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Abstract In this paper, the N th-order roguewaves are
investigated for an inhomogeneous higher-order non-
linear Schrödinger equation. Based on the Heisenberg
ferromagnetic spin system, the higher-order nonlin-
ear Schrödinger equation is generated. The generalized
Darboux transformation is constructed by the Darboux
matrix. The solutions of the N th-order rogue waves
are given in terms of a recursive formula. There are
complex nonlinear phenomena in the rogue waves, add
the first-order to the fourth-order rogue waves are dis-
cussed in some figures obtained by analytical solutions.
It is shown that the general N th-order roguewaves con-
tain 2n − 1 free parameters. The free parameters play
a crucial role to affect the dynamic distributions of the
rogue waves. The results obtained in this paper will be
useful to understand the generation mechanism of the
rogue wave.
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1 Introduction

The rogue wave is the giant single wave, which was
firstly found in the ocean [1]. The single rogue wave is
referred to the fundamental form of the hierarchy for
the rogue wave. The amplitude of the rogue wave is
two to three times higher than those of the surrounding
waves. One of the features of the rogue wave is that it
appears from nowhere and disappears without a trace
[2]. In the nature, the rogue wave is very dangerous,
which can appear unexpectedly and forms the larger
amplitude in 1min to shred a boat. Beyond oceanic
expanses, the rogue wave has also been found exper-
imentally in optical fibers [3], Bose–Einstein conden-
sates (BECs) [4], superfluids [5] and so on. In a word,
the rogue waves have the characteristic of the burst, the
localization, the short time and the dramatic concentra-
tion of the energy. The phenomenon in the rogue waves
has nonlinear characteristic. Thus, the linear wave the-
ories based on the superposition principle are not used
to explain the complex phenomenon of the rogue wave
in the ocean, the optical fibers and the engineering field.
The nonlinear theories [6–8] are being applied to ana-
lyze these nonlinear phenomena of the rogue waves.
The rogue wave has been an important issue in the
fields of the nonlinear science.

One of the important known models for the rogue
wave is the nonlinear Schrödinger (NLS) equation.
Many research results have been obtained for the NLS
equation. For example, the first-order rational solutions
[9,10], the control of the rogue waves [11], the soliton
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solutions [12] andDarboux transformation (DT) [13] of
the NLS equation are studied in detail. Apart from the
NLS equation, researchers have also investigated the
solution of the roguewave for the generalized nonlinear
Schrödinger (GNLS) equation [14], (3+1)-dimensional
GNLS equation [15], the higher-order NLS equation
[16], the dissipative NLS equation with a variable coef-
ficient [17], the two-component NLS equations [18]
and the general two-coupled NLS equation [19].

The stability of solutions is also an important prob-
lem for waves. There are a few achievements of this
aspect; for example, Dai et al. [20,21] investigated the
stability of analytical spatial soliton solutions for a two-
dimensional NLS equation with power-law nonlinear-
ity in PT-symmetric potentials. They used the linear
stability theory and the direct numerical simulations to
analyze the stability of the solutions.

Motivated by the aforementioned works, in this
paper, an inhomogeneous higher-order NLS equation
is considered as follows [22]
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where q(x, t) is a complex function, t and x denote
the scaled time and spatial coordinate, respectively, f
and h represent the inhomogeneousness present in the
medium and are the linear functions of spatial variable
x , which are of the form

f = f1x + f2, h = h1x + h2, (2)

f j and h j ( j = 1, 2) are real constants, ε is a perturba-
tion parameter, and the asterisk represents the complex
conjugation.

Equation (1) is generated by deforming the inhomo-
geneous Heisenberg ferromagnetic spin system with
the prolongation structure [22] and the space curve
formalism, which describes the dynamics of a site-
dependent Heisenberg ferromagnetic spin chain in the
highly idealized physical situations. In fact, we also
take into account the inhomogeneity or nonuniformity
of the realistic physical medium [23,24] in Eq. (1).
The inhomogeneous equation has a wide range of
applications in the propagation of radio waves in the
ionosphere, waves in the ocean, optical pulses in glass

fibers, laser radiations in plasma and impurities inmag-
netic systems [25,26].

