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Abstract In this paper, a (2 + 1)-dimensional gen-
eralized shallow water wave equation is investigated
through bilinear Hirota method. Interestingly, the brea-
ther-type and lump-type soliton solutions are obtained.
Furthermore, dynamic properties of the soliton waves
are revealedbymeans of the asymptotic analysis.Based
on Hirota bilinear method and Riemann theta func-
tion, we succeed in constructing quasi-periodic wave
solutions with a generalized form. We also display
the asymptotic properties of these quasi-periodic wave
solutions and point out the relation between the quasi-
periodic wave solutions and the soliton solutions.
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1 Introduction

A lot of phenomena in physics and engineering can
be described by nonlinear partial differential equa-
tions. When we try to study the physical mechanism of
phenomena in nature which is described by nonlinear
partial differential equations, exact solutions often are
investigated. Many mathematicians and physicists are
interested in looking for solitarywave solutions to these
equations. In physics and other fields, these solutions
may well describe miscellaneous phenomena, such as
solitons and propagation with a finite speed. Thus, they
may give a good insight into the physical aspects of
the problems. The shallow water equations have been
widely applied in hydraulic engineering, ocean and
atmospheric modeling. A generalized shallow water
wave (GSWW) equation is given by

ut − uxxt − αuut − βux

∫ x

utdx + ux = 0. (1)

This equation can be derived from the classical shallow
water theory in the so-calledBoussinesq approximation
[1]. The Hirota bilinear form [2] and a series of exact
solutions for Eq. (1) were investigated in [3–9].

The study of soliton for nonlinear equations is of
great interest not only in (1 + 1)-dimensional sys-
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tems, but also in higher-dimensional systems. Other
exact solutions also have been investigated by many
researchers, and some of powerful methods have been
presented, such as the extended Jacobi elliptic function
expansion method [10–13], inverse scattering transfor-
mation method [14,15], multiple exp-function method
[16,17], extended F-expansion method [18], the Hirota
method [19–25], G ′

G -expansion method [26,27], the
Weierstrass elliptic function method [28–30] and so
on. Nakamura [31,32] proposed a convenient way to
construct a kind of quasi-periodic solutions of nonlin-
ear equations in his two serial papers. Recently, Fan
and his collaborators [33] have extended this method
to investigate the discrete Toda lattice. This approach
possesses powerful features that make it practical for
the determination of quasi-periodic solutions [34–38].

Many authors had studied the (2 + 1)-dimensional
generalized shallow water wave equation

vt + vxxx − 3(vr)x = 0, vx = ry, (2)

which can be reduced to the famous KdV equation
if y = x . In [39], an inverse scattering scheme was
developed to solve the Cauchy problem for Eq. (2). A
set of solitary-like solutions for Eq. (2) were acquired
by means of a symbolic-computation-based method
[40,41]. In [42], the generalized dromion solutions for
Eq. (2) were obtained. In [43], the author pointed out
that the symmetries of integrable model for Eq. (2)
can be obtained from the conformal invariance of its
Schwartz form. Lou et al. [44–46] exposed that Eq. (2)
is an asymmetric part of theNNVequation and revealed
its abundant dromion structures. A series of soliton-
like solutions and double-like periodic solutions for
Eq. (2) were constructed by the generalized algebraic
method in [47]. A series of exact solutions for Eq. (2)
were obtained by using a linear variable separation
approach and a projective equation in [48]. In [49,50],
the authors acquired multi-periodic (quasi-periodic)
wave solutions for Eq. (2) by employingHirota bilinear
method and Riemann theta function. In [51], based on
the binary Bell polynomials and the bilinear form for
Eq. (2), some exact solutions were presented with an
arbitrary function in y. In [52], the multi-soliton solu-
tions for Eq. (2) were obtained bymeans of themultiple
exp-function method.

In this work, we investigate the soliton solutions and
quasi-periodic wave solutions with an arbitrary func-
tion in y for Eq. (2), which have not been reported

before. Furthermore, their dynamic properties, inter-
action mechanisms and limit behavior are analyzed.
This paper is organized as the following. In Sect. 2, we
present one-soliton solutions via the simplified bilin-
ear method and acquire the rational function solution
in virtue of the limit method. By means of the asymp-
totic analysis and graphical simulations, we reveal
the dynamic properties of the solitons and investigate
the breather-type and lump-type solitons. In Sect. 3,
besides the multiple-soliton solutions are acquired by
means of the simplified bilinear method, we also inves-
tigate their dynamic properties and interaction mecha-
nisms. Furthermore, the breather-type and lump-type
multiple solitons are analyzed. In Sect. 4, we con-
struct Riemann theta function one-periodic wave solu-
tions with a generalized form and establish the rela-
tion between the one-periodic solutions and one-soliton
solutions. In Sect. 5, we investigate the two-periodic
wave solutions similar to one-periodic wave solutions.
A short conclusion is given in Sect. 6.

