time. Actually, using the linear sliding surfaces,
the switching control law may have unsatisfactory per-
formance in finite time.

Compared with the linear SMC, the terminal sliding
mode (TSM) control technique offers some superior
properties such as fast response and finite time con-
vergence [35]. This method is particularly suitable for
high-precision control as it speeds up the rate of con-
vergence near the origin. Unlike conventional SMC,
TSM method is based on a set of recursive nonlin-
ear non-smooth differential equations enabling finite
time convergence, and in the latest years there is more
interest in the use of it [36]. However, TSM may not
offer the same convergence performance as SMCwhen
the system states are far away from the equilibrium
[37]. The fast terminal sliding mode (FTSM) concept
has been adopted by Yu and Man [38], which guar-
antees fast transient convergence and strong robust-
ness. In the recent years, there is more interest in
the use of this method [39]. In [40], a neural adap-
tive SMC algorithm is planned to achieve the posi-
tion tracking performance of the field-oriented control
for permanent magnet synchronous motors by com-
bining FTSM and the radial basis function (RBF). In
[41], a novel FTSM control approach is investigated
for the robust tracker design of a class of nonlinear
second-order systems with time-varying uncertainties.
In [42], an adaptive FTSM method is designed for the
finite time motion/force control of robotic manipula-
tors in the presence of environmental constraint and
modeling uncertainties. In [43], a systematic control
method using non-singular FTSM for a linear motor
positioner is studiedwhich guarantees fast convergence
of the tracking errors in the attendance of perturbations
containing payload variations, friction, disturbances,
and measurement noises. Nevertheless, it should be
pointed out that the FTSM technique still needs to
be further considered on robustness performance and
reaching phase elimination. The global sliding mode
control (GSMC) method has been presented to offer a
general framework to remove the reaching interval so
that the sliding mode exists right from the beginning,
and then the system response is completely invariant to
system perturbations [44,45]. GSMC causes superior
robustness and performance when an additional term
is inserted to sliding surface [46,47].

1.3 Contributions

To the best of the author’s knowledge, a very little atten-
tion [48,49] has been paid to the problem of combina-
tion of FTSM and GSMC methods for robust track-
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ing control of uncertain nonlinear systems, which is
still open in the literature. This motivates the current
research. In this paper, we consider the robust track-
ing problem for third-order systems with time-varying
uncertainties and nonlinearities. We employ a novel
adaptive FTSM controller combined with GSMC sur-
face structure that guarantees the existence of the slid-
ing mode around the sliding surface in a finite time and
eliminates the reaching phase to improve the robust-
ness and performance of the system. The robustness of
the controlled system can be guaranteed right from the
beginning of the entire response. The proposed method
ensures the robustness against nonlinearities, paramet-
ric uncertainties and external disturbances. Moreover,
the knowledge of upper bounds of system uncertainties
is not required.

1.4 Paper organization

The rest of the paper is organized as follows: The
problem formulation and preliminaries are presented
in Sect. 2. The new FTSM controller design and stabil-
ity analysis are discussed in Sect. 3. Simulation results
are provided in Sect. 4, and the conclusions are drawn
in Sect. 5.

2 Problem formulation

Consider the following time-varying and nonlinear
third-order system [50]:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = f (x, t) + � f (x, t) + (b(x, t) + �b(x, t)) u

+ d0(x, t), (1)

where x1, x2 and x3 are the state variables of the
system, x = [x1, x2, x3]T is the state vector, and
u ∈ R is the control input. The terms b(x, t) ∈ R
and f (x, t) ∈ R are deemed to represent the known
bounded nonlinear functions, and they belong to the
smooth vector fields in a neighborhood of the origin
x = 0 with f (0, t) = 0 and b(x, t) �= 0. More-
over, the nonlinear functions �b(x, t),� f (x, t) and
d0(x, t) are assumed to be the system uncertainties
and external disturbances, and all of them are continu-
ous functions depending on the state x . Now, defining
d(x, t) = � f (x, t) + �b(x, t) u + d0(x, t), one can
rewrite the nonlinear third-order system (1) as:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = f (x, t) + b(x, t) u + d(x, t). (2)

The uncertain nonlinear system (2) is supposed to track
the desired trajectory xd = [x1d , x2d , x3d ]T , where
x2d = ẋ1d , x3d = ẋ2d and x3d is differentiable function
of time. The tracking error is defined as:

E(t) = x − xd = [e, ė, ë]T , (3)

where e = x1 − x1d .

