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Abstract A 3D jerk system with only one stable
equilibria was presented and discussed. Some periodic
orbits and chaotic behaviors of this systemare obtained.
Meanwhile, a delayed feedback control scheme for
this system was proposed. By using the method of
projection for center manifold computation, Hopf
bifurcation for the delayed feedback control system
was analyzed and obtained. The simulation results
demonstrate the correctness of the Hopf bifurcation
analysis and the effectiveness of the proposed delayed
feedback control strategy.
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1 Introduction

In 1963, Lorenz [1] constructed a 3D quadratic
polynomial ODEs system and found a first chaotic
attractor in it. Later, many Lorenz-like systems such as
Chen system [2] and Lü system [3] were constructed
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and researched. From the stability of equilibria point
of view, these chaotic systems have one saddle and
two saddle-foci, and their chaotic attractors are of
Shilnikov type [4]. Since the violation of Shilnikov
condition for chaotic system with stable equilibria,
therefore, it is interesting to ask whether or not
there are 3D autonomous chaotic systems with stable
equilibria? In 2008, Yang [5] constructed another
chaotic system with one saddle and two stable node-
foci and further analyzed in Ref. [6,7]. Moreover,
the other chaotic system only with two stable node-
foci is presented in 2010 by Yang [8]. For a generic
3D quadratic autonomous system, does there exist
chaotic system with none, one equilibrium or any
number equilibria? Sprott [9–11] gave some simple
chaotic system with none or one equilibrium by
computer search. Subsequently, chaotic systems with
one stable equilibrium [12–16], no equilibria [17,18],
any number equilibria [19] and a line equilibrium
[20] have been presented. By the category of chaotic
attractors either self-excited or hidden [21–23], we
call the chaotic attractors in dynamical systems with
no equilibria or with only stable equilibria hidden
attractors. From a computational point of view these
hidden attractors cannot be found easily by numerical
methods. Furthermore, knowledge about equilibria
does not help in the localization of hidden attractors
[20]. Therefore, understanding the local and the global
behaviors of chaotic systems with hidden attractors is
of great importance.
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On the other hand, due to unexpected behaviors
that may arise from a chaotic system, chaos control
and applications have gained increasing attention in
the past few decades. Many control techniques have
been described and found, such as traditional linear and
nonlinear control methods [24,25], adaptive control
methods [26,27], optimal control methods [28], fuzzy
control methods [29] and delayed feedback control
[30,31]. These control methods can be classified
into two categories, the OGY control and delayed
control. The OGY control method is based on the
idea of the stabilization of unstable periodic orbits
embedded within a strange attractor, and it is achieved
by making a small time-dependent perturbation in the
form of feedback to an accessible system parameter.
However, the changes of the parameter are discrete in
time since this method deals with the Poincare map.
Furthermore, the OGY control method can stabilize
only those periodic orbits whose maximal Lyapunov
exponent is small compared with the reciprocal of
the time interval between parameter changes. Since
the corrections of the parameter are rare and small,
the fluctuation noise leads to occasional bursts of the
system into the region far from the desired periodic
orbit, and these bursts aremore frequent for large noise.
Considering these limitations, the time-delay control
method (also called time-delay autosynchronization
method) was introduced by Pyragas [32] based on
a time-continuous control scheme. Choosing proper
time delay, the difference of the present state of a
given system to its delayed value will vanish if the
state to be stabilized is reached. Thus, the method
is noninvasive. Moreover, the delayed control has no
need for a reference system since it generates the
control force from information of the system itself.
And, the time delay is an inherent in various biological
systems, engineering systems, neuron networks and
social sciences. Also, in comparison, the delayed
feedback control method is simpler and convenient in
controlling chaos for a continuous dynamical system.
Following these ideas, and motives by Ref. [33,34],
this paper analyzes the stability and Hopf bifurcation
analysis on a new 3D quadratic jerk system
with hidden attractor by using delayed control
method

dx

dt
= y,

dy

dt
= z,

dz

dt
= −ax − by − cz + y2 + bxy

(1)

with a, b, c are real numbers and a �= 0. The paper is
organized as follows: In Sect. 2, some basic dynamics
such as the stability of equilibria, Lyapunov exponents
spectrum (LES), largest Lyapunov exponent (LLE),
periodic orbits and chaotic behaviors of system (1)
are presented by numerical simulations. Add a delayed
feedback item to the third equation of (1), and a delayed
feedback control system is created. The existence of
Hopf bifurcation parameters are determined in Sect. 3.
In Sect. 4, the direction, stability and the period of the
bifurcating solutions are discussed based on the center
manifold theorem and the projection method. To verify
the theoretic analysis, numerical simulations are given
in Sect. 5. Finally, concluding remarks are given in
Sect. 6.

