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Abstract In this paper, the problem of stabilization
of a specific class of nonlinear dynamical system with
unknown, bounded, time-varying delay is considered.
A new stabilizing control law guarantees the practical
stability of the system.Amodified extended control law
leads to the exponential stability. A Lyapunov function
is chosen, and sufficient assumptions are provided in
order to prove the stability of the proposed feedback
system. Simulation results are addressed to show the
effectiveness of the suggested control design method.
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1 Introduction

Feedback stabilization for nonlinear systems is a well-
known issue in the control theory and still an open
problem for researchers [10,19,24,26]. The stability
analysis of nonlinear systems under time delays is usu-
allymore difficult comparedwith systemswithout time
delays [7,13,22]. Time delay is a property of many
dynamical systems such as, communications, embed-
ded systems, mechanical, tele-operation, biological,
electrical, and many other applications [8,20,29].

Now, the issue is why the time-delay systems are
still a direct problem, since the stability and stabiliza-
tion problems of dynamical systems subject to nonlin-
earities are of interest due to the fact that such systems,
especially time-delays systems, include a wide variety
of practical systems and devices, like servo systems,
flexible systems, etc. Indeed, smooth and nonsmooth
nonlinearities often occur in a real control process,
due to physical, technological, safety constraints, even
inherent characteristic of considered systems [11]. Sig-
nificant efforts have been done to solve such prob-
lems, and many control approaches have been used.
For example, those based on fuzzy control [25], adap-
tive control [16,32], intermittent control [27], impul-
sive control [21], switching control [30], neural net-
works, and so on. Such methods have been developed
for linear and for nonlinear time-delay systems.

Indeed, in [25], the problemsof stability analysis and
stabilization for a class of discrete-timeTakagi–Sugeno
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(T–S) fuzzy systems with stochastic perturbation and
time-varying state delay are investigated. Authors [25]
designed a novel fuzzy Lyapunov–Krasovskii function
in order to reduce the conservatism of stability condi-
tions. The work in [32] deals with adaptive stabiliza-
tion for a class of uncertain high-order nonlinear sys-
tems with time delays, and a procedure is developed
to design the continuous adaptive state feedback con-
troller without over-parameterization. [27] proposed a
pinning synchronization control scheme in complex
networks with nondelay and delay couplings, which
uses two switched periods to provide intermittent con-
trol. Another type of control is named impulsive con-
trol. In fact, authors in [14] have used some analysis
techniques such as reduction to absurdity and some
new useful criteria for global exponential stability in
order to validate the impulsive control law.

From practical point of view, systems with perturba-
tions cause instability. Many researches have devoted
themselves to design effective control approaches
to guarantee the system stability [1,5,6,9,12,18,28].
Indeed, in citeHam01, the global stabilization problem
for a relatively broad class of nonlinear plants is dis-
cussed. Author in [12] designs a nonlinear state feed-
back control law for a class of nonlinear perturbed sys-
tem taking into account the fact that the nonlinear part
is uniformly globally Lipchitz continuous along with a
nongrowth condition.

In this work, we have treated the case where the sys-
tem presents a perturbation term, which could result
from errors in modeling the nonlinear system aging
of parameters, or uncertainties and disturbances which
exist in any realistic problems [2,4,17].Wedonot know
the term perturbation, but we know some information
about it, like knowing an upper bound on it. The main
contribution of this paper lies in the following aspects.
Firstly, compared with [12] and based on the work
of [18], an extended class of nonlinear time-varying
dynamical system under unknown time-varying delay
and a new control law are presented. Next, according to
the designed control law, some new criteria are given to
ensure the practical and the exponential stability of the
origin of the addressed system. Besides, an illustrative
examplewith simulation results shows the performance
of the suggested control strategy.

The paper is organized as follows. In Sect. 2, the
practical stability definition is presented. In Sect. 3, the
systemdescription is shown.According to the designed
control law, some assumptions are provided in order to

prove the stability of the controlled system. In Sect. 4,
an illustrative example is described and the simulation
results are presented in order to show the performances
of the suggested control strategy. Finally, some con-
cluding remarks and perspectives are given in Sect. 5.

