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Abstract We explore the escape dynamics in open
Hamiltonian systems with multiple channels of escape
continuing the work initiated in Part I. A thorough
numerical investigation is conducted distinguishing
between trapped (ordered and chaotic) and escaping
orbits. The determination of the location of the basins
of escape toward the different escape channels and their
correlations with the corresponding escape periods of
the orbits is undoubtedly an issue of paramount impor-
tance. We consider four different cases depending on
the perturbation function which controls the number of
escape channels on the configuration space. In every
case, we computed extensive samples of orbits in both
the configuration and the phase space by numerically
integrating the equations of motion as well as the varia-
tional equations. It was found that in all examined cases,
regions of non-escaping motion coexist with several
basins of escape. The larger escape periods have been
measured for orbits with initial conditions in the vicin-
ity of the fractal structure, while the lowest escape rates
belong to orbits with initial conditions inside the basins
of escape. In addition, we related the model potential
with applications in the field of reactive multichannel
scattering. We hope that our numerical analysis will be
useful for a further understanding of the escape mech-
anism of orbits in open Hamiltonian systems with two
degrees of freedom.
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1 Introduction

Over the last decades, a huge amount of research work
has been devoted on the subject of escaping particles
from open dynamical systems; especially, the issue of
escape in Hamiltonian systems is a classical problem
in nonlinear dynamics (e.g., [21,23-26,70]). It is well
known that several types of Hamiltonian systems have
a finite energy of escape. For values of energy lower
than the escape energy, the equipotential surfaces of the
systems are close which means that orbits are bound,
and therefore, escape is impossible. For energy levels
above the escape energy, on the other hand, the equipo-
tential surfaces open and exit channels emerge through
which the particles can escape to infinity. The literature
is replete with studies of such “open” Hamiltonian sys-
tems (e.g., [7,53,61,70,76-78,84-86]). At this point,
we should emphasize that all the above-mentioned ref-
erences on escapes in Hamiltonian system are exem-
plary rather than exhaustive, taking into account that a
vast quantity of related literature exists.

Nevertheless, the issue of escaping orbits in Hamil-
tonian systems is by far less explored than the closely
related problem of chaotic scattering. In this situation,
atest particle coming from infinity approaches and then
scatters off a complex potential. This phenomenon is
well investigated as well interpreted from the viewpoint
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of chaos theory (e.g., [8-13,18,20,30-33,38,42,44—
52,56-60,64,65,68,71-75]).

During the last half century, dynamical systems
made up of perturbed harmonic oscillators have been
extensively used in order to describe local motion (i.e.,
near an equilibrium point) (e.g., [5,16,36—40,69,83—
86]). In an attempt to reveal and understand the nature
of orbits in these systems, scientists have used either
numerical (e.g., [16,54,87]) or analytical methods
(e.g., [28,29,34,35]). Furthermore, potentials made up
of harmonic oscillators are frequently used in galactic
Astronomy, as a first step for distinguishing between
ordered and chaotic local motion in galaxies, since it is
widely accepted that the motion of stars near the central
region of a galaxy can be approximated by harmonic
oscillations (e.g., [82]). One of the most characteristic
Hamiltonian systems of two degrees of freedom with
three escape channels is undoubtedly the well-known
Hénon—Heiles system [40]. A huge load of research on
the escape properties of this system has been conducted
over the years (e.g., [1-3,6,7,36,37]).

In open Hamiltonian systems, an issue of paramount
importance is the determination of the basins of escape,
similar to basins of attraction in dissipative systems
or even the Newton—Raphson fractal structures. An
escape basin is defined as a local set of initial conditions
of orbits for which the test particles escape through a
certain exit in the equipotential surface for energies
above the escape value. Basins of escape have been
studied in many earlier papers (e.g., [10,22,55,66,80]).
The reader can find more details regarding basins of
escape in [22], while the review [85] provides infor-
mation about the escape properties of orbits in a mul-
tichannel dynamical system of a two-dimensional per-
turbed harmonic oscillator. The boundaries of an escape
basins may be fractal (e.g., [4,10,27]) or even respect
the more restrictive Wada property (e.g., [1]), in the
case where three or more escape channels coexist in
the equipotential surface.

The layout of the present paper is as follows: A
detailed presentation of the properties of the Hamil-
tonian system is given in Sect. 2. In Sect. 3, we relate
our model potential with applications in the field of
reactive multichannel scattering. All the computational
techniques used in order to determine the character
(ordered vs. chaotic and trapped vs. escaping) of orbits
are described in Sect. 4. In the following Sect. 5, a
thorough numerical analysis of several cases regard-
ing the total number of escape channels is conducted.
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Our paper ends with Sect. 6, where the discussion and
the main conclusions of this work are presented. The
text structure of the paper as well as all the numerical
methods is the same as in Part I.

2 Presentation of the Hamiltonian system

The potential of a two-dimensional perturbed harmonic
oscillator is

1
Ve =5 (w%xz + w%yz) +eVitx, y), (1)

where w; and w; are the unperturbed frequencies of
oscillations along the x and y axes, respectively, and &
is the perturbation parameter, while Vj is the function
containing the perturbing terms.

As in Part I, we shall use a two-dimensional per-
turbed harmonic oscillator at the 1:1 resonance, that
is, when w; = wy = w. Therefore, the corresponding
potential is

2
Vi) =5 (2 4+)%) +evie ), @)

being @ the common frequency of oscillations along
the two axes. Without the loss of generality, we may
set o = 1 and ¢ = 1 for more convenient numerical
computations.

The basic equations of motion for a test particle with
a unit mass (m = 1) are

ov. .. A% 3
A=—o V= Ty €))
where, as usual, the dot indicates derivative with respect
to the time. Furthermore, the variational equations
governing the evolution of a deviation vector w =
(6x, 8y, 6x,8y), which joins the corresponding phase
space points of two initially nearby orbits, needed for
the calculation of standard chaos indicators (the SALI
in our case) are given by

(6x) = 8%, (8y) =63,

(6%) = OV 32_‘/8)]
9x2 oxdy

(8y) = — il ox — az—vay. (4)
dydx 0y?2



Escapes in Hamiltonian systems with multiple exit channels

359

Consequently, the Hamiltonian to potential (2) (with
w = ¢ = 1) reads

1
H:E(x2+y'2+x2+y2)+V1(x,Y)=h, o)

where x and y are the momenta per unit mass conjugate
to x and y, respectively, while 2 > 0 is the numerical
value of the Hamiltonian, which is conserved. Thus,
an orbit with a given value for its energy integral is
restricted in its motion toregions in which 2 < V (x, y),
while all other regions are forbidden to the test particle.
The Hamiltonian can also be written in the form

H = Hy + Hi, (6)

with Hy being the integrable term and H; the non-
integrable correction.

The function with the perturbation term Vi(x, y)
plays a key role as it determines the location as well as
the total number of the escape channels in the configu-
ration (x, y) space. In Part I, we considered perturbing
terms that create between two and four escape channels,
while now we will investigate the escape dynamics of
orbits in the cases where five, six, seven and eight exits
are present in the configuration space. At this point,
we should emphasize that this is the first time that
the escape properties of test particles in Hamiltonian
systems with more than four escape channels are sys-
tematically explored. In order to obtain the appropri-
ate perturbing terms for the required number of escape
channels, we need a generating function. In polar (r, 6)
coordinates, we can easily define functions of the form
" sin(n 0), where n is the desired number of exits
(see, e.g., [43]). Then we can convert them to rectangu-
lar cartesian (x, y) coordinated by following a simple
three-step procedure: (1) first split up sums and inte-
ger multiples that appear in arguments of trigonomet-
ric functions, (2) expand out products of trigonomet-
ric functions into sums of powers, using trigonometric
identities when possible and (3) replace everywhere
with cos(9) = y/r, sin(8) = x/r and r = /x2 4 y2.
In our study, we want to work on the (x,x) phase
plane and this type of plane is constructible only if the
Vi(x, y) function has terms with even powers regard-
ing the y coordinate. The above-mentioned generating
function, however, gives terms with even powers of y
only for odd values of n. Therefore, we need two types
of generating functions

r

r’ sin(n ), when nis odd and n > 3,

r'* cos(n 0), whenn isevenandn > 4,

)

Vi(r, 9):[

regarding how many channels we want the configura-
tion (x, y) space to have. In “Appendix 1,” we provide a
list of the perturbation functions for the first nine cases,
that is, for n € [2, 10].!

3 Applications to reactive scattering

Dynamical models with many exits of the form (2)
have the nice interpretation as scattering models for
rearrangement scattering. We may interpret each exit as
a different arrangement in nuclear scattering or molec-
ular scattering. Each channel means a different group-
ing of particles or atoms into the various fragments.
By trajectories entering through one channel and leav-
ing through another channel, one can describes nuclear
reactions or chemical reactions. As Taylor [81] writes
on page 318 in his well-known book, we can imagine
multichannel scattering as an irrigation system where
water comes in through one channel and goes out
through various other channels.

Let us try to explain the basic idea of potential mod-
els for rearrangement scattering for the simplest possi-
ble case. Itis the case of collinear scattering of three par-
ticles (e.g., [15,32,46]). So we have a one-dimensional
position space and the particles called A, B, C mov-
ing in this position space with coordinates g4, gp, qgc.
Now we change to relative coordinates x = g4 — gp
and y = gc — ¢p. Then the configuration (x, y) plane
is the relevant configuration space for all the reactions.
The motion of the center of mass of the whole system
is irrelevant. Now we imagine a potential with a deep
well around the origin and channels along the lines
x =0,y = 0and x —y = 0. The potential goes
to zero rapidly for all other directions. Far away from
the origin, the channels are straight and of constant
depth. First let us assume a negative total energy E.
Then the trajectory always stays in the central well and
the channels. The motion in the central well describes
motion where all three particles are close and interact.
The motion in the channels describes motion of the
various asymptotic arrangements. For example, think

! The perturbation function for the case n = 2 is not derived by
the generating function.
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of the channel along x = 0 which we call the arrange-
ment channel C. In this channel, the particles A and B
are close enough and interact, while the particle C is far
away and moves freely. The general trajectory in chan-
nel C moves along the channel with constant velocity
in longitudinal direction and at the same time oscillates
in transverse direction in the channel potential (i.e., the
relative coordinate g4 — gp oscillates).