2 Dynamical behaviors

2.1 Dissipativity

Since

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
= −c,

the system (1) is dissipative under the condition c > 0.
It can be easily verified that the exponential contraction
term is e−c. This means that a volume V0 is contracted
to V0e−c in time t , and each volume containing the
system trajectory shrinks to zero as t → +∞ at an
exponential rate −c.

2.2 Equilibria and stability

Let ẋ = 0, ẏ = 0, ż = 0; system (1) has only one
equilibria O(0, 0, 0). The Jacobian matrix of system
(1) at O is⎛
⎜⎝

0 1 0

0 0 1

−a −b −c

⎞
⎟⎠

and the characteristic equation is

f (λ) = λ3 + cλ2 + bλ + a

In accordance with the Routh–Hurwitz criterion, we
can see that the characteristic equation has three
negative real parts roots when c > 0, a > 0, and
bc− a > 0. Therefore, system (1) has a stable node or
stable node-foci. Also by the Routh–Hurwitz criterion,
we can see that the system (1) has a saddle-foci when
c > 0, a > 0, and bc − a < 0.
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Table 1 Various phase portraits of system (1) for some fixed
parameters with b = 1, c = 4 (PVs parameter values, PPs phase
portraits, PS Poincare section)

PVs Dynamics LES PPs PS

a = 3.31 Periodic-1 [0, −0.073, −3.927] Fig. 1 Fig. 9a

a = 3.35 Periodic-2 [0, −0.058, −3.942] Fig. 2 Fig. 9b

a = 3.36 Periodic-4 [0, −0.038, −3.964] Fig. 3 Fig. 9c

a = 3.4 Chaotic [0.062, 0, −4.059] Fig. 4 Fig. 9d

Table 2 Various phase portraits of system (1) for some fixed
parameters with b = 0.6, c = 1.7 (PVs parameter values, PPs
phase portraits, PS Poincare section)

PVs Dynamics LES PPs PS

a = 0.98 Periodic-1 [0, −0.118, −1.585] Fig. 5 Fig. 10a

a = 0.989 Periodic-2 [0, −0.010, −1.693] Fig. 6 Fig. 10b

a = 0.995 Periodic-4 [0, −0.027, −1.678] Fig. 7 Fig. 10c

a = 1 Chaotic [0.046, 0, −1.745] Fig. 8 Fig. 10d
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Fig. 1 Periodic-1 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane

2.3 Complex and chaotic behaviors

To further study the dynamics of system (1), numerical
simulations have been carried out. Tables 1 and 2 show
various phase portraits of system (1) for some fixed
parameters.

In addition, we define the Lyapunov dimension by
Dλ = j+ 1|λ j+1|

∑ j
i=1 λi , where j is the largest integer
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Fig. 2 Periodic-2 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane
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Fig. 3 Periodic-4 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane

which satisfies
∑ j

i=1 λi ≥ 0 and
∑ j+1

i=1 λi ≥ 0. We
can find Dλ = 2.015 for a = 3.4, b = 1, c = 4 and
Dλ = 2.026 for a = 1, b = 0.6, c = 1.7.

In order to determine whether the system is chaotic
or not, we should calculate the Lyapunov exponents
spectrum of system (1) for fixed b, c, and let a varies.
When a varies in the interval [3.2, 3.4] and [0.9, 1],
Figs.11, 12, 13 and 14 show the Lyapunov exponents
spectrum and the largest Lyapunov exponent of system
(1) for b = 1, c = 4 and b = 0.6, c = 1.7,
respectively. In order to show chaotic state in a wide
parameter region, we calculate the distribution for
various attractors such as trivial attractors, periodic
attractors, quasiperiodic attractors and chaotic attractors
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Fig. 4 Chaotic attractor of system (1) and projection in x − y
plane, y − z plane, z − x plane
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Fig. 5 Periodic-1 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane

region in a two-parameter space a–b with c = 4 and
c = 1.7 in Figs. 15 and 16, respectively.

3 Existence of Hopf bifurcation for system (1) with
time delay

Following the idea of Ref. [35,36], we add a time-
delayed force k(z(t−τ)− z(t)) to the third equation of
the system (1), that is, the following delayed feedback
control system

ẋ = y, ẏ = z,

ż = −ax − by − cy + y2 + bxy + k(z(t − τ) − z(t)).