Assumption 1 The nonlinear functions f (x, t),
b(x, t),� f (x, t),�b(x, t) and d0(x, t) are assumed to
be differentiable.

Assumption 2 [50]: There exists a strictly positive
constant δ̄ which is the lower bound of b(x, t), i.e.,
0 < δ̄ = inf {|b(x, t)|}.
Assumption 3 [50] There exists a constant μ̄ which
for every pair (x, t) satisfies the condition |d(x, t)| ≤
μ̄.

Lemma 1 [51] Assume that a continuous positive-
definite function V (t) satisfies the following differential
inequality:

V̇ (t) ≤ −αV (t) − βV η(t) ∀t ≥ t0, V (t0) ≥ 0, (4)

where α and β are positive constants, and η is a ratio
of two odd positive integers with 1 > η > 0. Then for
initial time t0, V (t) converges to zero at least in a finite
time:

ts = t0 + 1

α(1 − η)
ln

αV 1−η(t0) + β

β
. (5)

Proof By dividing two sides of the inequality (4) to
V η(t), one can obtain:

V−η(t)V̇ (t) ≤ −αV 1−η(t) − β, (6)

and consequently:

dt ≤ − V−η(t)

αV 1−η(t) + β
dV (t). (7)

Now, integrating two sides of (7) from t0 to ts yields:

ts − t0 ≤ −
0∫

V (t0)

V−η(t)

αV 1−η(t) + β
dV (t)

= − 1

α(1 − η)

[
ln β − ln

(
αV 1−η(t0) + β

)]

= 1

α(1 − η)
ln

αV 1−η(t0) + β

β
. (8)

which completes the proof of the lemma. ��
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2.1 Controllability analysis

The uncertain nonlinear system (1) can be transformed
into the controllability canonical form using the global
diffeomorphism specified by Isidori [52].

Assumption 4 [53] The distributions in the form of

Di = span
{
b, ad f b, . . . , adif b

}
, 0 ≤ i ≤ 2 are invo-

lutive and have constant rank i + 1.

Assumption 5 The uncertain functions � f (x, t) and
d0(x, t) satisfy parametric-strict-triangle condition
such that [� f (x, t), d0(x, t), Di ] ∈ Di , 0 ≤ i ≤ 1.

According to Assumptions 4 and 5, one can find a
function h(xi ) and obtain a diffeomorphism φ(x) =[
h, L f h, L2

f h
]T

such that the system (1) can be trans-

formed into the following form:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = L3
f h(φ−1(x)) + LbL

2
f h(φ−1(x))u + �3, (9)

where �3 = L� f L2
f h(φ−1(x))+ Ld0L

2
f h(φ−1(x))+

L�bL2
f h(φ−1(x)). The term�3 is the function relating

to the uncertainties and disturbances of the system. In
order to investigate the stabilization of the uncertain
nonlinear systems, the system (9) can be rewritten in
the following state-space model:

ẋ = Ax + B { f (x, t) + � f (x, t) + d0(x, t)

+ (b(x, t) + �b(x, t)) u} , (10)

where A =
[
0 1 0
0 0 1
0 0 0

]
, B =

[
0
0
1

]
.

Using the pole-placement technique, one can con-
sider a term kx where k = [k0, k1, k2], and k′

i s are
chosen such that s3 + k2s2 + k1s + k0 = 0 is a stable
polynomial. Then, the exponentially stable dynamics
is obtained as:
...
x + k2 ẍ + k1 ẋ + k0x = 0, (11)

which indicates that x → 0. Thus, system (10) can be
rewritten as:

ẋ = {A − Bk} x + B {kx + f (x, t) + � f (x, t)

+ d0(x, t) + (b(x, t) + �b(x, t)) u}, (12)

where the following transformation is considered for
the control input:

u = b(x, t)−1 {v − f (x, t)}, (13)

where v is a new control signal. The control input (13)
involves two parts: One part is the term −b(x, t)−1

f (x, t) which is used to cancel the nonlinearities of
the system, and the other term is b(x, t)−1v which is
employed to attenuate the effects of the uncertainties
and disturbances of the system. Substituting (13) into
(12) obtains:

ẋ = {A − Bk} x + B {(1 + G) v + H}, (14)

where G = �b(x, t)b(x, t)−1 and H = � f (x, t) +
kx + d0(x, t) − �b(x, t)b(x, t)−1 f (x, t). The func-
tions �b(x, t),� f (x, t) and d0(x, t) are continuous
functions, and then G and H are also continuous func-
tions. The system (14) is completely controllable and
can be controlled using various robust control tech-
niques.