2 Preliminary

We consider the system:{
ẋ (t) = f (t, x(t), x (t − τ (t))) t ≥ t0
x (t) = φ (t − t0) , ∀t ∈ [t0 − τ, t0]

(2.1)

where τ = sup (τ (t))t∈R+ and x(t) is the system solu-
tion with initial function φ verifying:

x (s + t0) = φ(s), ∀s ∈ [−τ, 0],
φ is a constant function in the Banach space Cn,τ :=
C ([−τ, 0] ,Rn) with norm :

‖φ‖τ := maxs∈[−τ,0] ‖φ (s)‖ ,

f : R+ ×R
n ×R

n → R
n is a piecewise continuous in

t and locally Lipschitz in the state and τ is the delay.
The definition of the practical stability introduced in

[3] is presented as follows:

Definition 1 Equation (2.1) is said to be globally uni-
formly practically exponentially stable if there exists
a ball Br = {x ∈ R

n : ‖x‖ ≤ r} such that Br is
globally uniformly practically exponentially stable, it
means that:

There exists r > 0 such that for all t ≥ t0 and
φ ∈ Cn,τ ,

‖x(t)‖ ≤ λ1 ‖ϕ‖ exp(−λ2 (t − t0)) + r ,

with λ1 > 0, λ2 > 0.

3 Stabilization

In this paper, we examine the class of nonlinear dynam-
ical systems modeled by the following state equation:

⎧⎪⎨
⎪⎩
ẋ (t)= f (t, x (t))+g (t, x (t))

[
h

(
t, xτ(t)

)+u (t)
]

+ϕ (x (t) , u (t))

x (t) = φ (t − t0) t ∈ [t0 − τ ∗, t0]
(3.1)

where x(t) ∈ R
n is the state of the system, u(t) ∈ R

q

is the input, xτ(t) = x (t − τ (t)) is the delayed state
with
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x =

⎛
⎜⎜⎜⎜⎝
x1
·
·
·
xn

⎞
⎟⎟⎟⎟⎠ , xτ(t) =

⎛
⎜⎜⎜⎜⎝
x1,τ (t)

·
·
·

xn,τ (t)

⎞
⎟⎟⎟⎟⎠ ; f : R × R

n → R
n,

g : R × R
n → R

n×q , h : R × R
n → R

q ,

ϕ : Rn × R
q → R

n,

τ ∗ > 0 denotes the known upper bound of τ(t), f (t, 0)
= 0, h(t, 0) = 0,∀t ∈ R and ϕ(0, u) = 0 ∀u ∈ R

q .
The known functions f (t, x (t)), g (t, x (t)), and the
unknown function h

(
t, xτ(t)

)
, ϕ (x (t) , u (t)) are con-

tinuous, uniformly bounded with respect to time, and
locally uniformly bounded with respect to the state.

Assume that the following assumptions are satisfied:

• (A1) There exists an increasing nonnegative contin-
uous function ψ : R+ → R such that:∥∥h (

t, xτ(t)
)∥∥ ≤ ψ

(∥∥xτ(t)
∥∥)

, (3.2)

• (A2) The origin x = 0 of the nominal system ẋ (t) =
f (t, x (t)) + g (t, x (t)) u (t) is stabilizable. Also,
there exists a C1 function V (., .) : R × R

n → R
+

and u1 : R → R
q which satisfies:

λ1 ‖x‖2 ≤ V (t, x) ≤ λ2 ‖x‖2 , (3.3)
∂V (t, x)

∂t
+ ∇T

x V (t, x) ( f (t, x (t))

+ g (t, x (t)) u1) ≤ −λ3V (t, x) (3.4)∥∥∥∇T
x V (t, x)

∥∥∥ ≤ λ4 ‖x‖ (3.5)

for all (t, x)∈ R × R
n , where λ1, λ2, λ3 and λ4 are

positive scalars.
• (A3) There exist a positive constant kϕ such that

‖ϕ (x, u) − ϕ (z, u)‖ ≤ kϕ ‖x − z‖ ,

∀x∈ R
n, ∀z ∈ R

n, ∀u ∈ R
q , (3.6)

where ‖.‖ denotes the usual Euclidean norm on Rn .

3.1 Practical stability

We propose the following state feedback law:

u (t) = u1 (t) − L(t) (3.7)

where L (t) = gT (t,x(t))∇x V (t,x)ψ̃2(t)
‖∇T

x V (t,x)g(t,x(t))‖ψ̃(t)+ε(t)
,with ψ̃(t) =

ψ
(
maxs∈[t−τ∗,t]‖x(s)‖

)
and ε(t) is a strictly positive

continuous bonded function. Denote ε is the upper
bound of ε(t).

Then we state the practical exponential stability
behavior of the closed-loop systems formed (3.1) and
(3.7). The following theorem provides the stability
result concerning the control law (3.7).

