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Abstract A fractional-order brushless DC motor
(BLDCM) system is proposed in this paper. By com-
puter simulations, we find that the fractional-order
BLDCM system exhibits a chaotic attractor for frac-
tional order 0.96 < q ≤ 1, and that the largest Lya-
punov exponent varies depending on fractional-order
q. Furthermore, in order to stabilize the fractional-
order chaotic BLDCM system, two control strategies
are presented via single input, based on the generalized
Gronwall inequality and the Mittag–Leffler function.
Numerical simulations are presented to verify the valid-
ity and feasibility of the proposed control schemes.

Keywords Fractional-order brushless DC motor ·
Chaotic attractor · Generalized Gronwall inequality ·
Mittag–Leffler function · Control of chaos

1 Introduction

Many real-world physical systems such as dielec-
tric polarization, viscoelasticity, electrode–electrolyte
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polarization, electromagnetic waves, diffusion wave,
super-diffusion, and heat conduction can be accurately
described by fractional differential equations [1–3].
Complex chaotic behaviors exist in many physical
fractional-order systems, e.g., fractional-order gyro-
scopes [4], fractional-order micro-electro-mechanical
system [5], and fractional-order electronic circuits
[6,7]. Meanwhile, more and more attention has been
paid on fractional-order chaotic system control, for
instance in chaotic communications [8], authenticated
encryption schemes [9], etc.

On the other hand, since BLDCM has many advan-
tages over brushed DC motor [10–13], such as more
torque per weight and per watt, high reliability, longer
lifetime, and reduced noise, BLDCM has been used
widely in manufacturing engineering and industrial
automation design, e.g., heating and ventilations,
motion control systems, positioning and actuation sys-
tems, and radio-controlled cars. However, BLDCM
exhibits undesirable chaotic phenomena (as shown
in [11–13]), which can destroy the stable operation
of the motor and can lead to collapse of indus-
trial drive system. Up to now, many researchers
have paid more and more attention to find new
ways to suppress and control chaos more efficiently,
and many schemes for chaos control in BLDCM
have been put forward, such as the nonlinear feed-
back controller, multiple state variables, and multiple
controllers. However, these control strategies require
heavy computational efforts and difficult to use in
practice.
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Motivated by the above considerations, in this paper,
we introduce a BLDCM model with fractional order,
which exhibits the chaotic behavior too. To this end,
the maximum Lyapunov exponent and chaotic attrac-
tors are obtained by numerical calculation. Further-
more, two control schemes for the stabilization of
the fractional-order chaotic BLDCM are proposed via
single state variable and linear scalar controller. The
numerical simulations show the validity and feasibility
of the proposed scheme.

2 The fractional-order BLDCM

The mathematical model of BLDCM [13] under no
loading conditions can be described as
⎧
⎨

⎩

ẋd = −σ xd + xqxa
ẋq = −xq − xdxa + βxa
ẋa = γ (xq − xa)

(1)

where xd, xq, and xa denote direct axis current, quadra-
ture axis current, and angular velocity of the motor,
respectively. System parameters σ, β, and γ are deter-
mined by the type of brushless DC motor. As shown
in Fig. 1, the BLDCM system (1) exhibits a chaotic
attractor for σ = 0.875, β = 55, and γ = 4.

We notice that Vanecek and Celikovsky [14] clas-
sified a system family by a condition on its linear
part A = [ai j ] in 1996, and the generalized Lorenz
chaotic system family satisfies a12a21 > 0. In 1999,
Chen and Ueta [15] proposed the Chen chaotic sys-
tem, which satisfies a12a21 < 0. In 2002, Lu and Chen
[16] presented the Lu chaotic system, which satisfies
a12a21 = 0. According to the BLDCM system (1), we
have a12 = γ = 4, a21 = β = 55, and a12a21 > 0.

Fig. 1 The chaotic attractor in the BLDCM

Fig. 2 The chaotic attractor in the fractional-order BLDCM (2)
when q = 0.97

So, the BLDCM system (1) belongs to the generalized
Lorenz chaotic system family.