Radha [22] used the gauge transformation to con-
struct the multi-solitary solutions of Eq. (1) and dis-
cussed the interaction of the soliton. On the basis of
the associated linear eigenvalue problems, Zhong et al.
[27] gave the bright soliton solutions ofEq. (1) using the
prolongation structure theory. However, to the best of
our knowledge, there are no reports about the solution
of the rogue wave related to Eq. (1), and the construc-
tion of the higher-order NLS equation is regarded as a
challenging work.

The aim of this paper is to construct the N th-order
solutions of the rogue wave for Eq. (1) using the gen-
eralized Darboux transformation, which is an effective
approach to derive the solution of the rogue wave [28].
Basedon theDTmatrix, the generalizedDarboux trans-
formation is obtained and the formula for generating
the N th-order solutions of the rogue wave is given.

2 Generalized Darboux transformation for Eq. (1)

Equation (1) is the compatibility condition of the linear
spectral problems [22]
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where � = (ϕ, φ)T is the vector eigenfunction of the
Lax pair (3a) and (3b), q is a potential function, and λ

is a constant spectral parameter.
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It is easy to verify that the zero-curvature equation

Ut − Vx + [U, V ] = 0 (6)

gives rise to Eq. (1).
The Darboux matrix T is defined as [22]

T = λI − S, S = H�H−1, (7)

where

I =
(

1 0
0 1

)

, H =
(

ϕ1 φ∗
1

φ1 −ϕ∗
1

)

, �=
(

λ1 0
0 λ∗

1

)

.

(8)

Let�1 = (ϕ1, φ1)
T be an eigenfunction of the Lax pair

(3a) and (3b) with a seeding solution q = q[0] and λ =
λ1. It is seen that (φ∗

1 ,−ϕ∗
1 )

T also satisfies equation
(3) with λ = λ∗

1. Choosing different eigenfunctions
�k = (ϕk, φk)

T at λk , respectively, the aforementioned
DT procedure can be easily iterated.

Based on the Darboux matrix T of Eq. (7), the ele-
mentary DT of Eq. (1) is given as

�1[0] = T [0]�1, q[1] = q[0]
− 2i(λ1 − λ∗

1)
ϕ1[0]φ∗

1 [0]
|ϕ1[0]|2 + |φ1[0]|2

, (9)

where

T [1] = λ2 I − H [0]�[1]H [0]−1, (10a)
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1 [0]

φ1[0] −ϕ∗
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)

,
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1

)
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�1[0] = (ϕ1[0], φ1[0])T
= (ϕ1, φ1)

T = �1, q[0] = q. (10c)

If N different basic solutions �k = (ϕk, φk)
T(k =

1, 2, . . . , N ) of the Lax pair (3a) and (3b) at λ =
λk(k = 1, 2, . . . , N ) are given, the elementary DT is
repeated N times. Then, the N th-step DT of Eq. (1) is

�N [N − 1] = T [N − 1]T [N − 2] · · · T [1]T [0]�N ,

(11a)
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where
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�k, (k = 1, 2, . . . , N ). (12c)

The initial value is �1[0] = (ϕ1[0], φ1[0])T =
(ϕ1, φ1)

T = �1. Based on the aforementioned elemen-
tary DT, a generalized DT is obtained for Eq. (1). We
assume that

	 = �1(λ1, η) (13)

is a special solution of the Lax pair (3a) and (3b), and
η is a small parameter.