3 Main results

3.1 Sliding surface design

The global switching function for system (2) can be
defined as:

s(e) = C
(
E(t) − E(0)e−ϕt), (15)

where C = [c1, c2, c3] are the gain constants and ϕ is
an appropriate positive constant.

Remark 1 Compared with the sliding surface sc(e) =
CE(t), the global sliding surface (15) makes the state
trajectories to arrive at the sliding surface right from the
beginning. As a result, the reaching phase is eliminated
and the global robustness of the whole system can be
guaranteed.

In light of (15), the global sliding mode s(e) = 0
indicates that:

CE(t) − CE(0)e−ϕt = 0, (16)

where based on Remark 1, one can obtain:

sc(e) = sc(0)e
−ϕt , (17)

where this is the unique solution of the following first-
order differential equation:

ṡc(e) + ϕsc(e) = 0. (18)

In order to satisfy s(e) converge to zero in finite time
and remove the chattering, the following FTSMsurface
is proposed:

σ(e) = ṡ(e) + λs(e) + μsη(e), (19)
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where λ and μ are positive constant values, and η is a
ratio of two odd positive integers with 1 > η > 1

2 .
In order to guarantee the FTSM surface and tracking

errors converge to zero in finite time, the following
theorem is presented.

Theorem 1 Consider the uncertain nonlinear system
(2). Applying the control law:

u̇ = − (c3b(x, t))
−1

(
�1 + μη�2�3 + �4u

+ κsgn(σ ) |σ |η + γ σ + χsgn(σ )
)
, (20)

with arbitrary positive coefficients γ and κ , and con-
sidering that χ is a scalar value which satisfies:

χ ≥ (
c3ḋ + (c2 + λc3 + μηc3�3) d

)
max , (21)

where:

�1 = (c1 + λc2) (x3 − x3d) + (c2 + λc3) ( f − ẋ3d)

+ λc1 (x2 − x2d) + c3
(
ḟ − ẍ3d

)

−ϕ(ϕ − λ)e−ϕt
3∑

i=1

ci e(0)
(i−1), (22)

�2 = c1 (x2 − x2d) + c2 (x3 − x3d)

+ c3 ( f − ẋ3d) + ϕe−ϕt
3∑

i=1

ci e(0)
(i−1), (23)

�3 =
⎛
⎝c1 (x1 − x1d) + c2 (x2 − x2d)

+ c3 (x3 − x3d) − e−ϕt
3∑

i=1

ci e(0)
(i−1)

)η−1

,

(24)

�4 = (μη�3c3 + c2 + λc3) b(x, t) + c3ḃ(x, t), (25)

then the trajectory of the system (2) is forced to move
from any initial condition to the sliding surface (15) in
finite time and to remain on it.

Proof Consider the candidate Lyapunov function as:

V (σ ) = 1

2
σ 2. (26)

From (3), the derivatives of the tracking error e are
obtained as:

ė = x2 − x2d , (27)

ë = x3 − x3d , (28)
...
e = f (x, t) + b(x, t)u + d(x, t) − ẋ3d , (29)

e(4) = ḟ (x, t) + ḃ(x, t)u + b(x, t)u̇

+ḋ(x, t) − ẍ3d . (30)

From (19), (27)–(30), the derivative of σ(e) can be
obtained as:

σ̇ (e) = s̈(e) + λṡ(e) + μηṡ(e)sη−1(e)

=
3∑

i=1

ci e
(i+1) − ϕ(ϕ − λ)e−ϕt

3∑
i=1

ci e(0)
(i−1)+λ

3∑
i=1

ci e
(i)

+μη

(
3∑

i=1

ci e
(i) + ϕe−ϕt

3∑
i=1

ci e(0)
(i−1)

)

×
(

3∑
i=1

ci e
(i−1) − e−ϕt

3∑
i=1

ci e(0)
(i−1)

)η−1

,

(31)

where using the equalities (22)–(25), then (31) can be
rewritten as:

σ̇ (e) = �1 + μη�2�3 + �4u + c3b(x, t)u̇

+(
c2 + λc3 + μηc3�3

)
d(x, t) + c3ḋ(x, t).