(2)
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Fig. 6 Periodic-2 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane
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Fig. 7 Periodic-4 orbit of system (1) and projection in x − y
plane, y − z plane, z − x plane

The characteristic equation of the linearized system is

det

⎛
⎜⎝

λ −1 0

0 λ −1

a b λ + c + k − ke−λτ

⎞
⎟⎠ = 0.

That the following transcendental equation is obtained

λ3 + (c + k)λ2 + bλ + a − kλ2e−λτ = 0. (3)

According to theHopf bifurcation theory, we let λ =
ωi , and substituting this into (3), we have

−ω3i − (c + k)ω2 + bωi + a + kω2e−ωτ i = 0.
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Fig. 8 Chaotic attractor of system (1) and projection in x − y
plane, y − z plane, z − x plane
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Fig. 9 Poincare section (1) with different a: a a = 3.31, b
a = 3.35, c a = 3.36, d a = 3.4
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Fig. 10 Poincare section (1) with different a: a a = 0.98, b
a = 0.989, c a = 0.995, d a = 1
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Fig. 11 Lyapunov exponents spectrum of system (1) for b = 1,
c = 4
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Fig. 12 Largest Lyapunov exponent of system (1) for b = 1,
c = 4

Separating the real and imaginary parts, we have
{

(c + k)ω2 − a = kω2 cos(ωτ)

bω − ω3 = kω2 sin(ωτ)
(4)

By simple calculation, we can get

((c + k)ω2 − a)2 + (bω − ω3)2 = k2ω4. (5)

Let z = ω2, and denote p = c2 + 2kc − 2b, q =
b2 − 2ac − 2ak, r = a2; then, Eq. (5) becomes

h(z) = z3 + pz2 + qz + r. (6)

Next, we introduce the following results which were
proved by [37,38].

Proposition 1 (1) If Δ = p2 − 3q < 0, Eq. (6) has no
positive roots, i.e., the necessary condition for Eq. (6)

123



582 Z. Wang et al.

0.9 0.92 0.94 0.96 0.98 1
−2

−1.5

−1

−0.5

0

a

LE
S

λ1
λ2
λ3

Fig. 13 Lyapunov exponents spectrum of system (1) for b =
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Fig. 14 Largest Lyapunov exponent of system (1) for b = 0.6,
c = 1.7

to have positive real roots is Δ ≥ 0; (2) , and Eq. (6)

has positive roots if and only if z∗1 = −p+√
Δ

3 > 0 and
h(z∗1) ≤ 0; (3) if b > 0, a > 0, bc−a > 0 and Δ < 0,
then Eq. (3) has negative real parts for all τ ≥ 0.

Suppose Δ ≥ 0, z∗1 > 0, h(z∗1) ≤ 0, without loss
of generality, we assume that (6) has three positive
roots of Eq. (6) by z j , j = 1, 2, 3; consequently, Eq.
(5) has three positive roots ω j = √

z j , j = 1, 2, 3.
Substituting these into Eq. (4), we have
⎧⎪⎪⎨
⎪⎪⎩

cosω jτ j = (c+k)ω2
j−a

kω2
j

= P

sinω jτ j = bω j−ω3
j

kω2
j

= Q

, j = 1, 2, 3 (7)
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b

Fig. 15 Distribution for various attractors region in two-
parameter space a–b, c = 4, where red solid circle
denotes periodic attractor, green solid box denotes quasiperiodic
attractor, blue plus denotes chaotic attractor, and black asterisk
denotes trivial attractor. (Color figure online)
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Fig. 16 Distribution for various attractors region in two-
parameter space a–b, c= 1.7, where red solid circle denotes
periodic attractor, green solid box denotes quasiperiodic
attractor, blue plus denotes chaotic attractor, and black asterisk
denotes trivial attractor. (Color figure online)

Let

τ j =
⎧⎨
⎩

1
ω j

(arccos(P) + 2nπ), Q ≥ 0

1
ω j

(2π − arccos(P) + 2nπ), Q < 0

where j = 1, 2, 3, n = 0, 1, · · · ; then, ±ω j i is a pair
of purely imaginary roots of Eq. (3) with τ = τ j , j =
1, 2, 3.