2 One-soliton solution

To obtain the soliton solution directly, we use the sim-
plified version of Hirota bilinear method [23] to study
Eq. (2). Letting

v = uy, r = ux , (3)

then Eq. (2) becomes

uyt + uxxxy − 3uxxuy − 3uxuxy = 0. (4)

Based on the special structure of Eq. (4), we look for
the solutions of Eq. (4) with the form

u(x, y, t) = ϕ(ξ), ξ = kx + qφ(y) − γ t + p, (5)

where k, q, γ and p are arbitrary constants and φ(y)
is an arbitrary function of y. Since ϕ(ξ) contains an
arbitrary function φ(y), it is different from the previous
form. Substituting

u(x, y, t) = eω1 , ω1 = k1x + q1φ(y) − γ1t + p1,

(6)
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into the linear terms of Eq. (4), and solving the equation
for γ1, we get γ1 = k31. Consequently, the dispersion
variable ω1 becomes

ω1 = k1x + q1φ(y) − k31 t + p1. (7)

Now, we use the transformation

u(x, y, t) = R
fx (x, y, t)

f (x, y, t)
, (8)

to determine R, where

f (x, y, t) = 1 + eω1 . (9)

Substituting (8) into (4), it follows that R = −2. There-
fore, a solution for Eq. (4) is given by

u(x, y, t) = −k1 − k1 tanh
(ω1

2

)
. (10)

From (3) and (10), we obtain one-soliton solution for
Eq. (2) in the form

v(x, y, t) = −k1q1
2

φ′(y)sech2
(ω1

2

)
, (11)

r(x, y, t) = −k21
2
sech2

(ω1

2

)
. (12)

The dynamic properties for the solitary waves are
revealed bymean of the asymptotic analysis and graph-

ical simulations as follows. From (11), we see that the
characteristic plane of the wave is defined by (7).

Thus, the following two interesting solitons are
acquired by selecting the special φ(y).

Case 1 Breather-type soliton
Through choosing φ(y) as periodic function,
the breather-type soliton is shown in Fig. 1,
whereφ(y) = sn(y, 0.3) in Fig. 1a andφ(y) =
cn(y, 0.9) in Fig. 1b.

Case 2 Lump-type soliton
Through choosing some appropriate function
φ(y), the lump-type soliton is shown in Fig. 2,
where (a)φ(y) = sn(y,0.6)

1+y2
in Fig. 2 andφ(y) =

sn(y,0.6)
1+y2[sin(ln(y2+0.001))] in Fig. 2b.

Similarly, applying the Hirota bilinear method to
Eq. (2), we get its single singular-soliton solution

v(x, y, t) = k1q1
2

φ′(y)csch2
(ω1

2

)
, (13)

r(x, y, t) = k21
2
csch2

(ω1

2

)
. (14)

Let q1 = k1, p1 = 0 and k1 → 0, and we obtain the
rational function solution for Eq. (2) in the form

v(x, y, t) = 2φ′(y)
[x + φ(y)]2

, (15)

r(x, y, t) = 2

[x + φ(y)]2
. (16)

Fig. 1 Steady propagation of v(x, y, t) given by (11) at t = 0, where k1 = 2, q1 = 1, p1 = 0 and a φ(y) = sn(y, 0.3); b
φ(y) = cn(y, 0.9)
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Fig. 2 Steady propagation of v(x, y, t) given by (11) at t = 0, where k1 = 2, q1 = 1, p1 = 0 and a φ(y) = sn(y,0.6)
1+y2

; b φ(y) =
sn(y,0.6)

1+y2[sin(ln(y2+0.001))]

3 Multiple-soliton solution

To get two-soliton solutions, let

u(x, y, t) = −2[ln f (x, y, t)]x , (17)

where ω1 is given in (7) and

ω2 = k2x + q2φ(y) − k32 t + p2, (18)

f (x, y, t) = 1 + eω1 + eω2 + a12e
ω1+ω2 . (19)

Substituting (17) into (4), the phase shift a12 is obtained
as

a12 = (k1 − k2)(q1 − q2)

(k1 + k2)(q1 + q2)
. (20)

These imply that Eq. (2) has two-soliton solution

v(x, y, t) = χy, (21)

r(x, y, t) = χx , (22)

where

χ = −2
[
k1eω1 + k2eω2 + a12(k1 + k2)eω1+ω2

]
1 + eω1 + eω2 + a12eω1+ω2

.