We have some kinetic energy Ej for the longitudi-
nal motion and some energy E, of transversal motion
relative to the minimum of the potential channel. The
interpretation is like this: A bound state (molecule) of
particles (atoms) A and B moves far away from the
free particle (atom) C. And the molecule AB is in an
vibrational state with energy E, . Ex, on the other hand,
is the kinetic energy of the motion of atom C relative to
the bound fragment A B. Similar for the other channels.
We call the channel along the line y = 0 the arrange-
ment channel A and the potential channel along the line
x =y the arrangement channel B. Now let us assume
we find a trajectory which comes in along channel C
with transverse energy E,| enters the central poten-
tial well, performs complicated motion in the central
well for a finite time and then leaves along channel
B with transverse energy E. In position space, this
event looks like this: Atom C moves in direction of
the molecule A B which is in the vibrational state E.
Then they collide, and the atoms perform complicated
motion for a while, and finally, the atom B flies away
and leaves behind the molecule AC in vibrational state
E\». This is the microscopic description of a chemical
reaction AB +C — B+ AC.

For total energy larger than 0, there is the additional
possibility that all atoms fly away separately. This is
the breakup channel 0. The trajectory in the configu-
ration space then leaves the channels and goes away
in a direction where the potential is 0. For more parti-
cles and for particles in a higher-dimensional position
space, the basic idea remains the same. Take as config-
uration space a high- dimensional space of appropriate
relative coordinates and construct a potential with some
deep potential well in the middle and some kind of tubes
or layers going out into various directions along which
certain relative coordinates between particles remain
small. Of course, in a three-dimensional (3D) position
space we also include the various rotational states of
the bound molecules.

In the potential (2), we could imagine that far away
from the origin, the total potential converges to some
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form having the correct asymptotic properties of scat-
tering theory (i.e., the potential goes to zero in most
directions or otherwise has a finite number of straight
channels of constant depth); such a modification should
be doable somehow, while the inside well remain how
1t 18.

4 Computational methods

In Hamiltonian systems, the configuration as well as
the phase space is divided into the escaping and non-
escaping (trapped) regions. Usually, the vast majority
of the trapped space is occupied by initial conditions
of regular orbits forming stability islands where a third
adelphic integral of motion is present. In many systems,
however, as we also seen in Part I, trapped chaotic orbits
have also been observed. Therefore, we decided to dis-
tinguish between regular and chaotic trapped orbits.
Over the years, several chaos indicators have been
developed in order to determine the character of orbits.
In our case, we chose to use the Smaller ALingment
Index (SALI) method. The SALI [79] has been proved a
very fast, reliable and effective tool, which is defined as

SALI(t) = min(d_, d.), (8)

where d_ = [wi(t) — w2()| and dy = [w1(r) +
w2 (?)|| are the alignments indices, while wy(#) and
wy () are two deviations vectors which initially point
in two random directions. For distinguishing between
ordered and chaotic motion, all we have to do is to com-
pute the SALI along time interval #p,x of numerical
integration. In particular, we track simultaneously the
time evolution of the main orbit itself as well as the two
deviation vectors wy(¢) and wz(¢) in order to compute
the SALI. The variational Eq. (4), as usual, are used
for the evolution and computation of the deviation vec-
tors. The time evolution of SALI strongly depends on
the nature of the computed orbit, since when the orbit
is regular, the SALI exhibits small fluctuations around
nonzero values, while on the other hand, in the case of
chaotic orbits the SALI after a small transient period
it tends exponentially to zero approaching the limit of
the accuracy of the computer (10716). Therefore, the
particular time evolution of the SALI allow us to dis-
tinguish fast and safely between regular and chaotic
motion (e.g., [88]). Nevertheless, we have to define a
specific numerical threshold value for determining the
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transition from regularity to chaos. After conducting
extensive numerical experiments, integrating many sets
of orbits, we conclude that a safe threshold value for
the SALI is the value 10~7. In order to decide whether
an orbit is regular or chaotic, one may use the usual
method according to which we check after a certain
and predefined time interval of numerical integration if
the value of SALI has become less than the established
threshold value. Therefore, if SALI < 107, the orbit
is chaotic, while if SALI > 107, the orbit is regular.
For the computation of SALI, we used the LP-VT code
[17], a fully operational routine which efficiently com-
putes a suite of many chaos indicators for dynamical
systems in any number of dimensions.

For investigating the escape process in our Hamil-
tonian system, we need to define samples of orbits
whose nature (escaping or trapped) will be identified.
For this purpose, we define for each value of the energy
(all tested energy levels are always above the escape
energy), dense, uniform grids of initial conditions reg-
ularly distributed in the area allowed by the value of
the energy. Our investigation takes place both in the
configuration (x, y) and the phase (x, x) space for a
better understanding of the escape mechanism. In both
cases, the step separation of the initial conditions along
the axes (or in other words the density of the grids) was
controlled in such a way that always there are about
50,000 orbits (a maximum grid of 225 x 225 equally
spaced initial conditions of orbits). For each initial con-
dition, we integrated the equations of motion (3) as
well as the variational Eq. (4) using a double-precision
Bulirsch—Stoer FORTRAN 77 algorithm (e.g., [67])
with a small time step of order of 102, which is suffi-
cient enough for the desired accuracy of our computa-
tions (i.e., our results practically do not change by halv-
ing the time step). Our previous experience suggests
that the Bulirsch—Stoer integrator is both faster and
more accurate than a double-precision Runge—Kutta—
Fehlberg algorithm of order 7 with Cash—Karp coef-
ficients. In all cases, the energy integral (Eq. (5)) was
conserved better than one part in 10™!!, although for
most orbits, it was better than one part in 10712,

In Hamiltonian systems with escapes, an issue of
paramount importance is the determination of the posi-
tion as well as the time at which an orbit escapes. When
the value of the energy & is smaller than the escape
energy, the zero-velocity curves (ZVCs) are closed. On
the other hand, when i > hec, the equipotential curves
are open and extend to infinity. An open ZVC consists

of several branches forming channels through which an
orbit can escape to infinity. At every opening, there is a
highly unstable periodic orbit close to the line of max-
imum potential [19] which is called a Lyapunov orbit.
Such an orbit reaches the ZVC, on both sides of the
opening and returns along the same path, thus connect-
ing two opposite branches of the ZVC. Lyapunov orbits
are very important for the escapes from the system,
since if an orbit intersects, any one of these orbits with
velocity pointing outwards moves always outwards and
eventually escapes from the system without any fur-
ther intersections with the surface of section (see e.g.,
[21]). Additional details regarding the escape criteria
are given in the “Appendix 1”. The passage of orbits
through Lyapunov orbits and their subsequent escape
to infinity is the most conspicuous aspect of the trans-
port, but crucial features of the bulk flow, especially at
late times, appear to be controlled by diffusion through
cantori, which can trap orbits far vary long time periods.

For the numerical integration, we set a maximum
time equal to 107 time units. Our previous experience
in this subject indicates that usually orbits need consid-
erable less time to find one of the exits in the limiting
surface and eventually escape from the system (obvi-
ously, the numerical integration is effectively ended
when an orbit passes through one of the escape channels
and intersects one of the unstable Lyapunov orbits).
Nevertheless, we decided to use such a vast integra-
tion time just to be sure that all orbits have enough
time in order to escape. Remember that there are the
so-called sticky orbits which behave as regular ones
and their true chaotic character is revealed only after
long time intervals of numerical integration. Here we
should clarify that orbits which do not escape after a
numerical integration of 10° time units are considered
as non-escaping or trapped.

5 Numerical results

The main target is to distinguish between trapped and
escaping orbits for values of energy larger than the
escape energy where the zero-velocity curves are open
and several channels of escape are present. Further-
more, two important properties of the orbits will be
investigated: (1) the directions or channels through
which the particles escape and (2) the timescale of the
escapes (we shall also use the term escape period). In
particular, we examine these aspects for various val-
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ues of the energy &, as well as for four different types
of perturbation function Vi (x, y). The grids of initial
conditions of orbits whose properties will be deter-
mined are defined as follows: For the configuration
(x, ¥) space, we consider orbits with initial conditions
(x0, yo) with Xy = 0, while the initial value of yy is
always obtained from the energy integral of motion
(5) as yo = y(xp, X0, h) > 0. Similarly, for the phase
(x, x) space, we consider orbits with initial conditions
(x0, Xo) with yp = 0, while again the initial value of yj
is obtained from the Hamiltonian (5).

Our numerical calculations indicate that in almost all
cases, apart from the escaping orbits there is an amount
of non-escaping orbits. In general terms, the majority
of non-escaping regions corresponds to initial condi-
tions of regular orbits, where a third integral of motion
is present, restricting their accessible phase space and
therefore hinders their escape. However, there are also
chaotic orbits which do not escape within the prede-
fined time interval and remain trapped for vast periods
until they eventually escape to infinity. At this point, it
should be emphasized and clarified that these trapped
chaotic orbits cannot be considered, by no means, nei-
ther as sticky orbits nor as super sticky orbits with sticky
periods larger than 10° time units. Sticky orbits are
those who behave regularly for long time periods before
their true chaotic nature is fully revealed. In our case, on
the other hand, this type of orbits exhibit chaoticity very
quickly as it takes no more than about 100 time units for
the SALI to cross the threshold value (SALI <« 10~7),
thus identifying beyond any doubt their chaotic char-
acter. Therefore, we decided to classify the initial con-
ditions of orbits in both the configuration and phase
space into three main categories: (1) orbits that escape
through one of the escape channels, (2) non-escaping
regular orbits and (3) trapped chaotic orbits.