With the aid of the Taylor series,	 can be expanded
at η = 0

	 = �
[0]
1 + �

[1]
1 η + �

[2]
1 η2 + · · ·

+�
[m]
1 ηm + o(ηm), (14)

where �
[ j]
1 = 1

j !
∂ j

∂λ j �1(λ)|λ=λ1 ( j = 1, 2, . . . ,m).
From the above assumption, it is easily found that
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(3a) and (3b) with q = q[0] and λ = λ1. Therefore,
the N th-step generalized DT is constructed as follows
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Equations (15)–(17) are the recursive formulae of the
N th-step generalized DT for Eq. (1), which can be con-
verted into the 2n×2n determinant representationusing
the Crum theorem [29,30]. The recursive formulae are
easily used to construct the higher-order solutions of
the rogue wave. Based on these solutions of Eq. (1),
some figures of interesting higher-order rogue waves
will be obtained in the next section.

3 Solutions of rogue waves

For simplicity, the solutions of the rogue waves are cal-
culated when the inhomogeneous parameters are inde-
pendent of x , namely f1 = h1 = 0. We choose the
parameters f2 = 1

2 and h2 = 1
4 .

We take a periodic plane seed solution q[0] = aeiθ

with θ = kx+ωt . Here, a and k are both real constants,
and the frequency ω satisfies the nonlinear dispersion
relation

ω = k4ε − k2(12εa2 + f ) + hk + 2 f a2 + 6εa4.

(18)

Using the Maple program, the corresponding solution
of the linear spectral problem at λ = k

2 − ia + η2 is
obtained
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iθ
2
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2
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+ 4ελa2 − 8ελ3 − f k + 2 f λ + h, (20c)

where �(η) is a separating function and a j , b j are real
constants.

Letting λ = k
2 − ia + η2 and expanding the vector

function �1(η) at η = 0, we have
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where
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ϕ
[2]
1 and φ

[2]
1 are given in the “Appendix.”

Other expressions are too cumbersome towrite them
down. In the following discussions, we set a = 1 and
k = 0 to simplify the calculation process. Then, we
have q[0] = eiθwith θ = (1 + 6ε)t and λ = −i .

It is clearly seen that �
[0]
1 is a solution of the Lax

pair (3a) and (3b) at q[0] = eiθ and λ = −i . Hence,
substituting�

[0]
1 , q[0] = eiθ and λ = −i into Eq. (16),

we obtain a trivial solution of Eq. (1)

q[1] = −eiθ , (24)

and

T1[1] =
(

−i ieiθ

ie−iθ −i

)

. (25)

Consider the following limit

lim
η→0

[T1[1]|λ=λ1+η]	
η

= lim
η→0

[η + T1[1]|λ=λ1
]	

η

= �
[0]
1 + T1[1](λ1)�[1]

1

= �1[1], (26a)

�1[1] =
(

ϕ1[1]
φ1[1]

)

, (26b)
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Fig. 1 First-order rogue wave |q[2]| and the density picture are plotted, a, b with parameter ε = 0; c, d with parameter ε = 0.1

where

ϕ1[1] = (−4x + 48i tε + 4i t − t + 2) e
i
2 θ , (27a)

φ1[1] = − (−4x + 48i tε + 4i t − t − 2) e− i
2 θ . (27b)

Substituting �
[0]
1 , �

[1]
1 and λ = −i into Eq. (16), we

obtain the first-order solution of the rogue wave for
Eq. (1)

q[2] =
(

−1− 2(4−2304t2ε2−384t2ε−16x2−8xt−17t2+192i tε+16i t)

4+2304t2ε2+384t2ε+16x2+8xt+17t2

)

eiθ , (28)

and

T1[2] =
⎛

⎝
−i − 4i(t+4x)

�
ieiθ�1

�

ie−iθ�2
�

−i + 4i(t+4x)
�

⎞

⎠ , (29)

where

� = 4 + 2304t2ε2 + 384t2ε

+16x2 + 8xt + 17t2, (30a)

123



494 N. Song et al.

tx

q

t

x

t
x

]3[

]3[q

t

x

(a) (b)