Theorem 1 Suppose that Assumptions (A1) and (A2)
hold and the function ϕ satisfies (A3) with the Lipchitz
constant kϕ satisfying:

kϕ <
λ1λ3

λ4
(3.8)

Then the control law defined in (3.7) globally exponen-
tially practically stabilizes system (3.1).

Proof Using the same Lyapunov function as given in
assumption (A2), we have:

V̇ (t, x) = ∂V (t, x)

∂t
+ ∇T

x V (t, x) ẋ(t)

= ∂V (t, x)

∂t
+ ∇T

x V (t, x) ( f (t, x (t))

+g (t, x (t))
[
h

(
t, xτ(t)

) + u (t)
]

+ ϕ (x (t) , u (t)))

= ∂V (t, x)

∂t
+ ∇T

x V (t, x) ( f (t, x (t))

+g (t, x (t)) u1 (t)

−g (t, x (t)) L (t) + g (t, x (t)) h
(
t, xτ(t)

)
+ ϕ (x (t) , u (t))) (3.9)

≤ −λ3V (t, x) − ∇T
x V (t, x) g (t, x (t)) L (t)

+∇T
x V (t, x) g (t, x (t)) h

(
t, xτ(t)

)
+∇T

x V (t, x) ϕ (x (t) , u (t))

Let

k (t) := −∇T
x V (t, x) g (t, x (t)) L (t)

+∇T
x V (t, x) g (t, x (t)) h

(
t, xτ(t)

)
.


�
Using assumption (A2), we have:

k(t) = −∇T
x V (t, x) g (t, x (t))

gT (t, x (t))∇x V (t, x) ψ̃2 (t)∥∥∇T
x V (t, x) g (t, x (t))

∥∥ ψ̃ (t) + ε (t)

+∇T
x V (t, x) g (t, x (t)) h

(
t, xτ(t)

)
= −

∥∥∇T
x V (t, x) g (t, x (t))

∥∥2 ψ̃2 (t)∥∥∇T
x V (t, x) g (t, x (t))

∥∥ ψ̃ (t) + ε (t)

+∇T
x V (t, x) g (t, x (t)) h

(
t, xτ(t)

)
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According to (3.2),

k(t) ≤ −
∥∥∇T

x V (t, x) g (t, x (t))
∥∥2 ψ̃2 (t)∥∥∇T

x V (t, x) g (t, x (t))
∥∥ ψ̃ (t) + ε (t)

+
∥∥∥∇T

x V (t, x) g (t, x (t))
∥∥∥ ψ

(∥∥xτ(t)
∥∥)

By the fact that ψ̃(t) = ψ
(
maxs∈[t−τ∗,t]‖x(s)‖

)
,

we have :

k(t) ≤ −
∥∥∇T

x V (t, x) g (t, x (t))
∥∥2 ψ̃2 (t)∥∥∇T

x V (t, x) g (t, x (t))
∥∥ ψ̃ (t) + ε (t)

+
∥∥∥∇T

x V (t, x) g (t, x (t))
∥∥∥ ψ̃(t)

Making the denominators the same, we obtain:

k(t) ≤
∥∥∇T

x V (t, x) g (t, x (t))
∥∥ ψ̃(t)ε(t)∥∥∇T

x V (t, x) g (t, x (t))
∥∥ ψ̃(t) + ε(t)

(3.10)

Therefore, from the inequality (0 ≤ ab
a+b ≤ a,

∀a, b > 0), we have∥∥∇T
x V (t, x) g (t, x (t))

∥∥ ψ̃(t)ε(t)∥∥∇T
x V (t, x) g (t, x (t))

∥∥ ψ̃(t) + ε(t)
≤ ε(t) (3.11)

So, Inequality (3.9) becomes:

V̇ (t, x) ≤ −λ1λ3 ‖x‖2 + ε(t)

+∇T
x V (t, x) ϕ (x (t) , u (t)) (3.12)

Using assumption (A3), we have

V̇ (t, x) ≤ −λ1λ3 ‖x‖2 + λ4kϕ ‖x‖2 + ε(t) (3.13)

Yield

V̇ (t, x) ≤ −δV (t, x) + ε (3.14)

where δ equals to λ1λ3−λ4kϕ

λ2
.