(23)

Now, we consider the asymptotic property of v4(x, y,
t). First, assume that a12 > 0, k1 > k2 > 0. From (7)
and (18), we get the relation between ω1 and ω2 as

ω2 = k2
(
k21 − k22

)
t + k2

k1
ω1 +

(
q2 − k2

k1
q1

)
φ(y)

+
(
p2 − k2

k1
p1

)
. (24)

If let ω1 = constant, then we get

v →

⎧⎪⎨
⎪⎩

− k1q1
2

φ′(y)sech2
(m1

2

)
, t → +∞,

− k1q1
2

φ′(y)sech2
(ω1

2

)
, t → −∞,

(25)

where

m1 = ω1 + ln(a12). (26)

Similarly, if we let ω2 = constant, then

v →

⎧⎪⎨
⎪⎩

− k2q2
2

φ′(y)sech2
(ω2

2

)
, t → +∞,

− k2q2
2

φ′(y)sech2
(m2

2

)
, t → −∞,

(27)

where

m2 = ω2 + ln(a12). (28)

In order to understand above asymptotic property
intuitively, we give four examples in Fig. 3. Also, we
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Fig. 3 Surface of the two-soliton via (21) on the y − t plane, where k1 = 1, k2 = 2, p1 = p2 = 0, x = 0, φ(y) = y and a
q1 = 1, q2 = 2; b q1 = −1, q2 = 2; c q1 = 1, q2 = −2; d q1 = −1, q2 = −2

draw the following conclusions: (1) If q1, q2 > 0, then
the two-soliton consists of two dark solitons, as shown
in Fig. 3a. (2) If q1 < 0, q2 > 0 or q1 > 0, q2 < 0,
then the two-soliton consists of a bright soliton and a
dark soliton, as shown in Fig. 3b, c. (3) If q1, q2 < 0,
then the two-soliton consists of two bright solitons, as
shown in Fig. 3d. From above figures, phase shifts are
evidently shown.

Next, we show that the breather-type two-soliton is
composed of two breather-type solitons in Fig. 4. Also,
the lump-type two-soliton composed by two lump-type
solitons is given in Fig. 5.

Similarly, in order to obtain the three-soliton solu-
tion, we substitute

v(x, y, t) = −2 [ln f (x, y, t)]xy ,

r(x, y, t) = −2 [ln f (x, y, t)]xx , (29)

f (x, y, t) = 1 + eω1 + eω2 + eω3

+ a12e
ω1+ω2 + a23e

ω2+ω3

+ a13e
ω1+ω3 + b123e

ω1+ω2+ω3 , (30)

ai j = (ki − k j )(qi − q j )

(ki + k j )(qi + q j )
, (31)

into (2), we get

b123 = a12a13a23. (32)

To determine the three-soliton solution explicitly, we
substitute the last result for f (x, y, t) in the formula
(29).
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Fig. 4 Steady propagation of the two-soliton via (21) at t = 0, where k1 = 2, k2 = 3, q1 = 1, q2 = 2, φ(y) = sn(y, 0.3) and a
p1 = p2 = 0; b p1 = 6, p2 = 0

Fig. 5 Steady propagation of the two-soliton via (21) at t = 0, where k1 = 2, k2 = 3, q1 = 1, q2 = 2, φ(y) = sn(y,0.6)
1+y2

and a
p1 = p2 = 0; b p1 = 3, p2 = 0

Similar to the two-soliton, the breather-type three-
soliton is composed of three breather-type solitons. The
lump-type three-soliton is composed of three lump-
type solitons. These phenomena are revealed in Figs. 6
and 7.