(32)

Differentiating V (σ ) and using (32) yields:

V̇ (σ ) = σ σ̇

= σ
(
�1 + μη�2�3 + �4u + c3b(x, t)u̇

+(
c2 + λc3 + μηc3�3

)
d(x, t)

+ c3ḋ(x, t)
)
, (33)

where substituting (20) in (33), one can obtain:

V̇ (σ ) = −σκsgn(σ ) |σ |η − γ σ 2 − σχsgn(σ )

+ σ
(
(c2 + λc3 + μηc3�3) d(x, t)

+ c3ḋ(x, t)
)
, (34)

where based on the condition (21) follows that:

V̇ (σ ) ≤ −γ |σ |2 − κ |σ |η+1

= −αV (σ ) − βV η̄(σ ) (35)

where η̄ = (η + 1) /2 < 1, α = 2γ > 0 and
β = 2η̄κ > 0. This means that the Lyapunov function
(26) decreases gradually and the sliding surface con-
verges to zero in finite time. Then, the tracking errors
are convergent to zero in the finite time. This completes
the proof. ��

3.2 Adaptive sliding mode controller design

After design of the sliding surface and control input,
the next phase is to design an adaptation law for
the parameter χ in (21). Actually, it is not easy to
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achieve the upper bound of the term (c3ḋ + (c2 + λc3
+ μηc3�3)d) due to the complexity of the system
uncertainties and external disturbances. Then, an adap-
tation law is presented to overcome this problem. The
control law (20) can be modified as:

u̇ = − (c3b(x, t))
−1 (�1 + μη�2�3 + �4u

+ κsgn(σ ) |σ |η + γ σ + χ̂sgn(σ )
)
, (36)

where χ̂ is the estimate of χ in (36). The adaptation
parameter χ̂ can be found by the adaptation law as
follows:
˙̂χ = ρ−1 |σ(e)| , (37)

where ρ > 0 is an adaptation gain. By choosing appro-
priate values of ρ, the rate of the parameter adaptation
can be adjusted. Defining χ̃ = χ̂ − χ , the following
expression is obtained:
˙̃χ = ˙̂χ = ρ−1 |σ(e)| . (38)

Theorem 2 Consider the uncertain nonlinear system
(2). If the FTSM surface (19), the control law (36) and
the adaptation law (38) are applied, then the trajec-
tories of the system (2) are forced toward the sliding
surface and the reaching condition is guaranteed.

Proof Consider the candidate Lyapunov function as:

V (σ ) = 1

2

(
σ 2 + ρχ̃2

)
. (39)

Taking the time derivative of V (σ ) and using (32) and
(38) yields:

V̇ (σ ) = σ σ̇ + ρχ̃ ˙̃χ
= σ

{
�1 + μη�2�3 + �4u + c3b(x, t)u̇

+ (c2+λc3+μηc3�3) d(x, t)+c3ḋ(x, t)
}

+ ρχ̃ ˙̂χ, (40)

where substituting (36) in (40), one can find:

V̇ (σ ) = σ
{−κsgn(σ ) |σ |η − γ σ − χ̂sgn(σ )

+ (c2+λc3+μηc3�3) d(x, t)+c3ḋ(x, t)
}

+ ρχ̃ ˙̂χ
≤ −

{
κ |σ |η+1 + γ |σ |2

}
− χ̂ |σ | + χ |σ |

−χ |σ |+|σ | {(c2+λc3+μηc3�3) d(x, t)

+ c3ḋ(x, t)
} + ρχ̃ ˙̂χ, (41)

where using (21) and (38), it yields:

V̇ (σ ) ≤ −κ |σ |η+1 − γ |σ |2 − χ̂ |σ | + χ |σ |
+ ρ

(
χ̂ − χ

)
ρ−1 |σ | = −κ |σ |η+1 − γ |σ |2 .

(42)

Then, using the adaptive tuning control law, it is con-
cluded that V̇ (σ ) ≤ 0 for κ > 0 and γ > 0. This
completes the proof. ��
Remark 2 Using the adaptive tuning controller, the
finite time convergence of the tracking errors is not
guaranteed. Then, by the adaptive control law (36) in
Theorem 2, the Lyapunov function decreases gradually
and only the reaching condition is satisfied.