Based on the BLDCM system (1), a fractional-order
BLDCM system is constructed as
⎧
⎪⎪⎨

⎪⎪⎩

Dqxd = −0.875xd + xqxa

Dqxq = −xq − xdxa + 55xa

Dqxa = 4(xq − xa)

(2)

where 0 < q < 1 is the fractional order. The Caputo
derivative of fractional order 0 < q < 1 for function
x(t) and is defined as follows,

Dqx(t) = �−1(n − q)

∫ t

0
x (n)(τ )(t − τ)−(q+1−n) dτ ,

n − 1 � q < n

herein n is the first integer that is not less than
q, x (n)(t) = dnx(t)/dtn , and

�(n − q) =
∫ +∞

0
t (n−q)−1e−tdt (3)

is the Gamma function.
Now, to deal with the fractional-order BLDCM sys-

tem (2), we propose to use an improved version of
Adams–Bashforth–Moulton numerical algorithm [17],
which has been applied by many researchers [17–20].
By numerical calculation, we can obtain that the largest
Lyapunov exponent of fractional-order BLDCM sys-
tem (2) is larger than zero for 0.96 < q ≤ 1. For
example, the largest Lyapunov exponent is 0.8760
when q = 0.97, and its chaotic attractor is shown
as Fig. 2, while largest Lyapunov exponent is 0.8908
when q = 0.98, and its chaotic attractor is shown as
Fig. 3. The behavior of the largest Lyapunov exponent
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Fig. 3 The chaotic attractor in the fractional-order BLDCM (2)
when q = 0.98

Fig. 4 The largest Lyapunov exponent varies as fractional-order
q

of fractional-order BLDCM system (2) with respect to
the fractional-order q is shown in Fig. 4.

According to Figs. 2, 3, and 4, the fractional-order
BLDCM system (2) exhibits chaotic behavior if and
only if 0.96 < q ≤ 1. Conversely, for q ≤ 0.96, the
fractional-order BLDCMsystem (2) is stable, as shown
in Fig. 5 for q = 0.96.

To the best of our knowledge, the above results are
not present in the existing literature.

3 Stabilization of the fractional-order chaotic
BLDCM

In this section, we discuss how to stabilize the
fractional-order chaotic BLDCM system that can be

Fig. 5 The fractional-order BLDCM system (2) is stable for
q = 0.96

obtained via single state variable and linear scalar con-
troller. First, we report some preliminary results.

Definition [1] The Mittag–Leffler function is,

Mq,p(x) =
∞∑

n=0

xn

�(qn + p)
(q > 0, p > 0)

where �(qn + p) is the Gamma function given in
Eq. (3).

Lemma 1 [21] Let A ∈ Rn×n be a real matrix,
λi (A)(i = 1, 2, . . ., n) are its eigenvalues. If qπ/2 <

|arg λi (A)| ≤ π(i = 1, 2, . . . , n) holds, then
∥
∥Mq,p(A)

∥
∥ ≤ N (1 + ‖A‖)−1 (4)

where ‖A‖ is the l2-norm for matrix A, and N > 0.

Lemma 2 [22] (GeneralizedGronwall inequality)Giv-
ing a real time interval t ∈ [t1, t2], let g(t), h(t) and
j (t) be real-valued piecewise continuous functions,
and let j (t) be nonnegative. For all t ∈ [t1, t2], if
g(t) ≤ h(t) + ∫ t

t1
j (τ )g(τ ) dτ , then

g(t) ≤ h(t) +
∫ t

t1
j (τ )h(τ ) exp

[∫ t

τ

j (ζ )dζ

]

dτ (5)

Now, the following results are given.

Theorem 1 Consider the controlled fractional-order
chaotic BLDCM system
⎧
⎨

⎩

Dqxd = −0.875xd + xqxa
Dqxq = −xq − xdxa + 55xa + u(xa)
Dqxa = 4(xq − xa)

(6)
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for 0.96 < q ≤ 1 and u(xa) = (m − 55)xa be a linear
scalar controller determined by single state variable
xa, i.e., single input. If m < 1, then xd(t) = 0, xq(t) =
0, and xa(t) = 0 (t > 0) is a stable solution of the
controlled fractional-order BLDCM system (6).