(c) (d)

Fig. 2 Second-order rogue waves |q[3]| and the density picture are plotted, a, b with parameters ε = 0 and a1 = b1 = 0; c, d with
parameters ε = 0.1 and a1 = b1 = 0

�1 = 4 − 2304t2ε2 − 384t2ε

−16x2 − 8xt − 17t2 + 192i tε + 16i t, (30b)

�2 = 4 − 2304t2ε2 − 384t2ε

−16x2 − 8xt − 17t2 − 192i tε − 16i t. (30c)

Next, consider the following limit

lim
η→0

[η + T1[2]|λ=λ1
] [η + T1[1]|λ=λ1

]	
η2

= �
[0]
1 + (T1[1](λ1) + T1[2](λ1))�

[1]
1

+ T1[2](λ1)T1[1](λ1)�[2]
1 = �1[2], (31a)

�1[2] =
(

ϕ1[2]
φ1[2]

)

, (31b)

where T1[2] and �1[2] can be calculated by the Maple
program.

We do not give the expression of �1[2] since
it is rather cumbersome to write down. Substituting
�

[0]
1 ,�

[1]
1 ,�

[2]
1 and λ = −i into Eq. (16), we obtain

the second-order solution of the rogue wave for Eq. (1)

q[3] = q[2] − 4
ϕ1[2] · φ1[2]∗

|ϕ1[2]|2 + |φ1[2]|2
. (32)

Furthermore, we focus on the third-order solution q[4]
of Eq. (1). Consider the following limitation

lim
η→0

[η + T1[3]|λ=λ1
] [η + T1[2]|λ=λ1

] [η + T1[1]|λ=λ1
]	

η3

= �
[0]
1 + (T1[1](λ1) + T1[2](λ1) + T1[3](λ1)) �

[1]
1

+ (T1[2](λ1)T1[1](λ1) + T1[3](λ1)T1[1](λ1)
+ T1[3](λ1)T1[2](λ1))�[2]

1

+ T1[3](λ1)T1[2](λ1)T1[1](λ1)�[3]
1 = �1[3], (33)
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Fig. 3 Second-order rogue waves |q[3]| and the density picture are plotted, a, b with parameters ε = 0 and a1 = b1 = 5; c, d with
parameters ε = 0.2 and a1 = b1 = 60

�1[3] =
(

ϕ1[3]
φ1[3]

)

, (34)

where T1[3] and �1[3] are calculated by the Maple
program.

It is also seen that the expression of �1[3] is rather
tedious to write them down in this paper. Substituting
�

[0]
1 ,�

[1]
1 ,�

[2]
1 ,�

[3]
1 and λ = −i into Eq. (16), we

obtain the third-order rogue waves of Eq. (1)

q[4] = q[3] − 4
ϕ1[3] · φ1[3]∗

|ϕ1[3]|2 + |φ1[3]|2
. (35)

Lastly, consider the following limit

lim
η→0

[η+T1[4]|λ=λ1
][η+T1[3]

∣
∣
λ=λ1

] [η+T1[2]|λ=λ1
] [η+T1[1]|λ=λ1

]	
η4

= �
[0]
1 + (T1[1](λ1) + T1[2](λ1) + T1[3](λ1)

+T1[4](λ1))�[1]
1 + (T1[2](λ1)T1[1](λ1)

+T1[3](λ1)T1[1](λ1) + T1[4](λ1)T1[1](λ1)
+T1[3](λ1)T1[2](λ1) + T1[4](λ1)T1[2](λ1)
+T1[4](λ1)T1[3](λ1))�[2]

1 + (T1[3](λ1)T1[2](λ1)T1[1](λ1)
+T1[4](λ1)T1[3](λ1)T1[2](λ1)
+T1[4](λ1)T1[3](λ1)T1[1](λ1)
+T1[4](λ1)T1[2](λ1)T1[1](λ1))�[3]

1 = �1[4], (36a)

�1[4] =
(

ϕ1[4]
φ1[4]

)

. (36b)

where T1[4] and �1[4] are calculated by the Maple
program.