4 One-periodic waves and asymptotic properties

In order to obtain our results, we introduce theRiemann
theta function

ϑ(ξ, τ ) =
∑
n∈ZN

e−π<τn,n>+2π i<ξ,n>, (33)

here the integer value vector n = (n1, . . . , nN )T, and
complex phase variables ξ = (ξ1, . . . , ξN )T ∈ CN . For
two vectors f = ( f1, . . . , fN ) and g = (g1, . . . , gN ),
their inner product is defined by

〈 f, g〉 = f1g1 + f2g2 + · · · + fN gN . (34)

τ = (τi j ) is a positive definite and real-valued symmet-
ric N × N matrix, which is called the period matrix of
the theta function. The entries τi j of the periodmatrix τ

can be considered as free parameters of the theta func-
tion.
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Fig. 6 Steady propagation of the three-soliton via (29) at t = 0, where k1 = 2, k2 = 3, k3 = 5, q1 = 1, q2 = 2, q3 = 3, φ(y) =
sn(y, 0.3) cn(y, 0.6) and a p1 = p2 = p3 = 0; b p1 = 6, p2 = 3, p3 = −6

Fig. 7 Steadypropagationof the three-soliton via (29) at t = 0,where k1 = 2, k2 = 3, k3 = 5, q1 = 1, q2 = 2, q3 = 3, φ(y) = sn(y,0.6)
1+y2

and a p1 = p2 = p3 = 0; b p1 = 6, p2 = 6, p3 = −6

For the sake of quasi-periodic waves, we look for
solution of Eq. (2) in the form

{
v = μ0φ

′(y) − 2∂2xy ln ϑ(ξ),

r = −2∂2xx ln ϑ(ξ),
(35)

where μ0 is a free constant and ξ j = α j x + β jφ(y) +
θ j t + σ j , j = 1, 2, . . . , N .

Substituting (35) into (2) and integrating with
respect to x , we obtain the following bilinear form

G(Dx , Dy, Dt )ϑ(ξ)ϑ(ξ)

=
(
Dt Dy + D3

x Dy − 3μ0φ
′(y)D2

x + c
)

ϑ(ξ)ϑ(ξ)

= 0, (36)

where c = c(y, t).
In the following, we consider one-periodic wave

solutions of Eq. (2). Firstly, we take N = 1, and
then Riemann theta function reduces to the following
Fourier series in n

ϑ(ξ, τ ) =
+∞∑

n=−∞
e−πn2τ+2π inξ , (37)
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where the phase variable ξ = αx + βφ(y) + θ t + σ

and the parameter τ > 0. The special case φ(y) = y
has been considered in [50].

In order to make the theta function (37) satisfies the
bilinear Eq. (36), we substitute function (37) into the
left of Eq. (36), and it follows that

G(Dx , Dy, Dt )ϑ(ξ)ϑ(ξ)

=
+∞∑

m=−∞

+∞∑
n=−∞

G(Dx , Dy, Dt )

× e−πm2τ+2π imξ e−πn2τ+2π inξ

=
+∞∑

m=−∞

+∞∑
n=−∞

G[2π i(n − m)α, 2π i(n − m)

×βφ′(y), 2π i(n − m)θ ]
× e−πm2τ+2π imξ e−πn2τ+2π inξ

=
+∞∑

m′=−∞

{ +∞∑
n=−∞

G[2π i(2n−m′)α, 2π i(2n−m′)

×βφ′(y), 2π i(2n − m′)θ ] ×e−π [n2+(n−m′)2]τ
}

× e2π im
′ξ (38)

�
+∞∑

m′=−∞
G(m′)e2π im′ξ , m′ = m + n.

In the following, we compute each series G(m′) for
m′ ∈ Z . By shifting summation index by n = n′ + 1,
we have the following fact

G(m′) = G(m′ − 2)e−2π(m′−1)τ

= · · · =
{
G(0)e−πm′2 τ

2 , m′ is even,
G(1)e−π(m′2−1) τ

2 , m′ is odd,
(39)

which implies thatG(m′),m′ ∈ Z are completely dom-
inated by two function G(0) and G(1). If G(0) =
G(1) = 0, then it follows that G(m′) = 0,m′ ∈ Z ,
and thus the theta function (37) is an exact solution to
Eq. (36), namely G(Dx , Dy, Dt )ϑ(ξ)ϑ(ξ) = 0. And
we have

G(0) =
+∞∑

n=−∞
[−16π2n2βθφ′(y)+256π4n4βα3φ′(y)