Proof Using u(xa) = (m − 55)xa, the controlled sys-
tem (6) can be rewritten as

Dqx(t) = A(m)x(t) + f (x(t)) (7)

where

x(t) = ( xd xq xa )T,

A(m) =
⎛

⎝
−0.875 0 0

0 −1 m
0 4 −4

⎞

⎠ ,

and

f (x(t)) =
⎛

⎝
xqxa

−xdxa
0

⎞

⎠

First, it is easy to obtain that,

f (x(t))|x(t)=0 = 0 (8)

and

‖ f (x(t))‖ / ‖x(t)‖
=

√

(xqxa)2 + (xdxa)2
/√

x2d + x2q + x2a

≤
√

x2q + x2d

and

lim
x(t)→0

‖ f (x(t))‖ / ‖x(t)‖ ≤ lim
x(t)→0

√

x2q + x2d = 0 (9)

According to Eqs. (8)–(9), there exists a constant
N > 0 and ε > 0 such that

‖ f (x(t))‖ < N−1 ‖x(t)‖ (10)

for ‖x(t)‖ < ε and t ≥ 0.
Second, we can obtain the eigenvalues of matrix

A(m) as follows,

λ1 = −0.875, λ2,3 = −2.5 ± 0.5
√
25 − 16(1 − m)

According to the assumption m < 1, it is easy to
obtain,

Re(λi ) < 0 (i = 1, 2, 3),

and

σ(A(m)) = max(|λ1| , |λ2| , |λ3|) ≥ 2.5.

With condition 0.96 < q ≤ 1, we have

qσ(A(m)) > 1 (11)

and

|arg λi (A(m))| > π/2 > qπ/2, (i = 1, 2, 3) (12)

whereσ(A) denotes the spectral radius ofmatrix A(m).
According to (11) and (12), one gets

q ‖A(m)‖ ≥ qσ(A(m)) > 1 (13)

and
∣
∣arg λi (t

q A(m))
∣
∣ > qπ/2, (i = 1, 2, 3) (14)

Now, we discuss the solution x(t) of the fractional-
order system (7). Taking Laplace transform �[.] on sys-
tem (7), it can be rewritten as

sq�[(x(t)] − sq−1x(0)= A(m)�[(x(t)]+�[ f (x(t))]
(15)

where x(0) is the initial condition. So we have

�[(x(t)] = sq−1

sq − A(m)
x(0) + �[ f (x(t))]

sq − A(m)
(16)

Taking Laplace inverse transform for Eq. (16) yield
to,

x(t) = Mq,1[A(m)tq ] x(0)

+
t∫

0

(t − τ)q−1Mq,q [A(m)(t − τ)q ] f (x(τ )) dτ

(17)

Let ε0(0 < ε0 < ε) arbitrarily small, and consider
the solution x(t) for which ‖x(0)‖ < ε0. Using the
inequality (4), (10), and (14), Eq. (17) gives

‖x(t)‖ ≤ Nε0[1 + tq ‖A(m)‖]−1

+
t∫

0

(t − τ)q−1[1 + (t − τ)q ‖A(m)‖]−1 ‖x(τ )‖ dτ

(18)

By means of the generalized Gronwall inequality
(5), inequality (18) becomes
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‖x(t)‖ ≤ Nε0[1 + tq ‖A(m)‖]−1

+
t∫

0

Nε0(t − τ)q−1(1 + τ q ‖A(m)‖)−1

[1 + (t − τ)q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

= Nε0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
1 + tq ‖A(m)‖]−1 +

t/2∫

0

(t − τ)q−1(1 + τ q ‖A(m)‖)−1

[1 + (t − τ)q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

+
t∫

t/2

(t − τ)q−1 (1 + τ q ‖A(m)‖)−1

[1 + (t − τ)q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(19)

Since t − τ ≥ τ for τ ∈ [0, t/2], t − τ ≤ τ for
τ ∈ [t/2, t], and q ‖A(m)‖ ≥ qσ(A(m)) > 1. Hence,
from inequality (19), one has