Remark 3 From (42), the term V̇ (σ ) is negative semi-
definite and ensures that V (σ ), σ (e) and χ̃ are all
bounded. It is concluded from (19) that s(e) and ṡ(e)
are also bounded. Since V (0) is bounded and V (σ ) is
non-increasing and bounded, it can be concluded that

lim
t→∞

t∫
0

‖σ‖ dt and lim
t→∞

t∫
0

‖s‖ dt are bounded. Since

lim
t→∞

t∫
0

‖s‖ dt and ṡ(e) are bounded, according to Bar-

balat’s lemma, s(e) will asymptotically converge to

zero, i.e., lim
t→∞

t∫
0
s(e)dt = 0. Consequently, from (15),

E(t) is bounded and will also asymptotically converge
to zero. Then, because of the boundedness of the func-
tions �i , (i = 1, . . . , 4), the control signal of (36) is
bounded.

To reduce the chattering behavior, the control law
(36) can be modified to be:

u̇ = − (c3b(x, t))
−1

(
�1 + μη�2�3 + �4u

+ κ |σ |η sat
(σ

a

)
+ γ σ + χ̂sat

(σ

a

))
, (43)

where sat(.) is a saturation function and a is the bound-
ary layer thickness.

Remark 4 Since the saturation function is used in (43),
the FTSM surface σ(e)is not equal to zero for all of the
time and the adaptive parameter increases slowly and
boundlessly. To overcome this problem, the adaptation
law (37) can be modified to the following formula:

˙̂χ =
{
0 if |σ(e)| ≤ a

ρ−1 |σ(e)| if |σ(e)| > a
(44)

Remark 5 In general it is required to feedback the
entire state variables to synthesize a reasonable con-
troller. In the cases in which some of the variables are
notmeasurable, the delayed feedback control technique
can be employed. In particular, the derivative of the

123



An adaptive fast terminal sliding mode control ... 605

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

time

x 1, x
1d

x1

x1d

Fig. 1 State trajectory x1

state variable can be replaced by a delay term in the
form of an Euler approximation of the derivative func-
tion [54]. The state-derivative ẋ3 is replaced by a state
delay function as ẋ3 = 1

h [x3(t) − x3(t − h)] provided
the delay h > 0 is sufficiently small.

4 Simulation results

Example 1 In this section, in order to verify the perfor-
mance of the proposed FTSM control method, the fol-
lowing uncertain nonlinear third-order system is con-
sidered [50]:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −3x3 − 4x2 − 2x1 + x1x2

+� f (x, t) + u + d(x, t), (45)

where � f (x, t) = 0.39 sin
(
x1x2 + x3

√
t
)

and
d(x, t) = 0.6 sin(10t). The initial conditions of the
system are chosen as: x(0) = [

0.5 1.5 −1
]T
. The

desired trajectory is determined as x1d = sin(t). The
control parameters are selected by trial and error as:
a = 0.2, c1 = 2, c2 = 1, c3 = 0.5, h = 0.1, ϕ =
10, λ = 5, χ = 6, μ = 10, γ = 3, κ = 15, and
η = 3/5.

The position tracking trajectories of states x1, x2 and
x3 are demonstrates in Figs. 1, 2 and 3, respectively.
The trajectory of the control input is shown in Fig. 4.
It is shown that the proposed control method can obtain
the superior position tracking performance and high
robustness and is able to overcome the uncertainties
and nonlinearities. The time responses of the GSMC
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Fig. 4 Control input u

surface s and the FTSM surface σ are plotted in Figs. 5
and 6. Obviously, it can be seen that the switching sur-
face and FTSM surface converge to the origin quickly.
Noticeably, this numerical simulation confirms the the-
oretical analysis.
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Example 2 Consider the following nonlinear system
[55]:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −(1 + 0.3 sin t)x21 − (1.5 + 0.2 cos t)x2

− (1 + 0.4 sin t)x3 + (3 + cos x1)u + w (46)

The desired state trajectory is determined as xTd =
[sin t, cos t,− sin t]. The control parameters and ini-
tial conditions are given as: c1 = 12, c2 = 7, c3 =
1, h = 0.1, ϕ = 8, λ = 3, χ = 5, μ = 5, γ =
2, κ = 10, η = 3/5, and x(0) = [