Substituting�
[0]
1 ,�

[1]
1 ,�

[2]
1 ,�

[3]
1 ,�

[4]
1 and λ = −i

into Eq. (16), we obtain the fourth-order rogue waves
of Eq. (1)

q[5] = q[4] − 4
ϕ1[4] · φ1[4]∗

|ϕ1[4]|2 + |φ1[4]|2
. (37)
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Fig. 4 Third-order the rogue waves |q[4]| and the density picture are plotted, a, bwith parameters ε = 0, a1 = b1 = 0 and a2 = b2 = 0;
c, d with parameters ε = 0.1, a1 = b1 = 0 and a2 = b2 = 0

4 Numerical results

In this section, we use numerical results to investi-
gate the nonlinear dynamic properties of the rogue
waves for the inhomogeneous higher-order nonlinear
Schrödinger equation. The plot of the first-order rogue
wave is depicted, as shown in Fig. 1. Figure 1a repre-
sents the amplitude in the space (t, x, q[2]), and Fig. 1b
is the density plot in the plane (t, x). In Fig. 1a, b,
we have ε = 0. In Fig. 1c, d, there is ε = 0.1. As ε

increases, it is found that the temporal range for the
appearance of the rogue wave shortens.

In Eq. (32), there are three free parameters ε, a1 and
b1. We will take different values to display different
second-order rogue waves. For the general case ε = 0
and a1 = b1 = 0, the corresponding plot of the second-

order rogue wave is depicted, as shown in Fig. 2a, b.
Figure 2a is a fundamental pattern in which a single
maximum appears at the center. By slightly adjusting
the parameter ε = 0.1 and keeping other parameters
constant, the rogue waves are also depicted, as shown
in Fig. 2c, d. In Figure 2d, the spatial range extends a
little toward both sides, but the temporal range for the
appearance of the rogue wave shortens.

Then, we study the influence of the separating func-
tion�(η) on the second-order roguewave. The plots of
the second-order roguewaves are depicted, as shown in
Fig. 3. In Fig. 3a, b, we have ε = 0 and a1 = b1 = 5.
In Fig. 3a, b, the solution q[2] splits into three first-
order rogue waves, but are connected each other. Three
first-order rogue waves have a structure of the equi-
lateral triangle. In Fig. 3c, d, there are ε = 0.2 and
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Fig. 5 Third-order rogue waves |q[4]| and the density picture are plotted, a, b with parameters ε = 0.1 and b1 = 50; c, d with
parameters ε = 0.1 and b2 = 1000

a1 = b1 = 60. The solution q[3] is also composed of
three first-order rogue waves and forms a structure of
the triangle, but is separated completely.

There are five parameters ε, a1, b1, a2 and b2 in the
third-order solution q[4]. The corresponding plots of
this solution are depicted, as shown in Fig. 4. In Fig. 4a,
b, we have ε = 0, a1 = b1 = 0 and a2 = b2 = 0. There
is a single maximum peak at the center, and six small
peaks lie around the maximum one. In this case, the
maximum amplitude of q[4] is 7. Changing the para-
meter ε = 0.1 and keeping other parameters same, the
solution q[4] is depicted, as shown in Fig. 4c, d. In this
case, the temporal range for the appearance of the rogue
wave shortens with the increase in the parameter ε.

When we select the parameters as ε = 0.1 and
b1 = 50, the corresponding plots of the solution q[4]

are depicted, as shown in Fig. 5a, b. When we only
change the parameter b2 = 1000, the corresponding
plots of the solution q[4] are given in Fig. 5c, d. Com-
paring Fig. 5a with 5c, it is found that the third-order
rogue waves consist of six first-order rogue waves.
Meanwhile, it is observed from Fig. 5b that six first-
order rogue waves form an equilateral triangle. How-
ever, it is obviously seen from Fig. 5d that these waves
also form a pentagon. Onewave is located in the center,
and other waves are put on the vertices of the pentagon.