Then,

V (t, x) ≤ exp (−δ (t − t0)) V (t0, x (t0)) + ε

δ
(3.15)

By inequality
(√

a + b ≤ √
a + √

b,∀a, b > 0
)
,

we have

‖x(t)‖ ≤
√

λ2

λ1
exp

(
− δ

2
(t − t0)

)
‖x(t0)‖ +

√
ε

λ1δ

(3.16)

‖x(t)‖ ≤
√

λ2

λ1
exp

(
− δ

2
(t − t0)

)
‖φ‖τ + ϑ (3.17)

where ϑ =
√

ε
λ1δ

.

Hence, system (3.1) in closed loopwith the law (3.7)
is ϑ globally exponentially practically stable at the ori-
gin.

3.2 Exponential stability

We propose the following state feedback law:

u (t) = u1 (t) − L(t) (3.18)

where L (t) = gT (t,x(t))∇x V (t,x)ψ̃2(t)
‖∇T

x V (t,x)g(t,x(t))‖ψ̃(t)+εe−αt with ψ̃(t)

= ψ
(
maxs∈[t−τ∗,t]‖x(s)‖

)
and ε, α are two positive

constants.
Then we state the stability behavior of the closed-

loop systems formed (3.1) and (3.18). The following
theorem provides the stability result concerning the
control law (3.18).

Theorem 2 Suppose that Assumptions (A1), (A2) hold
and the function ϕ satisfies (A3) with the Lipchitz con-
stant kϕ satisfying:

kϕ <
λ1λ3

λ4
(3.19)

Then for α strictly greater than λ1λ3−λ4kϕ

λ2
, the control

law defined in (3.18) globally exponentially stabilizes
the system (3.1).

Proof Using the same Lyapunov function as given in
assumption (A2), Eq. (3.13) becomes:

V̇ (t, x) ≤ −λ1λ3 ‖x‖2 + εe−αt + λ4kϕ ‖x‖2
≤ −(λ1λ3 − λ4kϕ) ‖x‖2 + εe−αt (3.20)

Therefore, for

α >
λ1λ3 − λ4kϕ

λ2
, (3.21)

and by Lemma 1 in [28], system (3.1) in closed loop
with the law (3.18) is globally exponentially stable at
the origin.

As a special case of above result, we consider the
nonlinear dynamical system modeled by the following
state equation:

ẋ (t) = Ax(t) + B
[
h

(
t, xτ(t)

) + u (t)
]

+ϕ (x (t) , u (t)) (3.22)

where A ∈ R
n×n , B ∈ R

n×q are two constantmatrices.

• (H1) Suppose that (A, B) is controllable, then there
exists amatrix K such that (A+BK ) is Hurwitz and
a Lyapunov function for the nominal linear system

can be chosen as 1
2 x

T
Px , where PT = P > 0 is

such that:

P (A + BK ) + (A + BK )T P = −Q, Q > 0

(3.23)
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• (H2) There exists an increasing nonnegative contin-
uous function ψ : R+ → R such that:∥∥h (

t, xτ(t)
)∥∥ ≤ ψ

(∥∥xτ(t)
∥∥)

(3.24)

• (H3) There exist a positive constant kϕ such that

‖ϕ (x, u) − ϕ (z, u)‖ ≤ kϕ ‖x − z‖ ,

∀x ∈ R
n, ∀z ∈ R

n, ∀u ∈ R
m, (3.25)


�

Corollary 1 Suppose that (H1), (H2) hold and the
function ϕ (satisfies H3) with Lipchitz constant kϕ sat-
isfying :

kϕ <
λmin(P)λmin(Q)

2λmax(P)2
(3.26)

Then, there exist α such that the feedback law u (t) =
Kx(t) − L1(t), where L1 (t) = BT Px(t)ψ̃2(t)

‖BT Px(t)‖ψ̃(t)+εe−αt

globally exponentially stabilize the system (3.1).

Proof The Lyapunov function V (t, x) satisfies:

1

2
λmin (P) ‖x‖2 ≤ V (t, x) ≤ 1

2
λmax (P) ‖x‖2 ,

∇V (t, x) . (Ax + Bu) = −1

2
xT Qx

≤ −1

2
λmin (Q) ‖x‖2

≤ −λmin (Q)

λmax (P)
V (t, x) ,∥∥∥∇T

x V (t, x)
∥∥∥ =

∥∥∥xT P∥∥∥ ≤ λmax (P) ‖x‖ ,

whereλmin (P) andλmax (P) are, respectively, themin-
imum and the maximum eigenvalue of the matrix P .