Theorem 1 Suppose z j = ω2
j , and

dh(z)
dz

∣∣∣
z=z j

�= 0,

if Δ≥ 0, z∗1 > 0, h(z∗1)≤ 0, then
[
Re
(
dλ
dτ

)]−1

τ=τ j
�= 0;
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moreover,
[
Re
(
dλ
dτ

)]−1

τ=τ j
and dh(z)

dz

∣∣∣
z=z j

have the

same sign.

Proof Consider the derivative with respect to τ of Eq.
(3), we can get
[
dλ

dτ

]−1

= − (3λ2 + 2(c + k)λ + b)eλτ

kλ3
+ 2

λ2
− τ

λ
.

From (7), we have
[
Re

(
dλ

dτ

)]−1

τ=τ j

= (b−3ω2
j ) sin(ω jτ j )+2(c+k)ω j cos(ω jτ j )

kω3
j

− 2

ω2
j

=
(b − 3ω2

j )
bω j−ω3

j

kω2
j

+ 2(c + k)ω j
(c+k)ω2

j−a

kω2
j

kω3
j

− 2

ω2
j

= 3ω4
j + 2(c2 + 2ck − 2b)ω2

j + (b2 − 2ac − 2ak)

kω4
j

= 1

kω4
j

dh(z)

dz

∣∣∣∣
z=z j

�= 0.

Define τ0 = τ j0 = min1≤ j≤3{τ j }, ω0 = ω j0 , z0 =
ω2
0, by the Ref. [37,38], we have

Proposition 2 (1) If b > 0, a > 0, bc−a > 0, z∗1 > 0,
and h(z∗1) ≤ 0, then Eq. (3) has negative real parts
for τ ∈ [0, τ0);

(2) Moreover, if dh(z)
dz

∣∣∣
z=z0

�= 0, τ = τ0, then ±ω0i is

a pair of simple purely imaginary roots of Eq. (3).

Theorem 2 If b > 0, a > 0, bc − a > 0, Δ ≥ 0,
z∗1 > 0 and h(z∗1) ≤ 0, then the system (2) undergoes
a Hopf bifurcation at the equilibria O when τ = τ0.

4 Stability of bifurcating periodic solution

In this section, we will analyze the direction of Hopf
bifurcation and stability of bifurcatingperiodic solution
of system (2) at τ = τ0 using the center manifold
theorem. Let Cm[−r, 0] denote the space of real , m-
dimensional vector valued functions on the interval
[−r, 0] all of whose components have m continuous
derivatives. When m = 0, the superscript will be
omitted. For convenience, t = τ s, τ = τ0 +μ, μ ∈ R;
then, the system (2) can be changed into

u̇(s) = Lμu(s) + f (μ, u(s)) (8)

where s > 0, μ ∈ R1, Lμ is a one-parameter
family of continuous (bounded) linear operators, Lμ :
C[−1, 0] → R3, the operator f (μ, u(s)) : R ×
C[−1, 0] → R3 contains the nonlinear terms, and

Lμϕ(s) = (τ0 + μ)

⎛
⎜⎝

0 1 0

0 0 1

−a −b −c − k

⎞
⎟⎠

⎛
⎜⎝

ϕ1(s)

ϕ2(s)

ϕ3(s)

⎞
⎟⎠

+ (τ0 + μ)

⎛
⎜⎝
0 0 0

0 0 0

0 0 k

⎞
⎟⎠

⎛
⎜⎝

ϕ1(s − 1)

ϕ2(s − 1)

ϕ3(s − 1)

⎞
⎟⎠

f (μ, ϕ(s)) = (τ0 + μ)

⎛
⎜⎝

0

0

ϕ2
2(s) + bϕ1(s)ϕ2(s)

⎞
⎟⎠ .

Based on the Riesz representation theorem [36],
there is a bounded variation function

η(μ, θ) = (τ0 + μ)

⎛
⎜⎝

0 1 0

0 0 1

−a −b −c − k

⎞
⎟⎠ δ(θ)

+ (τ0 + μ)

⎛
⎜⎝
0 0 0

0 0 0

0 0 k

⎞
⎟⎠ δ(θ + 1)

where δ(θ) is the Dirac delta function, and θ ∈ [−1, 0]
such that Lμϕ = ∫ 0

−1 dη(μ, θ)ϕ(θ), ϕ ∈ C[−1, 0].
Next, we define

A(μ)ϕ =
{ dϕ(θ)

dθ , θ ∈ [−1, 0)
∫ 0
−1 dη(μ, s)ϕ(s), θ = 0

and

R(μ)ϕ =
{

0, θ ∈ [−1, 0)

f (μ, ϕ), θ = 0

for ϕ ∈ C1[−1, 0]. So we can rewrite system (8) into
an operate equation

u̇(s) = A(μ)u + R(μ)u (9)

where u(θ) = u(s+θ), θ ∈ (−1, 0]. For φ ∈ C1[0, 1],
define

A∗(μ)ϕ =
{ − dφ(ν)

dν , ν ∈ (0, 1]
∫ 0
−1 dηT(μ, ν)ϕ(−ν), ν = 0
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and a bilinear inner product

<φ, ϕ> = −
∫ 0

θ=−1

∫ θ

ν=0
φ̄T(ν − θ)dη(0, θ)ϕ(ν)dν

+ φ̄T(0)ϕ(0).