There are seven parameters ε, a1, b1, a2, b2, a3 and
b3 in the fourth-order solution q[5]. The corresponding
plots of this solution are depicted, as shown in Fig. 6. In
Fig. 6a, b, we have ε = 0, a1 = b1 = 0, a2 = b2 = 0
and a3 = b3 = 0. It is a fundamental pattern of the
fourth-order rogue wave and is a single maximum at

123



498 N. Song et al.

t
x

t

x

t
x

]5[q

]5[q

t

x

(b)(a)

(d)(c)

Fig. 6 Fourth-order rogue waves |q[5]| and the density picture are plotted, a, b with parameters ε = 0, a1 = b1 = 0, a2 = b2 = 0 and
a3 = b3 = 0; c, d with parameters ε = 0.02, a1 = b1 = 0, a2 = b2 = 0 and a3 = b3 = 0

the center, and eight small peaks lie around the maxi-
mum one. In this case, the maximum amplitude of q[5]
is 9. Changing the parameter ε = 0.02 and keeping
other parameters same, the solution q[5] is depicted,
as shown in Fig. 6c, d. In this case, the temporal range
for the appearance of the rogue wave shortens with the
increase in the parameter ε.

Setting ε = 0.02 and b3 = 35,000, the correspond-
ing plots of the solution q[5] are depicted, as shown
in Fig. 7a, b. In Fig. 7a, the fourth-order rogue waves
are composed of seven first-order rogue waves and one
second-order rogue wave. In Fig. 7b, seven first-order
rogue waves form a ring structure and the second-order
rogue wave lie in the center of the ring.

With the increase in the order of the solution q[N ],
the solutions of the rogue wave contain more free para-

meters and display more interesting spatial–temporal
structures. It is guessed that these new structures could
be a polygon which could be extended to the general
N th-order systems.

5 Conclusions

In this paper, the first-order to the fourth-order rogue
waves are investigated using the generalized Darboux
transformation for the inhomogeneous higher-order
nonlinear Schrödinger equation for the first time. A
brief introduction of the DT is given, and the general-
ized DT is studied using the Taylor series expansion
of a special solution to the linear spectral problem and
a limit procedure. Some different types of figures are
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Fig. 7 Fourth-order rogue wave |q[5]| and the density picture are plotted with parameters ε = 0.02 and b3 = 35,000

explicitly obtained to illustrate the nonlinear dynamic
properties of the rogue waves for the inhomogeneous
higher-order nonlinear Schrödinger equation by chang-
ing the free parameters. Generally speaking, the N th-
order rogue waves contain 2n − 1 free parameters and
the total number of the peaks is n(n+1)

2 in terms of a
complete decomposition pattern. The structures of the
N th-order roguewaves depend on the choice of the free
parameters. If we continue to use the generalized DT
procedure, it will be found that there exist the solutions
of the more complicated rogue waves. We are look-
ing forward to see that the theoretical results may be
verified by the experiments in the future.
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Appendix

Analytical expressions of the coefficients in Eq. (21)
are given as

ϕ
[2]
1 =

(
1√
a

(
i

96

(

27648a9t3ε2 + 2304a7t3ε

− 96a3xt2 − 192a3x2t + 64a5t3 − 240ta

− 12t3a31152ia6t3ε + 27648ia8xt2ε2

+ 4608ia6xt2ε − 1152a5xt2ε − 2304a5x2tε

× 110592a11t3ε3 + 192ia4xt2 + 6912ia8t3ε2

− 48ia2x2t − 12ia2xt2 − 5952tεa3 − 192aa1

− 48i x − 12i t − 144a5t3ε − 192iab1

− 64ia2x3 − ia2t3 + 48ia4t3
)