‖x(t)‖ ≤ Nε0

⎧
⎪⎨

⎪⎩
[1 + tq ‖A(m)‖]−1

+
t/2∫

0

τ q−1(1 + τ q ‖A(m)‖)−1

[1 + τ q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

+
t∫

t/2

(t − τ)q−1[1 + (t − τ)q ‖A(m)‖]−1

[1 + (t − τ)q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

⎫
⎪⎬

⎪⎭

≤ Nε0

⎧
⎨

⎩
[1 + tq ‖A(m)‖]−1

+ 2

t/2∫

0

τ q−1(1 + τ q ‖A(m)‖)−1

[1 + τ q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

⎫
⎬

⎭

< Nε0

{
[tq ‖A(m)‖]−1

+ 2

t/2∫

0

τ q−1(τ q ‖A(m)‖)−1

[τ q ‖A(m)‖]1−(q‖A(m)‖)−1 dτ

⎫
⎬

⎭

= Nε0

{
t−q

‖A(m)‖

+ 2 ‖A(m)‖[(q‖A(m)‖)−1−1]

1 − q ‖A(m)‖ (t/2)(1−q‖A(m)‖)/‖A(m)‖

+ 2 ‖A(m)‖[(q‖A(m)‖)−1−1]

q ‖A(m)‖ − 1

}

(20)

Since q ‖A(m)‖ ≥ qσ(A(m)) > 1 and ε0(0 <

ε0 < ε) is a arbitrarily small. Therefore, when time

Fig. 6 Stabilization of the fractional-order chaotic BLDCMsys-
tem (2) for q = 0.97

t > 0 is large enough, inequality (20) implies that
the zero solution xd(t) = 0, xq(t) = 0, and xa(t) =
0(t > 0) is a stable solution of the controlled fractional-
orderBLDCMsystem (6),which allows concluding the
proof. �	

Theorem1 indicates that the fractional-order chaotic
BLDCM system (2) can be stabled via single input
u(xa) = (m − 55)xa. For example, we display in
Fig. 6 the simulative results obtained with m = −20
and q = 0.97, in which we set initial conditions as
(xd, xq, xa) = (10, 10, 10).

Theorem 2 Consider the controlled fractional-order
BLDCM system
⎧
⎨

⎩

Dqxd = −0.875xd + xqxa
Dqxq = −xq − xdxa + 55xa
Dqxa = 4(xq − xa) + u(xq)

(21)

for 0.96 < q ≤ 1 and u(xq) = (n − 4)xq be a lin-
ear scalar controller determined by single state vari-
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Fig. 7 Stabilization of the fractional-order chaotic brushless DC
motor system (2) for q = 0.97

able xq. If n < 4/55, then xd(t) = 0, xq(t) = 0, and
xa(t) = 0 (t > 0) is a stable solution of the controlled
fractional-order BLDCM system (21).

Proof Using u(xq) = (n−4)xq, the controlled system
(21) can be rewritten as

Dqx(t) = A(m)x(t) + f (x(t))

where

x(t) = ( xd xq xq )T,

A(m) =
⎛

⎝
−0.875 0 0

0 −1 55
0 n −4

⎞

⎠ ,

and

f (x(t)) =
⎛

⎝
xqxa

−xdxa
0

⎞

⎠ .

Now, the proof can be completed in a similar way
of that for Theorem 1, and it is omitted here. �	

Theorem2 indicates that the fractional-order chaotic
BLDCM system (2) can be stabilized through single
input u(xq) = (n − 4)xq. For example, we display in
Fig. 7 the simulative results obtained with n = −6
and q = 0.97, in which we set initial conditions as
(xd, xq, xa) = (10, 10, 10).

Recently, Wei et al. [13] reported some results about
stabilization of integer-order chaotic BLDCM system,
and two state variableswere used in their controller.We
notice that stabilization for the fractional-order chaotic

BLDCM system with single state variable is discussed
in our paper, and our result can be seen as the gen-
eralization of the result reported by Wei et al. [13].
Meanwhile, our control scheme is efficient as well for
integer-order BLDCM system.

4 Conclusions

This paper presents a fractional-order chaotic BLDCM
system, which exhibits chaos for fractional order
0.96 < q ≤ 1, the evidence of which is shown by using
computer simulations for q = 0.97 and q = 0.98.
We also computed the largest Lyapunov exponent on
varying the fractional-order q. Two control schemes are
proposed via single state variable and linear scalar con-
troller, to stabilize the fractional-order chaoticBLDCM
system. Up to now, to the best of our knowledge,
there are no similar results on fractional-order chaotic
BLDCM system.
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