Here we would like to point out that all the follow-
ing subsections containing the results of the four cases
are formed having in mind flexibility. According the
current text structure, the reader can read any of the
four subsections and have a clear view of the proper-
ties of the corresponding Hamiltonian system because
each subsection is practical text autonomous.

5.1 Case I: five channels of escape
In this case (n = 5), the non-integrable part of the

Hamiltonian according to the first generating function
(7) is
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1
Hi = Vi(x,y) = — (x5 —10x3y% + 5xy4) )

and the corresponding escape energy equals to 3/10.
The total Hamiltonian of the system H = Hy + H;
has a special symmetry, that is, H is symmetric with
respect to y — —y. The equipotential curves of the
total potential (2) for various values of the energy h
are shown in Fig. l1a. The equipotential corresponding
to the energy of escape heg is plotted with red color
in the same plot. The open ZVC at the configuration
(x, y) plane when i = 0.35 > hey is presented with
green color in Fig. 1b, and the five channels of escape
are shown. In the same plot, we denote the five unsta-
ble Lyapunov orbits by L;, i = 1,...,5 using red
color.

We will investigate the trapped or escape dynamics
of test particles for values of energy in the set & = {0.31,
0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70}. Our
exploration begins in the configuration (x, y) space,
and in Fig. 2, we present the structure of the (x, y) plane
for several values of the energy. Each initial condition is
colored according to the escape channel through which
the particular orbit escapes. The gray regions on the
other hand, denote initial conditions where the test par-
ticles move in regular orbits and do not escape, while
trapped chaotic orbits are indicated with black. The
outermost solid line is the zero- velocity curve (limit-
ing curve) which is defined as V (x, y) = h. It is seen
that for values of energy larger but yet very close to
the escape energy (h < 0.40), a large portion of the
(x, ¥) plane is covered by stability islands which cor-
respond to initial conditions of non-escaping regular
orbits which are surrounded by a very rich fractal struc-
ture. Moreover, looking carefully the grids we observe
that there is a highly sensitive dependence of the escape
process on the initial conditions, that is, a slight change
in the initial conditions makes the test particle escape
through another channel, which is of course a clas-
sical indication of chaos. As the value of the energy
increases, the stability islands and the amount of non-
escaping and trapped orbits are reduced and basins of
escape emerge. Indeed, when 2 = 0.70, almost all the
computed orbits of the grid escape and there is no indi-
cation of bounded motion or whatsoever. By the term
basin of escape, we refer to a local set of initial con-
ditions that corresponds to a certain escape channel.
The escape basins become smoother and more well
defined as the energy increases and the degree of frac-
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Fig.1 aEquipotential curves of the total potential (2) for various
values of the energy %, when five escape channels are present.
The equipotential curve corresponding to the energy of escape

tality decreases.> The fractality is strongly related to
the unpredictability in the evolution of a dynamical
system. In our case, it can be interpreted that for high
enough energy levels, the test particles escape very fast
from the scattering region, and therefore, the system’s
predictability increases. It is seen in channel 5 that out-
side the Lyapunov orbit, there is a stream of initial
conditions of orbits that even though they are launched
outside the unstable Lyapunov orbits, they escape from
another exit, meaning that before escape they first enter
the interior region.

The distribution of the escape times fesc of orbits
on the (x,y) plane is given in the Fig. 3, where
light reddish colors correspond to fast escaping orbits,
dark blue/purple colors indicate large escape periods,
while gray color denote both trapped chaotic and non-
escaping regular orbits. Itis observed that for 2 = 0.31,
that is a value of energy just above the escape energy,
the escape periods of the majority of orbits are huge
corresponding to tens of thousands of time units. This,
however, is anticipated because in this case, the width
of the escape channels is very small, and therefore,
the orbits should spend much time inside the equipo-

2 The fat-fractal exponent increases, approaching the value 1
which means no fractal geometry, when the energy of the system
is high enough (see [6]).

~0.5 0.0
X

is shown with red color; b The open ZVC at the configuration
(x,y) plane when h = 0.35. L;, i = 1,..., 5 indicate the five
unstable Lyapunov orbits plotted in red. (Color figure online)

tential surface until they find one of the five openings
and eventually escape to infinity. As the value of the
energy increases however, the escape channels become
more and more wide leading to faster escaping orbits,
which means that the escape period decreases rapidly.
We found that the longest escape rates correspond to
initial conditions near the vicinity of the fractal regions.
On the other hand, the shortest escape periods have
been measured for the regions without sensitive depen-
dence on the initial conditions (basins of escape), that
is, those far away from the fractal basin boundaries. We
would like to emphasize that by definition, the fractal
basin boundaries contain initial conditions of orbits that
will never escape from the system, as it coincides with
the stable manifold of the non-attracting chaotic set,
also known as chaotic saddle or strange saddle, that is,
formed by a set of Lebesgue measure zero of orbits
that will never escape from the scattering region for
both t — oo or t — —oo0. It is known that at the criti-
cal energy, the escape time is infinity and it decreases if
one moves away from the critical value. The evolution
of the average value of the escape time < fe5c > of
orbits on the configuration (x, y) space as a function of
the total orbital energy /% is given in Fig. 4. It is seen that
for low values of energy, just above the escape value,
the average escape time of orbits is about 750 time
units; however, it reduces rapidly tending asymptoti-
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-16 -10 -05 00 0.5 1.0 15
X

-15 -10 -05 00 05 10 15
X

Fig.2 The structure of the configuration (x, y) plane for several
values of the energy h, distinguishing between different escape
channels. The color code is as follows: escape through chan-
nel 1 (green); escape through channel 2 (red); escape through

cally to zero which refers to orbits that escape almost
immediately from the system.

The structure of the phase (x, x) plane for the same
set of values of the energy is shown in Fig. 5. A similar
behavior to that discussed for the configuration (x, y)
plane can be seen. The outermost black solid line is the
limiting curve which is defined as
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-15 -10 -05 00
X

0.0 -15 -1.0 -05 00
X X

h=0.70

0
X b3

channel 3 (blue); escape through channel 4 (orange); escape
through channel 5 (magenta); non-escaping regular (gray);
trapped chaotic (black). (Color figure online)

flx, %) = %J'CZ—I—V(x,y =0) = h. (10)

Here we must clarify that this (x, x) phase plane is not
a classical Poincaré surface of section (PSS), simply
because escaping orbits, in general, do not intersect
the y = 0 axis after a certain time, thus preventing
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Fig. 3 Distribution of the escape times f.s. of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped

and non-escaping orbits are indicated by gray color

us from defying a recurrent time. A classical Poincaré
surface of section exists only if orbits intersect an axis,
like y = 0, at least once within a certain time inter-
val. Nevertheless, in the case of escaping orbits we
can still define local surfaces of section which help
us to understand the orbital behavior of the dynami-
cal system. It is interesting to note that the limiting
curve is open at the right part due to the x> term enter-
ing the perturbation function. In the phase planes of
Fig. 5, one can distinguish fractal regions where it is
impossible to predict the particular escape channel and
regions occupied by escape basins. These basins are
either broad well-defined regions or elongated bands of

complicated structure spiraling around the center. Once
more, we observe that for values of energy close to the
escape energy, there is a substantial amount of non-
escaping regular orbits and the degree of fractalization
of the rest phase plane is high. As we proceed to higher
energy levels however, the rate of non-escaping regu-
lar orbits heavily reduces, the phase plane becomes less
and less fractal and is occupied by well-defined basins
of escape. We would like to note that at the right open
part of the (x, x) planes, there is flow of initial condi-
tions which extends asymptotically to infinity. The dis-
tribution of the escape times 75 of orbits on the (x, X)
plane is shown in Fig. 6. It is evident that orbits with
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initial conditions inside the exit basins escape from the
system very quickly, or in other words, they possess
extremely low escape periods. On the contrary, orbits
with initial conditions located in the fractal parts of the
phase plane need considerable amount of time in order
to escape.

The following Fig. 7a shows the evolution of the
percentages of trapped and escaping orbits on the con-
figuration (x, y) plane when the value of the energy h
varies. Here we would like to point out that we decided
to merge the percentages of non-escaping regular and
trapped chaotic orbits together because our computa-
tions indicate that always the rate of trapped chaotic
orbits is extremely small (less than 1%), and there-
fore, it does not contribute to the overall orbital struc-
ture of the dynamical system. We observe that when
h = 0.31, that is just above the escape energy, trapped
motion is the most populated family occupying about
22 % of the configuration plane, while escaping orbits
through exits 2 and 3 have the same rates with escap-
ing orbits through channels 5 and 4, respectively. As
the value of the energy increases however, the rate
of trapped orbits drops rapidly, and for 2 > 0.60, it
practically vanishes. At the same time, the percent-
age of orbits escaping through exit channel 2 increases
steadily, and at the highest energy level studied, it corre-
sponds to about 40 % of the configuration (x, y) plane.
The rates of escaping orbits through channels 4 and
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5 exhibit a similar slow reduction for 2z > 0.4, while
the percentages of escaping orbits through exits 1 and 3
seem less unaffected by the shifting of the energy being
almost unperturbed around 12 and 23 %, respectively.
Therefore, one may conclude that for high energy lev-
els (h > 0.60), all orbits in the configuration (x, y)
plane escape and about 40 % of them choose channel
2. In the same vein, we present in Fig. 7b the evolu-
tion of the percentages of trapped and escaping orbits
on the phase plane as a function of the energy h. It
is observed that the pattern and the evolution of the
percentages is completely different with respect to that
discussed in Fig. 7a regarding the configuration plane.
We see that escaping orbits through exit channel 1 dom-
inate throughout, even though their rate reduces with
increasing energy. Moreover, the percentages of escap-
ing orbits through exits 2 and 3 display an identical
increase from 5 to 25 %, while the rates of exits 4 and 5
are much smaller (less than 10 %). The only similarity
with the configuration plane is the evolution pattern of
trapped orbits. Taking all into account, we can deduce
that in the configuration space, an orbit is more likely
to escape form channel 1, while for sufficiently enough
values of energy (7 > 1), we have numerical evidence
that the rates of exits 1, 2 and 3 seem to converge, thus
sharing about 90 % of the phase space.