− 1

32

√
a

(

−4x + 48i tεa3 − t + 4i ta
)2

+ 1/16a−3/2 + 1

768

√
a
( − 4x + 48i tεa3

− t + 4i ta
)( − 1152a6t3ε − 192a4xt2

+ 192x + 48t − 48a4t3 − 4608a6xt2ε

− 1152ia5xt2ε − 2304ia5x2tε

− 27648a8xt2ε2+64a2x3+a2t3−6912a8t3ε2

+ 48a2x2t + 12a2xt2 − 960i ta − 12ia3t3

× 64ia5t3 − 768iaa1 + 768ab1 − 23808i tεa3

− 144ia5t3ε − 96ia3xt2 + 27648ia9t3ε2

× 2304ia7t3ε − 192ia3x2t

+ 110592ia11t3ε3
)
))

e
i
2 θ ,

ϕ
[2]
1 =

(

− 1√
a

(
i

96

(

110592a11t3ε3 + 27648a9t3 ε2

+ 2304a7t3ε − 96a3xt2 + 192a3x2t

+ 27648ia8xt2ε2 − 48ia2x2t + 64a5t3

−240ta − 12t3a3 + 1152ia6t3ε12ia2xt2

+ 6912ia8t3ε2 + 192ia4xt2 − 48i x − 12i t

− ia2t3 − 192iab1 + 48ia4t3 − 64ia2x3

− 1152a5xt2ε − 2304a5x2tε − 192aa1

− 5952tεa3 − 144a5t3ε4608ia6xt2ε
))
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− 1

32

√
a
(

−4x + 48i tεa3 − t + 4i ta
)2

+ 1/16a−3/2 + 1

768

√
a
(

− 4x + 48i tεa3

− t + 4i ta
)(

− 96ia3xt2 − 192ia3x2t

+ 192x + 48t + 64ia5t3 + 110592ia11t3ε3

+ 27648ia9t3ε2 − 768iaa1 − 12ia3t3

− 960i ta + 12a2xt2 + 48a2x2t − 192a4xt2

+ 768ab1 − 144ia5t3ε + 2304ia7t3ε

−23808i tεa3 − 4608a6xt2ε − 27648a8xt2ε2

−48a4t3 + a2t3 + 64a2x3 − 6912a8t3ε2

−1152t3a6ε − 1152ia5xt2ε

− 2304ia5x2tε
))

e− i
2 θ . (38)

References

1. Müller, P., Garrett, C., Osborne, A.: Roguewaves. Oceanog-
raphy 18, 66–75 (2005)

2. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear
from nowhere and disappear without a trace. Phys. Lett. A
373, 675–678 (2009)

3. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue
waves. Nature 450, 1054–1058 (2007)

4. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue
waves. Phys. Rev. A 80, 033610 (2009)

5. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-
Deglin, L.P., McClintock, P.V.E.: Observation of an inverse
energy cascade in developed acoustic turbulence in super-
fluid helium. Phys. Rev. Lett. 101, 065303 (2008)

6. Kharif, C., Pelinovsky, E.: Physicalmechanisms of the rogue
wave phenomenon. Eur. J. Mech. B/Fluids 22, 603–634
(2003)

7. Janssen, P.A.: Nonlinear four-wave interactions and freak
waves. J. Phys. Oceanogr. 33, 863–884 (2003)

8. Onorato,M., Osborne, A.R., Serio,M., et al.: Freakwaves in
random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834
(2001)

9. Peregrine, D.H.: Water waves, nonlinear Schrödinger equa-
tions and their solutions. J. Aust.Math. Soc. Ser. B 25, 16–43
(1983)

10. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue
waves and rational solutions of the nonlinear Schrödinger
equation. Phys. Rev. E 80, 026601 (2009)

11. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves
in two dimensional graded-index waveguides. Nonlinear
Dyn. 72, 873–882 (2013)

12. Zakharov, V.E., Shabat, A.B.: Exact theory of two-
dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media. Sov. Phys. JETP
34, 62–69 (1971)

13. Matveev, V.B., Salle, M.A.: Darboux Transformation and
Solitons. Springer, Berlin (1991)

14. Zhaqilao, : On Nth-order rogue wave solution to the gener-
alized nonlinear Schrödinger equation. Phys. Lett. A 377,
855–859 (2013)

15. Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of
the (3+1)-dimensional generalized nonlinear Schrödinger
equation with external potentials. Ann. Phys. 341, 142–152
(2014)

16. Yang, B., Zhang, W.G., Zhang, H.Q., Pei, S.B.: General-
ized Darboux transformation and rogue wave solutions for
the higher-order dispersive nonlinear Schrödinger equation.
Phys. Scripta 88, 065004 (2013)

17. Jiang, H.J., Xiang, J.J., Dai, C.Q., Wang, Y.Y.: Nonau-
tonomous bright soliton solutions on continuous wave and
cnoidal wave backgrounds in blood vessels. Nonlinear Dyn.
75, 201–207 (2014)

18. Ling, L.M., Guo, B.L., Zhao, L.C.: High-order rogue waves
in vector nonlinear Schrödinger equations. Phys. Rev. E 89,
041201 (2014)

19. Lü, X., Peng, M.S.: Painlevé-integrability and explicit solu-
tions of the general two-coupled nonlinear Schrödinger sys-
tem in the optical fiber communications. Nonlinear Dyn. 73,
405–410 (2013)

20. Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial
solitons in PT-symmetric potentials with power-law nonlin-
earity. Nonlinear Dyn. 77, 1323–1330 (2014)

21. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solu-
tions in the harmonic and parity-time-symmetric potentials.
Phys. Rev. A 89, 013834 (2014)

22. Radha, R., Kumar, V.R.: Explode-decay solitons in
the generalized inhomogeneous higher-order nonlinear
Schrödinger equations. Zeitschrift fur NaturforschungA 62,
381–386 (2007)

23. Calogero, F., Degasperis, A.: Conservation laws for classes
of nonlinear evolution equations solvable by the spectral
transform. Commun. Math. Phys. 63, 155–176 (1978)

24. Lakshmanan, M., Bullough, R.K.: Geometry of generalised
nonlinear Schrödinger and Heisenberg ferromagnetic spin
equations with linearly x-dependent coefficients. Phys. Lett.
A 80, P287–292 (1980)

25. Abdulleav, F.: Theory of Soliton in Inhomogeneous Media.
New York (1984)

26. Chen, H.H., Liu, C.S.: Nonlinear wave and soliton propaga-
tion in media with arbitrary inhomogeneities. Phys. Fluids
21, 377–380 (1978)

27. Zhong, W.Z., Bai, Y.Q., Wu, K.: Generalized inhomoge-
neous Heisenberg ferromagnet model and generalized non-
linear Schrödinger equation. Phys. Lett. A 352, 64–68
(2006)

28. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrodinger
equation: generalized Darboux transformation and rogue
wave solutions. Phys. Rev. E 85, 026607 (2012)

29. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-
rogue wave solutions of the NLS equation and position solu-
tions of the KdV equation. Eur. Phys. J. Special Top. 185,
247–258 (2010)

30. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions of
the focusing NLS equation and the KP-I equation. Nat. Haz-
ards Earth Syst. Sci. 11, 667–672 (2011)

123


	Complex nonlinearities of rogue waves in generalized inhomogeneous higher-order nonlinear Schrödinger equation
	Abstract
	1 Introduction
	2 Generalized Darboux transformation for Eq. (1)
	3 Solutions of rogue waves
	4 Numerical results
	5 Conclusions
	Acknowledgments
	Appendix
	References