Obviously, A∗(0) and A(0) are adjoint operators, i.e.,
if A(0)q(θ) = ω0τ0iq(θ), then exists a nonzero vector
q∗(ν) such that A∗(0)q∗(ν) = −ω0τ0iq∗(ν). Let
q(θ) = (1, α, β)Teiω0τ0θ , θ ∈ (−1, 0); then,

τ0

⎛
⎜⎝
iω0 −1 0

0 iω0 −1

a b iω0 + c + k − ke−iω0τ0

⎞
⎟⎠ q(0) = 0

Hence, we obtain q(0) = (
1, iω0,−ω2

0

)T
.

Suppose that the eigenvector q∗(ν) of A∗(0) is
q∗(ν) = ρ(1, α∗, β∗)Teiω0τ0ν , 0 ≤ ν < 1; then,

τ0

⎛
⎜⎝

−iω0 0 a

−1 −iω0 b

0 −1 −iω0+c+k−keiω0τ0

⎞
⎟⎠ q∗(0)=0

Hence, we obtain q∗(0) =
(
1, b

a + i
ω0

, iω0
a

)T
. Let <

q∗(ν), q(θ) >= 1, one can obtain

<q∗(ν), q(θ)>

= −
∫ 0

θ=−1

∫ θ

ν=0
q̄∗T(ν − θ)dη(0, θ)q(ν)dν

+ q̄∗T(0)q(0)

= ρ̄(1 + αᾱ∗ + ββ̄∗)

−
∫ 0

θ=−1

∫ θ

ν=0
ρ̄(1, ᾱ∗, β̄∗)e−iω0τ0(ν−θ)dη(0, θ)

×
⎛
⎜⎝

1

α

β

⎞
⎟⎠ eiω0τ0νdν

= ρ̄(1 + αᾱ∗ + ββ̄∗)

−
∫ 0

θ=−1
τ0ρ̄(1, ᾱ∗, β̄∗)

⎡
⎢⎣

⎛
⎜⎝
0 0 0

0 0 0

0 0 k

⎞
⎟⎠ θδ(θ + 1)

⎤
⎥⎦

×
⎛
⎜⎝

1

α

β

⎞
⎟⎠ eiω0τ0θdθ

=
∫ 1

ξ=0
τ0ρ̄(1, ᾱ∗, β̄∗)

×
⎛
⎜⎝
0 0 0

0 0 0

0 0 k

⎞
⎟⎠ δ(ξ)

⎛
⎜⎝

1

α

β

⎞
⎟⎠ eiω0τ0(ξ−1)dξ

+ ρ̄(1 + αᾱ∗ + ββ̄∗)

= τ0ρ̄(1, ᾱ∗, β̄∗)

⎛
⎜⎝
0 0 0

0 0 0

0 0 k

⎞
⎟⎠

⎛
⎜⎝

1

α

β

⎞
⎟⎠ e−iω0τ0

+ ρ̄(1 + αᾱ∗ + ββ̄∗)
= ρ̄(1 + αᾱ∗ + ββ̄∗ + kτ0ββ̄∗e−iω0τ0) = 1

Hence, we have

ρ = 1

1 + ᾱα∗ + β̄β∗ + kτ0β̄β∗eiω0τ0
.