5.2 Case II: six channels of escape

We continue our exploration of escapes in a Hamil-
tonian system with six exit channels with escape energy
equal to 1/3. In order to obtain this number of exits
(n = 6) in the limiting curve in the configuration (x, y)
plane, the perturbation term should be

1
Vitey) =—2 (x6 15542 — 15x2y% 4+ y6) ,
(11

according to the second generating function of Eq. (7).
The corresponding Hamiltonian H = Hy + H is
invariant under x — —x and/or y — —y. In Fig. 8a
we see the equipotential curves of the total potential (2)
for various values of the energy /, while the equipo-
tential corresponding to the energy of escape hesc 1S
plotted with red color in the same plot. Furthermore,
the open ZVC at the configuration (x, y) plane when
h = 0.4 > hey is presented with green color in
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Fig.5 The structure of the phase (x, X) plane for several values of the energy 4, distinguishing between different escape channels. The

color code is the same as in Fig. 2

Fig. 8b and the six channels of escape are shown. In
the same figure, the six unstable Lyapunov orbits L;,
i =1,...,6are denoted using red color.

In this case, we shall investigate the escape dynam-
ics of unbounded motion of test particles for values
of energy in the set 1 = {0.34, 0.36, 0.38, 0.40, 0.42,

0.45,0.50,0.55,0.60}. We begin with initial conditions
of orbits in the configuration (x, y) plane. The orbital
structure of the configuration plane for different values
of the energy & is shown in Fig. 9. Again, following
the approach of the previous case, each initial condi-
tion is colored according to the escape channel through
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Fig. 6 Distribution of the escape times f.s. of the orbits on the (x, x) plane. The darker the color, the larger the escape time. Trapped
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which the particular orbit escapes. Stability islands, on
the other hand, filled with initial conditions of ordered
orbits which do not escape are indicated as gray regions,
while trapped chaotic orbits are shown in black. We
observe that things are quite similar to that discussed
previously in Fig. 2. In fact, for energy levels very close
to the escape energy, the central region of the (x, y)
plane is highly fractal and it is also occupied by several
stability islands mainly situated at the outer parts of the
plane. However, as we increase the value of the energy,
the regions of regular non-escaping orbits are reduced,
the configuration plane becomes less and less fractal,
and well-defined basins of escape emerge. Addition-
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ally, we see that the area on the (x, y) plane occupied
by initial conditions of orbits that escape through exit
channel 2 grows rapidly with increasing energy and
at high energy levels (2 > 0.50), it dominates. Once
more, as we discussed earlier in Fig. 2, we observe
in channel 5 a vertical flow of initial conditions of
orbits that escape through exit 2. The following Fig. 10
shows how the escape times f.s of orbits are distrib-
uted on the (x, y) plane. Light reddish colors corre-
spond to fast escaping orbits, dark blue/purple colors
indicate large escape periods, while gray color denote
trapped orbits. This grid representation of the configu-
ration plane gives us a much more clearer view of the
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3

Fig. 8 a Equipotential curves of the total potential (2) for vari-
ous values of the energy &, when six escape channels are present.
The equipotential curve corresponding to the energy of escape

orbital structure and especially about the trapped and
non-escaping orbits. In particular, we see that even for
the highest energy level studied, that is when & = 0.60,
two tiny stability islands are still present in the config-
uration space.

is shown with red color; b The open ZVC at the configuration
(x,y) plane when h = 0.40. L;, i = 1, ..., 6 indicate the six
unstable Lyapunov orbits plotted in red. (Color figure online)

The structure of the (x, x) phase plane for the same
setof values of the energy is shown in Fig. 11. Itis worth
noticing that in the phase plane, the limiting curve is
closed but this does not mean that there is no escape.
Remember that we decided to choose such perturbation
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Fig.9 The structure of the configuration (x, y) plane for several
values of the energy h, distinguishing between different escape
channels. The color code is as follows: escape through channel
1 (green); escape through channel 2 (red); escape through chan-

terms that create the escape channels on the configura-
tion (x, y) plane which is a subspace of the entire four-
dimensional (x, y, x, y) phase space of the system. We
observe a similar behavior to that discussed earlier for
the configuration (x, y) plane in Fig. 9. Again, we can
distinguish in the phase plane fractal regions where the
prediction of the particular escape channel is impos-
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channel 5 (magenta); escape through channel 6 (brown); non-
escaping regular (gray); trapped chaotic (black). (Color figure
online)

sible and regions occupied by escape basins. For low
values of the energy (7 < 0.38), we can identify initial
conditions of trapped chaotic orbits at the boundaries
of the two stability islands on the x axis. As we proceed
to higher energy levels however, the extent of these sta-
bility islands is reduced and at relatively high values of
the energy (7 > 0.60), they completely disappear. Fur-
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Fig. 10 Distribution of the escape times 75 of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped

and non-escaping orbits are indicated by gray color

thermore, it is also seen that the extent of the escape
basins of exits 1, 2 and 3 is significantly grows in size
with increasing energy. In this case, the limiting curves
are close, and therefore, there is no flow of initial con-
ditions outwards. Figure 12 shows the distribution of
the escape times f.4c of orbits on the (x, x) plane. It is
evident that orbits with initial conditions inside the exit
basins escape from the system after short time intervals,
or in other words, they possess extremely small escape
periods. On the contrary, orbits with initial conditions
located in the fractal domains of the phase plane need
considerable amount of time in order to find one of the
exits and escape.

The evolution of the percentages of trapped and
escaping orbits on the configuration (x, y) plane when
the value of the energy & varies is presented in Fig.
13a. It is seen that for &4 = 0.34, that is the first inves-
tigated energy level above the escape energy, escaping
orbits through channels 1, 3, 4 and 6 share the same
percentage (around 15 %), escapers through channel
2 have a slightly elevated percentage (around 18 %),
while trapped orbits possess a low rate corresponding
only to about 10% of the configuration plane. Once
more, as we increase the value of the energy, the rate
of trapped orbits decreases and eventually vanishes for
h > 0.8. Furthermore, we observe that the percent-
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Fig. 11 The structure of the phase (x, x) plane for several values of the energy #, distinguishing between different escape channels.

The color code is the same as in Fig. 9

age of escaping orbits through channel 2 grows with
increasing energy and remains always the most pop-
ulated escape channel. The percentages of escaping
orbits through channels 1, 3, 4 and 6, on the other hand,
are almost unperturbed by the shifting on the orbital
energy, and it seems to saturate around 15 %, while
the rate of escaping orbits through exit 5 displays a
gradual decrease. In general terms, we may conclude
that throughout the energy range studied, the major-
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ity of orbits in the configuration (x, y) plane choose to
escape through exit channel 2, while exit 5 seems to be
the least favorable among the escape channels. It is evi-
dent from Fig. 13b where the evolution of the percent-
ages of trapped and escaping orbits on the phase plane
as a function of the value of the energy # is presented
that the pattern has many differences comparing to that
discussed previously in Fig. 13a. To begin with, we
observe that for # = 0.34, more than 35 % of the phase
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Fig. 12 Distribution of the escape times fs of the orbits on the (x, x) plane. The darker the color, the larger the escape time. Trapped

and non-escaping orbits are indicated by gray color

plane corresponds to initial conditions of orbits that do
not escape, while all the escape channels are equiprob-
able taking into account that all channels have the same
rate, thus sharing about 60 % of the phase space. As the
value of the energy increases and we move away from
the escape energy, it is seen that the rate of trapped
orbits is heavily reduced, while the percentages of the
escape channels start to diverge following two different
patterns. Being more specific, one may observe that the
rates of escaping orbits through exits 1, 2 and 3 start to
grow, while on the other hand the percentages of escap-
ers through exits 4, 5 and 6 exhibit a gradual decrease.
At the highest energy level studied (h = 1.0), about

30 % of the total orbits escape through channel 2, exit
channels 1 and 3 share about half of the phase plane,
while exit channels 4 and 6 share about 10 % of the
same plane. Thus, one may reasonably conclude that
throughout the energy range studied, the vast major-
ity of orbits in the phase (x, x) plane choose to escape
through channels 1, 2 and 3, while channels 4, 5 and 6
are much less likely to be chosen.

5.3 Case III: seven channels of escape

Our escape quest continues considering a Hamiltonian
system with seven exit channels where the escape
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Fig. 13 Evolution of the percentages of trapped and escaping orbits when varying the energy & a on the configuration (x, y) plane and
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energy is equal to 5/14. In order to obtain this number of
exits (n = 7) in the limiting curve in the configuration
(x, y) plane, the perturbation term should be

1
Vitx,y) = —5 (x7 — 21)c5y2 + 35)c3y4 — 7xy6) ,
(12)

according to the first generating function of Eq. (7).
We observe that the corresponding Hamiltonian H =
Hy + H; is symmetric with respect to y — —y. In
Fig. 14a, we see the equipotential curves of the total
potential (2) for various values of the energy 4, while
the equipotential corresponding to the energy of escape
heg 1s plotted with red color in the same plot. Fur-
thermore, the open ZVC at the configuration (x, y)
plane when i = 0.42 > hey is presented with green
color in Fig. 8b and the seven channels of escape are
shown. In the same figure, the seven unstable Lya-
punov orbits L;, i = 1,...,7 are denoted using red
color.