0 0 −0.35
]T
. The

boundary layer a is chosen as 0.15. The disturbance
w is assumed to be a random noise with a mean value
of 0.5 and |w| ≤ 0.1. Figures 7, 8, 9, 10, 11 and 12
show the simulation results using the proposed control
technique. As shown in Figs. 7, 8 and 9, the tracking
performance of the states x1, x2 and x3 is accurately
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Fig. 8 State trajectory x2

achieved. The trajectory of the control signal is demon-
strated in Fig.10. It is shown that the control input is
smooth and is capable of overcoming the nonlineari-
ties and disturbances. The trajectories of the surfaces s
and σ are shown in Figs. 11 and 12, correspondingly. It
can be concluded that these surfaces converge to zero
quickly. Therefore, this simulation confirms the theo-
retical results.

Example 3 Consider the Genesio’s chaotic system
described by [17]:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −6x1 − 2.92x2 − 1.2x3

+ (1 − 0.1 sin(t)) u + x21 . (47)

The reference signal is determined as: x1d = sin(t).
The whole system is numerically simulated using the
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proposed controller with the following initial parame-
ters and initial conditions: a = 0.2, c1 = 3, c2 =
1, c3 = 2, h = 0.1, ϕ = 8, λ = 3, χ = 5, μ = 5, γ =
2, κ = 10, η = 3/5, and x(0) = [−1 1 0

]T
.

The controller is applied at time t = 15. The track-
ing trajectories of states x1, x2 and x3 are shown in
Figs. 13, 14 and 15. It is demonstrated from these fig-
ures that as soon as the control is started, the syn-
chronization of all states is realized with good per-
formance. The trajectory of the control input is dis-
played in Fig.16. The time responses of the GSMC
surface s and the FTSM surface σ are demonstrated
in Figs. 17 and 18. Clearly, it is found that as soon
as the controller is applied, the switching surface and
FTSM surface converge to the origin quickly. There-
fore, the uncertain Genesio’s chaotic system is stabi-
lized on an oscillating system by the action of the pro-
posed controller.
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The effects of changing various design parameters
on the tracking accuracy, control signal and conver-
gence rate in all of the simulations are investigated with
the following descriptions: (a) By increasing ϕ, we can
meet worse tracking accuracy and overshoots in the
control signal, but a fast convergence; (b) if the para-
meter λ is increased, the tracking accuracy and conver-
gence rate are improved, but amplitude of the control
signal is increased; (c) if the parameter μ is decreased,
the overshoot in the tracking response and the ampli-
tude of the control input are decreased, but the conver-
gence rate is improved; (d) the increase in κ improves
the convergence speed and increases the variations of
the control signal, but no explicit influence on the track-
ing performance is obtained; (e) if the parameter χ

is increased, the fast convergence is satisfied, but the
amplitude of the control input is increased and the chat-
tering phenomenon is observed in the control signal; (f)
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The increment in the parameters c1, c2 and c3 causes
the improvement in the convergence rate, decrease in
the accuracy and increase in input amplitude; (g) if the
parameter γ is increased, the tracking performance and
convergence rate are improved, but the input signal is
worsened.
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5 Conclusions

Tracking control of uncertain nonlinear third-order sys-
tems is studied in this work. A novel scheme for the
design of adaptive FTSM controller combined with
a new GSMC surface is introduced. This technique
provides the existence of the sliding mode around the
switching surface in a finite time. Finally, the reaching
phase is eliminated and the robustness of the system
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is improved. In general, compared with many existing
researches on TSM and FTSM, the suggested method
demonstrates four attractive features: (i) It eliminates
chattering phenomenon in the control input and there-
fore is appropriate for practical applications; (ii) it
is rather straightforward and guarantees the presence
of the sliding mode around the surface in the finite
time; (iii) by using on-line adaptation law, the infor-
mation about upper bounds of the perturbations is not
necessary; (iv) based on the elimination of the reach-
ing phase, the robustness of the system is guaranteed
right from the beginning of whole response. Intensive
simulation results are showed to verify the efficiency
of the offered technique, and satisfactory results are
realized. The proposed control law can achieve favor-
able tracking performance for higher-order nonlinear
systems. The further researches in this field can be
extended to time-delayed neuron networks using the
results reported in [56,57].
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