Next, we study the stability of bifurcating periodic
solutions. We first compute the coordinates to describe
the center manifold C0. For u(s) a solution of (9) at
μ = 0, we define

z(s) = <q∗(0), u(s)> (10)

and define

w(s, θ) = u(s) − z(s)q(θ) − z̄(s)q̄(θ)

= u(s) − 2Re{z(s)q(θ)}. (11)

On the manifold C0, we suppose

w(s, θ) = w(z(s), z̄(s), θ) = w20(θ)
z2

2
+ w11(θ)zz̄

+w02(θ)
z̄2

2
+ w30(θ)

z3

6
+ · · · (12)

In effect, z and z̄ are local coordinates for C0 in C in
the directions of q∗(0) and q̄∗(0). Note that w is real
if u(s) is, we shall deal with real solutions only. For
solutions u(s) ∈ C0 of (9), since μ = 0, we have

ż(s) = <q∗(0), u̇(s)>

= <q∗(0), A(0)u(s) + R(0)u>

= <q∗(0), A(0)u(s)> + <q∗(0), R(0)u>

= <A∗(0)q∗(0), u(s)> + <q∗(0), R(0)u>

= iω0τ0z(s) + z̄(s)q̄(0))

+ q̄∗T(0) f (0, w(s, 0) + z(s)q(0). (13)

Let

g(z, z̄) = q̄∗T(0) f (0, w(s, 0)+z(s)q(0)+ z̄(s)q̄(0))

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · ·

For θ = 0, we have

u(s) = w(s, 0) + z(s)q(0) + z̄(s)q̄(0)

=

⎛
⎜⎜⎝

z(s) + z̄(s) + w20,1
z2(s)
2 + o1

αz(s) + ᾱz̄(s) + w20,2
z2(s)
2 + o2

βz(s) + β̄ z̄(s) + w20,3
z2(s)
2 + o3

⎞
⎟⎟⎠
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where

o1 = w11,1z(s)z̄(s)+w02,1
z̄2(s)

2
+w30,1

z3(s)

6
+ · · ·

o2 = w11,2z(s)z̄(s)+w02,2
z̄2(s)

2
+w30,2

z3(s)

6
+ · · ·

o3 = w11,3z(s)z̄(s)+w02,3
z̄2(s)

2
+w30,3

z3(s)

6
+ · · ·

then⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 2ρ̄τ0β̄
∗(α2 + bα)

g11 = ρ̄τ0β̄
∗(2αᾱ + bα + bᾱ)

g02 = 2ρ̄τ0β̄
∗(ᾱ2 + bᾱ)

g21 = 2ρ̄τ0β̄
∗(αw11,2 + ᾱw20,2

+ bw11,2 + bw20,2
2 + bw20,2ᾱ

2 )

(14)

From (11), we can know

ẇ(s, θ)

= u̇(s) − ż(s)q(θ) − ˙̄z(s)q̄(θ)

= −[iω0τ0z(s) + q̄∗T(0) f (0, w(s, 0)

+ z(s)q(0) + z̄(s)q̄(0))]q(θ)

−[−iω0τ0z(s) + q∗T(0) f̄ (0, w(s, 0)

+ z(s)q(0) + z̄(s)q̄(0))]q̄(θ)

+ A(0)u(s) + R(0)u(s)

= A(0)w(s, θ)

+R(0)u(s) − 2Re{q̄∗T(0) f (0, w(s, 0)

+ z(s)q(0) + z̄(s)q̄(0))q(θ)}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2Re{q̄∗T(0) f (0, w(s, 0) + z(s)q(0)

+z̄(s)q̄(0))q(θ)}
+A(0)w(s, θ), θ ∈ [−1, 0)

−2Re{q̄∗T(0) f (0, w(s, 0) + z(s)q(0)

+z̄(s)q̄(0))q(θ)}
+A(0)w(s, θ) + f (0, u(s)), θ = 0

(15)

Let

h(z, z̄, θ)

= −2Re{q̄∗T(0) f (0, w(s, 0)

+ z(s)q(0) + z̄(s)q̄(0))q(θ)} + R(0)u(s)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2Re{q̄∗T(0) f (0, w(s, 0) + z(s)q(0)

+z̄(s)q̄(0))q(θ)}, θ ∈ [−1, 0)

−2Re{q̄∗T(0) f (0, w(s, 0) + z(s)q(0)

+z̄(s)q̄(0))q(θ)} + f (0, u(s)), θ = 0

= h20
z2

2
+ h11zz̄ + h02

z̄2

2
+ · · · (16)

Then,

ẇ(s, θ) = A(0)w(s, θ) + h(z, z̄, θ) (17)

Substituting (12) into (17), we have

ẇ(s, θ) = (A(0)w20 + h20)
z2

2
+ (A(0)w11 + h11)zz̄

+ (A(0)w02 + h02)
z̄2

2
+ · · · (18)

From (12), we can know

ẇ(s, θ)

= wz ż(s) + wz̄ ˙̄z(s)
= (w20z + w11 z̄ + · · · )(iω0τ0z(s) + g(z, z̄))