In this case, the set of values of the total orbital
energy of the test particles is 2 = {0.36, 0.40, 0.44,
0.48, 0.52, 0.60, 0.72, 0.84, 0.96}. First, we consider
initial conditions of orbits in the configuration (x, y)
plane, and in Fig. 15, the orbital structure of the con-
figuration plane for different values of the energy 4 is
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presented. As in all previous cases, each initial condi-
tion is colored according to the escape channel through
which the test particle escapes. For 4 = 0.36, that is an
energy level just above the critical escape energy, the
vast majority of the interior region of the configuration
plane is covered by initial conditions of non-escaping
regular orbits forming two stability islands which are
separated by a highly fractal layer. As we increase the
value of the energy, the stability islands are reduced,
while at the same time the fractality of the configuration
plane is considerably reduced and well-formed basis of
escape emerge. Furthermore, we see that the area on
the (x, y) plane occupied by initial conditions of orbits
that escape through exit channel 3 grows rapidly with
increasing energy, and athigh energy levels (2 > 0.60),
they dominate. The outwards flow of initial conditions
is once more present in channel 6. The distribution of
the escape times 7.5 Of orbits on the configuration plane
is given in Fig. 16, where light reddish colors corre-
spond to fast escaping orbits, dark blue/purple colors
indicate large escape periods, while gray color denote
trapped and non-escaping orbits. It is evident that even
though the two main stability islands reduce in size
with increasing energy, they do not completely disap-
pear since for 7 = 0.96 we still observe the presence
of two tine stability islands inside the interior region of
the configuration plane.
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Fig. 14 a Equipotential curves of the total potential (2) for var-
ious values of the energy &, when seven escape channels are
present. The equipotential curve corresponding to the energy of
escape is shown with red color; b The open ZVC at the config-

The following Fig. 17 shows the orbital structure
of the (x, x) phase plane for the same set of values
of the total energy h. It is seen that the phase space
is divided into three types of regions: (1) regions of
regular motion where the corresponding orbits do not
escape; (2) fractal regions where we cannot predict
the particular escape channel for a given orbit and (3)
regions where the initial conditions of orbits define
broad basins of escape. The first and the second type
of regions occupy large portion of the phase space for
low values of the energy (2 < 0.50), while for larger
values, their extent is considerably confined. The third
type, on the other hand, exhibits the complete opposite
behavior. In particular, we observe that the basins of
escape corresponding to exits 2, 3 and 4 grow signif-
icantly in size with increasing energy. Similarly as in
Fig. 5, a weak stream of initial conditions of orbits is
identified in the phase planes. Figure 18 depicts the dis-
tribution of the escape times 7.y of orbits on the phase
(x, x) plane. Once more we see that orbits with ini-
tial conditions inside the basins of escape have very
small escape periods, and therefore, they escape to
infinity quite early. On the contrary, orbits with situ-
ated in the fractal regions of the phase plane require
long time intervals in order to find one of the exits and
escape.

uration (x, y) plane when h = 0.42. L;,i = 1,...,7 indicate
the seven unstable Lyapunov orbits plotted in red. (Color figure
online)

In Fig. 19a, we see the evolution of the percent-
ages of trapped and escaping orbits on the configuration
(x, y) plane when the value of the energy % varies. For
h = 0.36, that is an energy level just above the escape
energy hesc, trapped orbits occupy about one-fourth of
the entire configuration plane. In addition, the percent-
ages of escaping orbits through exits 2 and 7 share about
30 % of the (x, y) plane, while all the other rates apart
form that of exit 1 have about the same value around
10 %. The portion of trapped orbits reduces as the value
of the energy increases and for 2 > 1, they vanish. The
percentage of escaping orbits through exit channel 3
on the other hand increases as we proceed to higher
energy levels, and for & > 0.4, it is the most populated
type of orbits. The rate of escaping orbits through exit
2 also increases, and for high values of energy, it seems
to saturate around 22 %, while that of exit 6 decreases
reaching 5 % at the highest energy level studied. The
percentages of all the remaining exit channels seem
to be almost unperturbed by the change in the value
of the energy holding values around 10 % throughout.
Therefore, one may conclude that in the configuration
(x, ¥) plane, the majority of orbits choose to escape
either through exit channel 2 or exit 3, while all the
other exits are significantly less probable to be cho-
sen by the test particles. In the same vein, we present in
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Fig. 15 The structure of the configuration (x, y) plane for sev-
eral values of the energy £, distinguishing between different
escape channels. The color code is as follows: escape through
channel 1 (green); escape through channel 2 (red); escape

Fig. 19b the evolution of the percentages of trapped and
escaping orbits on the phase plane as a function of the
value of the energy /. Here it is evident that things are
quite different. At the lowest examined energy level
(h = 0.36), it is found that half of the phase space
is occupied by initial conditions of orbits that escape
through channel 1, about 35 % of the integrated initial
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through channel 3 (blue); escape through channel 4 (orange);
escape through channel 5 (magenta); escape through channel 6
(brown); escape through channel 7 (cyan); non-escaping regular
(gray); trapped chaotic (black). (Color figure online)

conditions correspond to trapped regular orbits, while
the remaining 15 % of the phase plane is shared by
escaping orbits through channels 2—-7. As the value of
the energy increases, the percentages of both trapped
and escaping through exit 1 orbits are reduced; how-
ever, the latter type of orbits remains throughout the
most populated one. At the same time, the percentages
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of escaping orbits through channels 2—7 start to diverge
and produce two distinct branches. The first branch
contains the evolution of the rates of escaping orbits
through exits 2, 3 and 4 which all of them exhibit a
common increase, and at the highest energy level stud-
ied (h = 1.56), they share about 60 % of the phase
space. The second branch includes the percentages of
escaping orbits through channels 5, 6 and 7, and we see
that all of them are almost unperturbed by the energy
shifting evolving at low values less than 5 %. Taking
into account the above-mentioned results regarding the
phase (x,x) space, we may say that throughout the
energy range studied, the vast majority of orbits choose
to escape through one of the first four channels (exits 2,

h=0.84
2* |
-2 -1 [ 1 2
X

Fig. 16 Distribution of the escape times fs. of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped
and non-escaping orbits are indicated by gray color
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3 and 3 are practically equiprobable), while the remain-
ing channels (5 to 7) are significantly less likely to be
chosen.

5.4 Case IV: eight channels of escape

The last case under investigation is the case where the
Hamiltonian system has eight channels of escape (n =
8). The corresponding perturbation function is obtained
from the second generating function (7), and it reads

1
vﬁ(x,Y)==_‘g(XS-—28x6y24—70x4y4——28x2y64_y8%

13)
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Fig. 17 The structure of the phase (x, x) plane for several values of the energy &, distinguishing between different escape channels.

The color code is the same as in Fig. 15

while the corresponding escape energy is equal to 3/8.
The total Hamiltonian H = Hy+ H; is invariant under
x — —x and/or y — —y. The equipotential curves of
the total potential (2) for various values of the energy &
are shown in Fig. 20a. The equipotential corresponding
to the energy of escape is plotted with red color in the
same plot. The open ZVC at the configuration (x, y)
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plane when 7 = 0.44 > heg is presented with green
color in Fig. 1b and the eight channels of escape are
shown. In the same plot, we denote the eight unstable
Lyapunov orbits by L;,i =1, ..., 8 using red color.
The escape properties and mechanism of unbounded
motion of test particles for values of energy in the set &
= {0.38, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00}
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Fig. 18 Distribution of the escape times 75 of the orbits on the (x, x) plane. The darker the color, the larger the escape time. Trapped

and non-escaping orbits are indicated by gray color

will be examined. We begin, as usual, with initial condi-
tions of orbits in the configuration (x, y) plane. Figure
21 shows the orbital structure of the configuration plane
for different values of the energy /. Again, following
the same approach as in all previous cases, each ini-
tial condition is colored according to the escape chan-
nel through which the particular orbit escapes. Areas
corresponding to non-escaping regular orbits, on the
other hand, are indicated as gray regions, while trapped
chaotic orbits are shown in black. We see that for values
of energy very close to the escape energy (h < 0.50),
the majority of the central region of the configura-

tion plane is fractal, some small stability islands are
present situated mainly at the outer parts of the inte-
rior region, while we observe a week stream of ini-
tial conditions of orbits that escape from channel 3
which crosses vertically the (x, y) plane and flows out-
wards from channel 7 (a similar phenomenon was also
observed in all previous cases). As the value of the
energy increases, this stream becomes more and more
strong evolving to a wide basin of escape which eventu-
ally takes over most of the interior region of the config-
uration plane. Moreover, additional smaller basins of
escape emerge mainly around the unstable Lyapunov
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Fig. 19 Evolution of the percentages of trapped and escaping orbits when varying the energy % a on the configuration (x, y) plane and

b on the phase (x, x) plane
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Fig. 20 a Equipotential curves of the total potential (2) for var-
ious values of the energy /s, when eight escape channels are
present. The equipotential curve corresponding to the energy of
escape is shown with red color; b The open ZVC at the config-

orbits, while the stability islands containing the initial
conditions of non-escaping regular orbits are reduced
in size. Here we should like to note that in general
terms, throughout the energy range the structure of
the configuration (x, y) plane is somehow symmetrical
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uration (x, y) plane when h = 0.44. L;,i = 1, ..., 8 indicate
the eight unstable Lyapunov orbits plotted in red. (Color figure
online)

with respect to the x = 0 axis. The distribution of the
escape times fesc of orbits on the configuration plane
is given in Fig. 22. Light reddish colors correspond to
fast escaping orbits, dark blue/purple colors indicate
large escape periods, while gray color denote trapped
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Fig. 21 The structure of the configuration (x, y) plane for sev-
eral values of the energy /, distinguishing between different
escape channels. The color code is as follows: escape through
channel 1 (green); escape through channel 2 (red); escape
through channel 3 (blue); escape through channel 4 (orange);

and non-escaping orbits. Here, we have a better view
regarding the amount of trapped orbits. We see that for
h = 1.0, all orbits escape from the system. Moreover,
we observe that orbits with initial conditions close to
the area occupied by trapped orbits have significantly
high escape periods, while on the other hand, orbits

escape through channel 5 (magenta); escape through channel
6 (brown); escape through channel 7 (cyan); escape through
channel 8 (yellow); non-escaping regular (gray); trapped chaotic
(black). (Color figure online)

located near the exit channels escape very quickly hav-
ing escaping rates of about two orders smaller.