Therefore, using the same manipulation of Theo-
rem 1, we have: λ1 = λmin(P)

2 , λ2 = λmax(P)
2 , λ3 =

λmin(Q)
λmax(P)

and λ4 = λmax (P).
According to the stability analysis of the system

(3.22), the design procedure for the existence of α is
summarized as follows:

• Step 1: we verify that the pair (A, B) is controllable.
• Step 2: we choose K such that (A+BK ) is Hurwitz.
• Step 3: we solve the Lyapunov Eq. (3.23) to obtain

P .
• Step 4: we choose α > 0 such that (3.21) is verified.


�

4 Example

Let us consider the nonlinear system under unknown
time-variable delay:⎧⎪⎨
⎪⎩
ẋ1 = −x1 + x2 + u1 + sin

(
x1,τ (t)

)
+0.4 cos (u1) x2

ẋ2 = x2 + u2 + x2,τ (t)

1+t2
+ 0.4x1

(4.1)

This system has the same from of (3.1) where

A =
(−1 1

0 1

)
, B =

(
1 0
0 1

)
, ϕ (x, u) = 0.4(

cos (u1) x2
x1

)
and

h
(
t, xτ(t)

) =
(
sin

(
x1,τ (t)

)
x2,τ (t)

1+t2

)
.

The function τ(t) is defined as follows: τ (t) =
sin2(t)

2 and the initial conditions for the system are
x (t) = [3 cos(t) 6 cos(t)]T ∀t ∈ [−0.5, 0] .

The control law that stabilizes exponentially the sys-
tem is defined as follows:

u1 = −x2 − ψ̃2 (t)√
x21 + x22 ψ̃ (t) + 0.1e−2t

x1,

u2 = −2x2 − ψ̃2 (t)√
x21 + x22 ψ̃ (t) + 0.1e−2t

x2, (4.2)

where ψ̃ (t) = maxs∈[t−0.5,t] ‖x (s)‖.
It is clear that the pair (A, B) is controllable; we

choose the matrix K such that (A + BK ) Hurwitz, we

have K =
(
0 −1
0 −2

)
, we choose also the matrix Q as

follows Q =
(
2 0
0 2

)
and by solving the Lyapunov

equation defined in (3.17), the matrix P is given by

P =
(
1 0
0 1

)
.

It is clear that kϕ = 0.4 and λmin(P)λmin(Q)

2λmax(P)2
= 1

so, we have kϕ <
λmin(P)λmin(Q)

2λmax(P)2
. For this example and

with according to (3.23), we choose α = 2. Then, the
assumptions of the Theorem 2 are satisfied.

Therefore, the control law that stabilizes exponen-
tially practically the system is defined as follows:

u1 = −x2 − ψ̃2 (t)√
x21 + x22 ψ̃ (t) + 1

x1,

u2 = −2x2 − ψ̃2 (t)√
x21 + x22 ψ̃ (t) + 1

x2, (4.3)
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Fig. 1 The evolution of x1 and x2 using the control law u1 =
u2 = −x1 − x2
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Fig. 2 The evolution of x1 and x2 using the control law defined
in (4.2)
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Fig. 3 The evolution of x1 and x2 using the control law defined
in (4.3)

For the control law defined in (3.7), we have ε = 1.
Figure 1 shows the evolution of x1 and x2 using

the control law u1 = u2 = −x1 − x2. It is clear that
the solutions diverge, and this is due to the bad choice
of the control law, which is not in conformity with the
designed one presented by Eqs. (3.7) or (3.18). Figure 2
shows the evolution of x1 and x2 using the control law
defined in (4.2). It is clear that the solutions converge,
and this is because of the good choice of the control
feedback, which is in conformity with the designed one
presented by Eq. (3.18). Then, according to Fig. 2, we
point the exponential stability. Figure 3 presents the
evolution of x1 and x2 using the control law defined in
(4.3). Indeed, Fig. 3 shows clearly the results obtained
in Theorem 1.

In accordance with the exponential stability and the
practical stability presented in the proof of Theorem 1
and Theorem 2, and based on Figs. 2 and 3, it can be
deduced that the proposed control law is performing.

5 Conclusion

In this paper, a new control design for a class of nonlin-
ear systems under time-varying delay is proposed. Suf-
ficient assumptions are given to guarantee the practical
and the exponential stability of the suggested approach.
Furthermore, a specific deduced class from the origin
is analyzed and proved. Simulation results are shown
in order to illustrate the good performances of the sug-
gested stabilizationmethodology.Anewcontrol design
for the same system taking into account the reduction of
the number of assumptionsmay be a future perspective.
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