+ (w11z + w02 z̄ + · · · )(−iω0τ0 z̄(s) + ḡ(z, z̄))

(19)

Comparing the coefficients of (18) and (19), we have⎧⎪⎨
⎪⎩

A(0)w20 + h20 = i2ω0τ0w20

A(0)w11 + h11 = 0

A(0)w02 + h02 = −2iω0τ0w02

(20)

From (16), we can know

h(z, z̄, θ)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ) + R(0)u(s)

= −
(
g20

z2

2
+g11zz̄+g02

z̄2

2
+g21

z2 z̄

2
+· · ·

)
q(θ)

−
(
ḡ20

z̄2

2
+ ḡ11zz̄+ ḡ02

z2

2
+ ḡ21

z̄2z

2
+· · ·

)
q̄(θ)

+ R(0)u(s) (21)

Since R(0)u(s) = 0 for −1 ≤ θ < 0,⎧⎪⎨
⎪⎩

−g20q(θ) − ḡ20q̄(θ) = h20

−g11q(θ) − ḡ11q̄(θ) = h11

−g02q(θ) − ḡ02q̄(θ) = h02

(22)

Substituting (22) into (20), we have⎧⎪⎨
⎪⎩

ẇ20 = i2ω0τ0w20 + g20q(θ) + ḡ20q̄(θ)

ẇ11 = g11q(θ) + ḡ11q̄(θ)

ẇ02 = −2iω0τ0w02 + g02q(θ) + ḡ02q̄(θ)

(23)

It is easy to obtain the solutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w20 = i g20
ω0τ0

q(0)eiω0τ0θ + i ḡ20
3ω0τ0

q̄(0)e−iω0τ0θ

+ C1e
i2ω0τ0θ

w11 = − i g11
ω0τ0

q(0)eiω0τ0θ + i ḡ11
ω0τ0

q̄(0)e−iω0τ0θ

+ C2

w02 = − i g02
3ω0τ0

q(0)eiω0τ0θ − i ḡ02
ω0τ0

q̄(0)e−iω0τ0θ

+ C3e
−i2ω0τ0θ

(24)
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Since R(0)u(s) = f (0, u(s)) for θ = 0, from (21), we
can know⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g20q(0)− ḡ20q̄(0)+τ0

⎛
⎜⎝

0
0

2α2+2bα

⎞
⎟⎠=h20

−g11q(0)− ḡ11q̄(0)+τ0

⎛
⎜⎝

0

0

2αᾱ+bα+bᾱ

⎞
⎟⎠=h11

−g02q(0)− ḡ02q̄(0)+τ0

⎛
⎜⎝

0

0

2ᾱ2+2bᾱ

⎞
⎟⎠=h02

(25)

Substituting (25) into (20), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 0
−1 dη(0, θ)w20 = i2ω0τ0w20(0) + g20q(0)

+ḡ20q̄(0) − τ0

⎛
⎜⎝

0

0

2α2 + 2bα

⎞
⎟⎠

∫ 0
−1 dη(0, θ)w11 = g11q(0) + ḡ11q̄(0)

−τ0

⎛
⎜⎝

0

0

2αᾱ + bα + bᾱ

⎞
⎟⎠

∫ 0
−1 dη(0, θ)w02 = −i2ω0τ0w02(0) + g02q(0)

+ḡ02q̄(0) − τ0

⎛
⎜⎝

0

0

2ᾱ2 + 2bᾱ

⎞
⎟⎠

(26)

Substituting (24) into (26), and noticing that∫ 0
−1 dη(0, θ)eiω0τ0θq(0) = iω0τ0q(0)
∫ 0
−1 dη(0, θ)e−iω0τ0θ q̄(0) = −iω0τ0q̄(0)

we have

C1 =
⎛
⎜⎝
i2ω0 −1 0

0 i2ω0 −1

a b C1
33

⎞
⎟⎠

−1⎛
⎜⎝

0

0

2α2 + 2bα

⎞
⎟⎠ (27)

C2 =
⎛
⎜⎝
0 −1 0

0 0 −1

a b c

⎞
⎟⎠

−1⎛
⎜⎝

0

0

2αᾱ + bα + bᾱ

⎞
⎟⎠ (28)

C3 =
⎛
⎜⎝

−i2ω0 −1 0

0 −i2ω0 −1

a b C3
33

⎞
⎟⎠

−1⎛
⎜⎝

0

0

2ᾱ2 + 2bᾱ

⎞
⎟⎠

(29)

where C1
33 = i2ω0 + c + k − ke−i2ω0τ0 , C3

33 =
−i2ω0 + c + k − kei2ω0τ0 . Hence, we can know w20,
w11, consequently,we can know g21. By the bifurcation
theories in Ref. [39], we can obtain the following
values.

c1(0) = i

2ω0τ0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2

μ2 = − Re
{
c1(0)

}

Re
{ dλ
dτ

∣∣
τ=τ0

} , β2 = 2Re
{
c1(0)

}

T2 = −
Im
{
c1(0)

}+ μ2Im
{ dλ
dτ

∣∣
τ=τ0

}

ω0τ0
(30)

Therefore, we have the following result.