We proceed with the phase (x, x) plane, the struc-
ture of which for the same set of values of the energy
is presented in Fig. 23. It is seen that this time the lim-
iting curve is open at both sides. One may observe
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that for & < 0.4, a large part of the phase plane is
covered by several sets of stability islands correspond-
ing to non-escaping orbits, the remaining has a highly
fractal structure, while only three basins of escape are
shown; one in the central region of the phase plane and
two other one above and one below it. However, as the
value of the energy increases and we move far away
for the escape energy, the extent of these three basins
of escape grows and for 4 > 0.70, they dominate. At
the same time, small elongated spiral basins of escape
emerge inside the fractal region which surrounds the
central escape basin. Furthermore, at very high energy
levels (h > 1.0) we see that non-escaping regular orbits
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Fig. 22 Distribution of the escape times fs. of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped
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disappear completely from the grid and the three main
basins of escape take over the vast majority of the phase
plane, while the elongated escape basins remain con-
fined to the central region. As we noticed previously
when discussing the configuration (x, y) plane, there
is also a symmetry in the phase plane. In particular,
throughout the energy range, the structure of the phase
plane (x, x) is somehow symmetrical (though not with
the strick sense) with respect to the x = 0 axis. In this
case, the limiting curves in the phase plane are open in
both sides, and thus, we observe the existence of two
streams of initial conditions leaking out and extend to
infinity. The following Fig. 24 shows the distribution
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Fig. 23 The structure of the phase (x, x) plane for several values of the energy &, distinguishing between different escape channels.

The color code is the same as in Fig. 21

of the escape times fesc of orbits on the phase (x, x)
plane. Itis clear that orbits with initial conditions inside
the exit basins escape to infinity after short time inter-
vals, or in other words, they possess extremely small
escape periods. On the contrary, orbits with initial con-
ditions located in the fractal parts of the phase plane
need considerable amount of time in order to find one
of the four exits and escape. It is seen that at the highest
energy level studied (2 = 1.0), there is no indication of

bounded motion and all orbits escape to infinity sooner
or later.

It is of particular interest to monitor the evolution of
the percentages of trapped and escaping orbits on the
configuration (x, y) plane when the value of the energy
h varies. A diagram depicting this evolution is pre-
sented in Fig. 25a. We see that for 7 = 0.38, that is an
energy level just above the escape energy, about 17 % of
the configuration plane is covered by initial conditions
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Fig. 24 Distribution of the escape times fs. of the orbits on the (x, x) plane. The darker the color, the larger the escape time. Trapped

and non-escaping orbits are indicated by gray color

of trapped orbits. As the value of the energy increases
however, the rate of trapped orbits drops rapidly, and
eventually at 2~ > 1.0 it vanishes. We also observe
that the evolution of the percentages of orbits escaping
through channels 1, 2 and 6 coincide with the evolution
of the percentages escaping through channels 5,4 and 8,
respectively. We anticipated this behavior of the escape
percentages, which is a natural result of the symmetri-
cal structure of the configuration (x, y) plane. We also
anticipated the domination of escaping orbits through
exit 3 due to the strong escape stream. It is seen that
initially (2 = 0.38) the rates of escaping orbits through
exits 2,4, 6, 7 and 8 coincide at about 12 %. Then, with
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increasing energy the rates of these types of escaping
orbits start to diverge, but only escapers through exit
7 decrease; all the others remain almost unperturbed.
At the highest energy studied, escaping orbits through
channels 2 and 4 share about 30 % of the configuration
plane, escaping orbits through channels 6 and 8 share
about 20% of the same plane, while escaping orbits
trough channels 1 and 5 occupy only about 12 % of the
grid. Therefore, one may reasonably conclude that in
general terms, throughout the range of the values of the
energy studied, the majority of orbits in the configura-
tion (x, y) plane choose to escape through channels 2, 3
and 4. The evolution of the percentages of trapped and
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Fig. 25 Evolution of the percentages of trapped and escaping orbits when varying the energy % a on the configuration (x, y) plane and

b on the phase (x, X) plane

escaping orbits on the phase plane as a function of the
value of the energy £ is given in Fig. 25b. For h = 0.38,
we see that trapped orbits is the most populated type
of orbits as they occupy about 27 % of the phase space.
However as usual, with increasing energy the domi-
nance of trapped orbits deteriorates rapidly due to the
increase in the rates of escaping orbits forming basins
of escape. We observe that the evolution of several rates
of escaping orbits coincide due to the symmetry of
the phase space. In particular, there are three differ-
ent branches, given with decreasing strength (rate): (1)
containing the rates of exits 1 and 5; (2) containing the
rates of exits 2, 3 and 4; and (3) containing the rates of
exits 6, 7 and 8. The first branch seems to be unaffected
by the change in the value of the energy and exits 1 and
5 share about half of the phase space throughout. The
rates of escaping orbits that belong to the second branch
exhibit a small increase, and at the highest energy level
studied, they share about 40 % of the grid. The percent-
ages of escaping orbits that belong to the third branch,
on the other hand, are reduced and when # = 1.5, they
share the remaining 10 % of the phase plane. Thus, we
may conclude that the vast majority of orbits in the
phase (x, x) plane displays clear sings of preference
through exits 1 and 5, while channels 6, 7 and 8 have
considerable less probability to be chosen.

5.5 An overview analysis

The color-coded grids in configuration (x, y) as well
as the phase (x, x) plane provide information on the
phase space mixing however, for only a fixed value
of energy. Hénon [41] introduced a new type of plane
which can provide information not only about stabil-
ity and chaotic regions but also about areas of trapped
and escaping orbits using the section y = x = 0,
y > 0 (see also [6]). In other words, all the orbits
of the test particles are launched from the x-axis with
X = xp, parallel to the y-axis (y = 0). Conse-
quently, in contrast to the previously discussed types
of planes, only orbits with pericenters on the x-axis
are included, and therefore, the value of the energy
h can be used as an ordinate. In this way, we can
monitor how the energy influences the overall orbital
structure of our Hamiltonian system using a contin-
uous spectrum of energy values rather than few dis-
crete energy levels. Figure 26a—d shows the structure
of the (x, h)-plane for the four types of Hamiltonians
presented in the previous subsections. It is seen that
in all four plots, the boundaries between bounded and
unbounded motion are now seen to be more jagged than
in the previous types of grids. In addition, we found in
the blow-ups of the diagrams many tiny islands of
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Fig. 26 Orbital structure of the (x, #)-plane when a five chan-
nels of escape are present and 2 € [0.301, 1.2]; b six channels of
escape are presentand i € [0.334, 2]; ¢ seven channels of escape
are present and i € [0.356, 1, 2]; d eight channels of escape are

stability.’ We observe that for low values of the energy
close to the escape energy, there is a considerable
amount of trapped orbits inside stability regions sur-
rounded by a highly fractal structure. This pattern how-

3 From chaos theory, we expect an infinite number of islands of
(stable) quasiperiodic (or small-scale chaotic) motion.
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present and & € [0.376, 2]. These diagrams provide a detailed
analysis of the evolution of the trapped and escaping orbits of the
Hamiltonians when the parameter 4 changes. The color code is
the same as in Fig. 21

ever changes for larger energy levels, where there are
no trapped orbits and the vast majority of the grids is
covered by well-formed basins of escape, while frac-
tal structure is confined only near the boundaries of
the escape basins. It would be of particular interest
to monitor how the total orbital energy / influences
the percentages of all types of orbits. The following
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Fig. 27 Evolution of the percentages of all types of orbits in the (x, &) plane. a Case with five escape channels; b case with six escape
channels; ¢ case with seven escape channels; d case with eight escape channels

Fig. 27a—d shows the evolution of the percentages of
all types of orbits identified in the (x, &) planes of Fig.
26a—d, respectively, as a function of the total orbital
energy.

In all previous subsections, we discussed fractal-
ity of the configuration and phase space in a qualita-
tive way. In particular, rich and highly fractal domains
are those in which we cannot predict through which

exit channel the particle will escape since the particle
chooses randomly an exit. On the other hand, inside
the escape basins where the degree of fractality is zero,
the escape process of the particles is well known and
predictable. At this point, we shall provide a quanti-
tative analysis of the degree of fractality for the grids
shown in Fig. 26a—d. In order to measure the fractal-
ity, we have computed the uncertainty dimension [63]
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Fig. 28 Evolution of the fractal uncertainty dimension Dy of
the (x, h)-planes of Fig. 25a—d as a function of the total energy
h. Dp = 1 means total fractality, while Dy = 0 implies zero
fractality

for different values of the total energy. Obviously, this
quantity is independent of the initial conditions used to
compute it. We follow the numerical way according to
[1]. We calculate the exit for certain initial condition
(x, h). Then, we compute the exit for the initial condi-
tions (x — €, h) and (x + €, h) for a small € and if all of
them coincide, then this point is labeled as “certain.”
If on the other hand they do not, it will be labeled as
“uncertain.” We repeat this procedure for different val-
ues of €. Then we calculate the fraction of initial con-
ditions that lead to uncertain final states f(¢). There
exists a power law between f(¢) and €, f(€) o €%,
where « is the uncertainty exponent. The uncertainty
dimension Dy of the fractal set embedded in the initial
conditions is obtained from the relation Dy = D — «,
where D is the dimension of the phase space. It is typi-
cal to use a fine grid of values of x and / to calculate the
uncertainty dimension. The evolution of the uncertainty
dimension Dy when the energy is increased is shown
in Fig. 28a—d for the corresponding (x, /) grids of Fig.
26a—d, respectively. As it has just been explained, the
computation of the uncertainty dimension is done for
only a “1D slice” of initial conditions of Fig. 26a—d
and for that reason Dy € (0, 1). It is remarkable that
the uncertainty dimension tends to one when the energy
tends to its minimum value (Eeg). This means that for
that critical value, there is a total fractalization of the
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grid, and the chaotic set becomes “dense” in the limit.
Consequently, in this limit there are no smooth sets of
initial conditions and the only defined structures that
can be recognized are the Kolmogorov—Arnold—Moser
(KAM)-tori of quasiperiodic orbits. When the energy is
increased however, the different smooth sets appear and
tend to grow, while the fractal structures that coincide
with the boundary between basins decrease. Finally for
values of energy much greater than the escape energy,
the uncertainty dimension tends to zero (no fractality).
Furthermore, it is seen that there is a hierarchy in four
curves shown in Fig. 28. In particular, the order of the
curves follows the number of exits (channels); the more
the exits, the higher the corresponding curve with more
fractality. This makes sense, because if there are more
basins, it seems to be more probable that your closest
point in the exit basin belongs to a different basin.
The rich fractal structure of the (x, &) planes shown
in Fig. 26a—d implies that all four Hamiltonians have
also a strong topological property, which is known as
the Wada property [1]. The Wada property is a general
feature of two-dimensional (2D) Hamiltonians with
three or more escape channels. A basin of escape veri-
fies the property of Wada if any initial condition that is
on the boundary of one basin is also simultaneously on
the boundary of three or even more escape basins (e.g.,
[14,55]). In other words, every open neighborhood of a
point x belonging to a Wada basin boundary has a non-
empty intersection with at least three different basins.
Hence, if the initial conditions of a particle are in the
vicinity of the Wada basin boundary, we will not be able
to be sure by which one of the three exits the orbit will
escape to infinity. Therefore, if a Hamiltonian system
has this property, the unpredictability is even stronger
than if it only had fractal basin boundaries. If an orbit
starts close to any point in the boundary, it will not be
possible to predict its future behavior, as its initial con-
ditions could belong to any of the other escape basins.
In Fig. 29a—d, we present zoom plots of characteris-
tic exit channels in the configuration (x, y) space for
the system with five, six, seven and eight escape chan-
nels, respectively, while the corresponding Lyapunov
orbits are shown in dashed white. We see that no matter
the scale, all colors are fully mixed, and therefore, we
have an indication that our Hamiltonian system verify
this special property. However, it should be pointed out
that the only mathematically precise method to verify
the Wada property in a Hamiltonian system is to paint
the unstable manifold of the Lyapunov orbit and show
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Fig. 29 A zoom of the a exit channel 5 for 4 = 0.70; b exit channel 5 for 2 = 1.10; ¢ exit channel 6 for # = 1.20; d exit channel 7
for & = 1.50. The unstable Lyapunov orbits are shown in dashed white color

that it crosses all basins (see e.g., [62]). This special
topological property has been identified and studied in
several dynamical systems (e.g., [4,55,66]), and it is
a typical property in open Hamiltonian systems with
three or more escape channels.

It is evident from the results presented in Fig. 30a—d
that the escape times of the orbits are strongly corre-
lated with the escape basins. In addition, one may con-

clude that the smallest escape periods correspond to
orbits with initial conditions inside the escape basins,
while orbits initiated in the fractal regions of the planes
have the highest escape rates. In all four cases, the
escape times of orbits are significantly reduced with
increasing energy. Thus, combining all the numerical
outcomes presented in Figs. 26 and 30, we may say
that the key factor that determines and controls the
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Fig. 30 The distribution of the corresponding escape times of
the orbits for the four types of Hamiltonians presented in Fig.
26a—d. In this type of grid representation the stability islands of

escape times of the orbits is the value of the orbital
energy (the higher the energy level, the shorter the
escape rates), while the fractality of the basin bound-
aries varies strongly both as a function of the energy
and of the spatial variable. Another interesting way of
measuring the escape rate of an orbit in the phase (x, X)
space is by counting how many intersections the orbit
has with the axis y = 0 before it escapes. The regions
in Fig. 31a-b are colored according to the number of
intersections with the axis y = 0 upwards (y > 0),
and this is another type of grid representation showing
a characteristic example of each Hamiltonian system.
We observe that orbits with initial conditions inside
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the green basins escape directly without any intersec-
tion with the y = 0 axis. We should also note here
that orbits with initial conditions located at the vicin-
ity of the stability islands or at the boundaries of the
escape basins perform numerous intersections with the
y = 0 axis before they eventually escape to infinity.
On the other hand, orbits with initial conditions inside
the elongated spiral bands need only a couple of inter-
section until they escape.

Before closing this section, we would like to empha-
size that orbits with initial conditions outside the unsta-
ble Lyapunov orbits do not necessarily escape immedi-
ately from the dynamical system. In Fig. 32a—d, we
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Fig. 31 Color scale of the escape regions as a function of the
number of intersections with the y = 0 axis upwards (y > 0).
The color code is as follows: 0 intersections (green); 1 intersec-

present one characteristic example for each Hamil-
tonian, and in Table 1, we provide the exact initial con-
ditions, the escape period and the value of the energy
for all the depicted orbits. We observe that even though
all orbit are initiated outside but relatively close to

®) h=0.42
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tion (yellow); 2—10 intersections (cyan); >10 intersections (red).
The gray regions represent stability islands of trapped orbits.
(Color figure online)

one of the unstable Lyapunov orbits that bridge the
escape channels, they do not escape right away from
the system. On the other hand, they enter the inte-
rior region and only after some nonzero time units of
chaotic motion they eventually escape from one of the
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Fig. 32 Characteristic examples of orbits with initial conditions outside the unstable Lyapunov orbits which however do not escape

immediately from the system

Table 1 Initial conditions,
escape period and value of
the energy of the orbits
shown in Fig. 32a—d
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Figure X0 A tesc h Outside Exit
32a 0.51600000 —1.40000000 14.52 0.35 Ls 3
32b 0.08555443 —1.37457465 40.66 0.40 Ls 1
32¢ —0.37030768 —1.15722900 12.15 0.44 L¢ 3
32d 0.06095617 —1.45418326 64.62 0.45 Ly 5
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exit channels. Moreover, another interesting fact is that
all four orbits escape from channels which do not coin-
cide with the original at which they have been initiated.
Thus it is evident that the initial position itself does
not furnish a sufficient condition for escape, since the
escape criterion is in fact a combination of the coordi-
nates and the velocity of the test particles. More com-
putational details regarding the escape criteria can be
found in “Appendix 1.

6 Conclusions and discussion

The aim of this work was to numerically investigate
the escape dynamics in open Hamiltonian systems with
multiple exit channels of escape. This type of dynami-
cal systems has the key feature of having a finite energy
of escape. In particular, for energies smaller than the
escape value, the equipotential surfaces are closed,
and therefore, escape is impossible. For energy levels
larger than the escape energy however, the equipoten-
tial surfaces open and several channels of escape appear
through which the test particles are free to escape to
infinity. Here we should emphasize that if a test parti-
cle has energy larger than the escape value, this does
not necessarily mean that the test particle will certainly
escape from the system, and even if escape does occur,
the time required for an orbit to cross an unstable Lya-
punov orbit and hence escape to infinity may be very
long compared with the natural crossing time. The non-
integrable part of the Hamiltonian containing the per-
turbation terms affects significantly the structure of the
equipotential surface and determines the exact number
of the escape channels in the configuration space. In
Part I, we chose such perturbing terms creating between
two and four escape channels, while here in Part II the
escape channels in the (x, y) plane vary between five
and eight. Here we would like to emphasize that in this
paper, we introduce and explore for the first time poten-
tial functions that correspond to Hamiltonian systems
with more than four escape channels and this is the
main novelty of our work.

We defined for several values of the total orbital
energy dense, uniform grids of initial conditions regu-
larly distributed in the area allowed by the correspond-
ing value of the energy in both the configuration (x, y)
and the phase (x, x) space. In both cases, the density
of the grids was controlled in such a way that always
there were about 50,000 orbits to be examined. For

the numerical integration of the orbits in each grid, we
needed roughly between 1 min and 6 days of CPU time
on a Pentium Dual-Core 2.2 GHz PC, depending both
on the amount of trapped orbits and on the escape rates
of orbits in each case. For each initial condition, the
maximum time of the numerical integration was set to
be equal to 103 time units however, when a test particle
escapes the numerical integration is effectively ended
and proceeds to the next initial condition.

By conducting a thorough and systematical numeri-
cal investigation, we successfully revealed the structure
of both the configuration and the phase space. In partic-
ular, we managed to distinguish between trapped (non-
escaping) and escaping orbits and we located the basins
of escape leading to different exit channels, also find-
ing correlations with the corresponding escape times
of the orbits. Among the escaping orbits, we separated
between those escaping fast or late from the system.
Our extensive numerical calculations strongly suggest
that the overall escape process is very dependent on
the value of the total orbital energy. The main numer-
ical results of our investigation can be summarized as
follows:

1. In all four Hamiltonian systems studied, areas of
non-escaping orbits and regions of initial condi-
tions leading to escape in a given direction (basins
of escape) were found to exist in both the configura-
tion and the phase space. The several escape basins
are very intricately interwoven, and they appear as
either well-defined broad regions or thin elongated
spiral bands. Regions of trapped orbits first and
foremost correspond to stability islands of regular
orbits where a third adelphic integral of motion is
present.