Theorem 3 Under the condition of theorem 2,we have
the following main results,

(I) μ = 0 is Hopf bifurcation value of system (8);
(II) The direction of Hopf bifurcation is determined

by the sign ofμ2, ifμ2 > 0, the Hopf bifurcation
is supercritical and the bifurcating periodic
solutions exists for τ > τ0, if μ2 < 0, the Hopf
bifurcation is subcritical and the bifurcating
periodic solutions exists for τ < τ0.

(III) The stability of bifurcating periodic solutions
is determined by β2, if β2 < 0, the periodic
solutions are stable, and if β2 > 0, they are
unstable.

(IV) The period of the bifurcating periodic solution is
determined by T2, if T2 > 0, the period increase,
and the period decrease when T2 < 0.

(V) System (1) can be controlled by the delayed
feedback.

5 Numerical simulation

In this section, we apply the results in the previous to
system (2) for the purpose of control chaos. We take
a = 3.4, b = 1, c = 4, when τ = 0 or k = 0,
system (2) is chaotic (see Fig.17), and p = 14 + 8k,
q = −26.2 − 6.8k, r = 11.56.

By proposition 1, proposition 2, Δ=(14 + 8k)2 +
20.4k + 78.6 > 0 and z∗1 > 0 for all k ∈ R, we have
the following results.

Conclusion 1 (1) If k ∈ (−∞,−0.1263281874]
or k ∈ [0.2076115584,+∞), Eq. (6) has positive
roots; (2) If k ∈ (−∞,−0.1263281874] or k ∈
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Fig. 17 Chaotic behaviors of system (2) for k = 0 or τ = 0

[0.2076115584,+∞), Eq. (3) has negative real parts
for τ ∈ [0, τ0).

For the purpose of controlling the chaos,we consider
k ∈ (−∞,−0.1263281874] ∪ [0.2076115584,+∞),
and in particular, we take k = 1, consider the following
delayed back control system⎧⎪⎨
⎪⎩

ẋ = y

ẏ = z

ż = −3.4x−y−4y+y2+xy+(z(t−τ)−z(t))

(31)

We can compute p = 22, q = −33, Δ = 583,
h = z3+22z2−33z+11.56, and z1

.= 0.5824816436,
z2

.= 0.8470555278, ω1
.= 0.7632048504, ω2

.=
0.9203561962, τ1

.= 3.357873552 + 2nπ
ω1

, τ2
.=

0.1814016921 + 2nπ
ω2

, h′(z1) = −6.35295308, h′(z2)
= 6.42295242; thus, from the Theorem 1, we have[
Re
( dλ
dτ

)]−1
τ=τ1

< 0,
[
Re
( dλ
dτ

)]−1
τ=τ2

> 0 for n = 0.

Conclusion 2 Take τ0 = τ20 = 0.1814016921; then
(1) if we choose τ = 0.005 < τ0, the zero solution is
locally stable(See Fig.18); (2) if we choose τ = 1 > τ0,
the zero solution is locally unstable. (3) By theorem 3,
we know that the bifurcating point is subcritical, and
the bifurcating periodic solution is unstable.

6 Conclusion

This paper deals with the dynamics and the delayed
feedback control of a 3D jerk chaotic system with
only one stable equilibrium. The Hopf bifurcation of
this system with delayed feedback computed by the
method of projection for center manifold, and the
subcritical and the supercritical Hopf bifurcation were
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Fig. 18 Locally stable zero solution of system (2) for k = 1 and
τ = 0.005

obtained. Also the direction of theHopf bifurcation and
the stability of the bifurcating periodic solutions have
been investigated. Numerical simulations confirmed
the correctness of the Hopf bifurcation analysis and
the efficiency of the delayed feedback control strategy.
However, there are still complex dynamics and the
topological structure of this systemshould be exploited.
These will be provided in future works.
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