2. We observed that in several exit regions, the escape
process is highly sensitive dependent on the initial
conditions, which means that a minor change in the
initial conditions of an orbit leads the test particle to
escape through another exit channel. These regions
are the opposite of the escape basins, are completely
intertwined with respect to each other (fractal struc-
ture) and are mainly located in the vicinity of stabil-
ity islands. This sensitivity toward slight changes in
the initial conditions in the fractal regions implies
that it is impossible to predict through which exit
the particle will escape.

3. A strong correlation between the extent of the
basins of escape and the value of the total orbital

@ Springer



394

E. E. Zotos

energy h was found to exists. Indeed, for low val-
ues of & the structure of both the configuration and
the phase space exhibits a large degree of fractal-
ization, and therefore, the majority of orbits escape
choosing randomly escape channels. As the value
of h increases however, the structure becomes less
and less fractal and several basins of escape emerge.
The extent of these basins of escape is more promi-
nent at relatively high energy levels, where they
occupy about nine tenths of the entire area on the
girds.

4. Our numerical computations revealed that the
escape times of orbits are directly linked to the
basins of escape. In particular, inside the basins of
escape as well as relatively away from the frac-
tal domains, the shortest escape rates of the orbits
had been measured. On the other hand, the longest
escape periods correspond to initial conditions of
orbits in the vicinity of stability islands or inside
the fractal structures. It was also found that as
we proceed to high energy levels far above the
escape energy, the proportion of fast escaping orbits
increases significantly. This phenomenon can be
justified; if we take into account that with increas-
ing energy, the exit channels on the equipotential
surfaces become more and more wide, and thus the
test particles can find easily and faster one of the
exits and escape to infinity.

5. We provided numerical evidence that our open
Hamiltonian systems have a strong topological
property, known as the Wada property. This means
that any initial condition that is on the boundary
of an escape basin is also simultaneously on the
boundary of at leats other two basins of escape. We
also concluded that if a dynamical system verifies
the property of Wada, the unpredictability is even
stronger than if it only had fractal basin boundaries.

6. In all four examined cases, we identified a small
portion of chaotic orbits with initial conditions
close enough to the outermost KAM islands which
remain trapped in the neighborhood of these islands
for vast time intervals having sticky periods which
correspond to hundreds of thousands time units. It
should be pointed out, however, that the amount of
these trapped chaotic orbits is significantly smaller
than that reported in the case of four exit channels
of Part I.

7. In both the configuration as well the phase space,
we reported the existence of streams of initial con-
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ditions which correspond to orbits that start outside
the unstable Lyapunov orbits, and then they enter
the interior region and finally escape from some
escape channel which, however, do not coincide
with the original one in which they have been ini-
tiated. These streams flow from the inside to the
outside of the equipotential surfaces and extend
asymptotically to infinity.

We hope that the present numerical analysis to be
useful in the active field of open Hamiltonian systems
which may have implications in different aspects of
chaotic scattering with applications in several areas of
physics. For example, we related the current model
potential with applications in the field of reactive mul-
tichannel scattering. Moreover, it is in our future plans
to expand our investigation in other more complicated
potentials, focusing our interest in reveling the escape
mechanism of stars in galactic systems such as star clus-
ters, binary stellar systems or barred spiral galaxies.
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Appendix 1: List of perturbation functions

In the following Table 2 we provide the equations con-
taining the perturbing terms derived by the generating
functions (7), for the first nine cases, that is when the
Hamiltonian system has between two and ten channels
of escape in the configuration (x, y) space. Note that
in Part I for the case of four exits we adopted the per-
turbation function V; (x, y) = —x?y?, simply because
it was also used in many earlier works, while in Table
(2) we give the general function according to the cor-
responding generating function.

Appendix 2: Escape procedure and criteria

Here we would like to present a step by step explana-
tion of the escape procedure of orbits and analyze all
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Table 2 Equations of perturbing terms when n € [2, 10]

Channels Perturbation function Vi (x, y)

n=2 Vi = —xy?

n=3 Vi=—1(3-3x%)

n=4 Vi :—%(x4—6x2y2+y4)

n=>5 Vi = —1(x® = 10x%y? + 5xy%)

n==~6 Vi :—é(x6+15x4y2—15x2y4+y6)

n=17 Vi = =17 = 21x%y% + 3563 y* — Txy*)

n=28 Vi = —1(x® —28x0y2 + 70x*y* — 28x2y0 4 y¥)

n=9 Vi = — 5 (x7=36x7 y2+126x7 y*—84x3 y0+9xy®)

n=10 Vi = — 15 (x10 — 45x8y2 4 210x0y*
—210x*y% 4+ 45x2y8 — y10y

3

y 0
-1
-2
33 -2 -1 0 1 2 3
X

Fig. 33 The equipotential curve for the Hamiltonian with eight
channels of escape when i = 0.45 is shown in black color,
while the unstable Lyapunov orbits are indicated with red color.
The configuration plane is divided into three domains: (1) the
interior region (green), (2) the exterior region (yellow) and (3)
the forbidden regions (gray). The blue straight lines define the
angular sectors for each channel of escape, while the dashed,
magenta line corresponds to the limiting circle. (Color figure
online)

the corresponding computational aspects. We consider
the case of the Hamiltonian system with eight channels
of escape (obviously in all other cases with less escape
channels things are much simpler) and we choose the
energy level h = 0.45 > heg. In Fig. 33 the corre-
sponding equipotential curve is shown in black, while
the eight unstable Lyapunov orbits are denoted using

red color. The initial conditions (xg, yp) of orbits in
the configuration space are divided into two main cat-
egories: (1) orbits with initial conditions in the interior
region (green), that is inside the Lyapunov orbits and
(2) orbits initiated at the exterior region (yellow), that
is outside the Lyapunov orbits. The gray regions, on
the other hand, correspond to the forbidden area where
motion is impossible.

Let us first deal with the orbits initiated in the inte-
rior region. It is evident from Fig. 33 that the escape
channels are very close to one another and this behav-
ior becomes stronger in Hamiltonians with more exits
(n > 8). However, in any case, it is possible to define
appropriate angles that embrace each channel as it is
seen in Fig. 33. Due to the overall symmetry of the
dynamical system itis ] = 6 = 03 = 04 = 05 =
0 = 07 = 63 = 30°. Now we need to determine where
each angle starts and where it ends so as to divide the
configuration space into eight angular sectors. For this
purpose, we define a polar angle which starts counting
from the x-axis (y = 0). Then we have for each sector

sector 1: ) < 15 or 61 > 345,
sector 2: 30 < 6, < 60,
sector 3: 75 < 63 < 105,
sector 4: 120 < 64 < 150,
sector 5: 165 < 65 < 195,
sector 6: 210 < 6 < 240,
sector 7: 255 < 67 < 285,
sector 8: 300 < g < 330.

Along each time step of the numerical integration
we monitor the position of the test particle given by the
coordinates (x, y) as well its velocity vector. When a
test particle crosses one of the Lyapunov orbits with
velocity pointing outwards then the escape takes place.
In order to determine through which exit channel, or in
other words through which sector the orbit has escaped
we need to calculate the corresponding angle through
the Cartesian coordinates. Therefore we define 7z =
y/x and the polar angle reads

tan_l(z), ifx >0andy > 0,
0 ={tan"'(2) +x, ifx <0, (14)
tan~!(z) + 27, ifx > O0and y <0,

where the output is given in radians. We can easily
transform the result into degrees by multiplying with
180°60 /m. Thus following this procedure we can deter-
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-1.0

-1.5

y -2.0

-2.5

-3.0

Fig. 34 Magnification of channel 7 when & = 0.45. The stream
of blue initial conditions corresponding to exit 3, flows out-
side the unstable Lyapunov orbit (red) and extends vertically to
infinity. (Color figure online)

mine the exit channels of orbits initiated in the interior
region.

Orbits with initial conditions outside the unstable
Lyapunov orbits exhibit a different behavior. In Fig.
32a—d, we saw that orbits with initial conditions in the
exterior region do not escape directly to infinity, but on
the other hand they enter the interior region and after
some countable (nonzero) time they escape. For this
type of orbits, we use the above-mentioned technique
for determining the exact channel of escape. However,
the vast majority of orbits with initial conditions in
the exterior region escape directly to infinity without
entering the interior region and therefore crossing any
Lyapunov orbit. In this case, we consider an orbit to
escape when x? + y?> > ¢, where g is a real number
depending in the particular dynamical system (for n =
8 we have ¢ = 7). We may say that the equality x> +
y? = ¢ defines a limiting circle that determines the
escape of orbits initiated in the exterior region.

When studying the escape dynamics of the configu-
ration space, we found the existence of streams of initial
conditions which correspond to orbits that start outside
the Lyapunov orbits, then they enter the interior region
and finally escape from an exit which however do not
coincide with the original one in which they have been
initiated. Figure 34 shows a magnification of channel 7
when i = 0.45. We observe the stream of blue initial

@ Springer

conditions corresponding to exit 3, that flows outside
the unstable Lyapunov orbit and extends vertically to
infinity. In the same figure we plotted the limiting cir-
cle for ¢ = 7. It is evident that the value of ¢ strongly
depends on the size of the grid. In our calculations we
considered in all four cases initial conditions of orbits
inside the square area —2 < x <2and -2 <y < 2.
For creating Fig. 34 where yma,x = —3, we increased
the radius of the limiting circle to ¢ = 12, in order to
correctly determine the escape process of orbits in the
outflow stream.
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