+ 48μ0π
2n2α2φ′(y) + c]e−2πn2τ = 0,

G(1) =
+∞∑

n=−∞
[−4π2(2n − 1)2βθφ′(y)

+ 16π4(2n − 1)4βα3φ′(y)
+ 12μ0π

2(2n − 1)2α2φ′(y) + c]
× e−π(2n2−2n+1)τ = 0. (40)

By introducing the notations as

a11 =
+∞∑

n=−∞
(−16π2n2β)φ′(y)℘2n2 ,

a12 =
+∞∑

n=−∞
℘2n2 ,

a21 =
+∞∑

n=−∞
[−4π2(2n − 1)2β]φ′(y)℘2n2−2n+1,

a22 = ℘2n2−2n+1,

b1 = −
+∞∑

n=−∞
(256π4n4βα3 + 48μ0π

2n2α2)

×φ′(y)℘2n2 ,

b2 = −
+∞∑

n=−∞
[16π4(2n − 1)4βα3

+ 12μ0π
2(2n − 1)2α2]φ′(y)℘2n2−2n+1,

℘ = e−πτ , (41)

we simply change Eqs. (40) into a linear system about
the frequency θ and c, namely

(
a11 a12
a21 a22

)(
θ

c

)
=
(
b1
b2

)
. (42)

Then, we get a one-periodic wave solution of Eq. (2)

v = μ0φ
′(y) − 2∂2xy ln ϑ(ξ), r = −2∂2xx ln ϑ(ξ),

(43)

which provided the vector (θ, c)T solves Eq. (42) with
the theta function ϑ(ξ) given by Eq. (37) and para-
meters θ, c by (42). The other parameters α, β, τ, σ

and μ0 are free. Figs. 8, 9 and 10 show one-periodic
waves for some choice of the parameters and special
φ(y).

Interestingly, we further consider asymptotic prop-
erties of the one-periodic wave solution, and the rela-
tion between the one-periodic solution (43) and the
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Fig. 8 An one-periodic
wave for the GSWW
equation, where
μ0 = σ = 0, α = 0.1, β =
0.2, τ = 0.2, and
φ(y) = sin(y). a
Perspective view of the
wave and b overhead view
of the wave

Fig. 9 An one-periodic
wave for the GSWW
equation with a interesting
phenomenon, where
μ0 = σ = 0, α = 0.1,
β = 0.2, τ = 0.2, and
φ(y) = sin(y). a
Perspective view of the
wave and b overhead view
of the wave

Fig. 10 An one-periodic
wave for the GSWW
equation with a interesting
phenomenon, where
μ0 = σ = 0, α = 0.1, β =
0.2, τ = 0.2, and
φ(y) = 1

1+y2
. a Perspective

view of the wave and b
overhead view of the wave

one-soliton solution (11, 12) can be established as fol-
lows. In order to obtain our conclusion clearly, we
rewrite the one-soliton solution as following form

v = −2
[
ln
(
1 + eω

)]
xy , r = −2

[
ln
(
1+eω

)]
xx ,

(44)

where ω = kx + qφ(y) − k3t + p.

Firstly, we let μ0 = 0 and write functions ai j , bi , i,
j = 1, 2 as the series about ℘. We write the coefficient
matrix and the right-side vector of system (42) into
power series of ℘ as(
a11 a12
a21 a22

)
=
(
0 1
0 0

)
+
(

0 0
−8π2βφ′(y) 2

)
℘ (45)

+
(−32π2βφ′(y) 2

0 0

)
℘2 + o(℘2),
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(
b1
b2

)
=
(

0
−32π4α3βφ′(y)

)
℘ (46)

+
(−512π4α3βφ′(y)

0

)
℘2 + o(℘2).

Substituting (45) and (46) into (42) and comparing the
same order of ℘, we obtain

θ = 4π2α3 + o(℘) → 4π2α3, (47)

c = o(℘) → 0, as ℘ → 0, (48)

which implies that

2π iθ → 8π3iα3 = −k3, c → 0, as ℘ → 0. (49)

To show the one-periodic wave (43) degenerates to the
one-soliton solution (44) under the limit ℘ → 0, we
first expand the periodic function ϑ(ξ) in the form

ϑ(ξ, τ ) = 1 + (e2π iξ + e−2π iξ )℘ + (e4π iξ

+ e−4π iξ )℘4 + · · · (50)

By using the following transformation

μ0 = 0, α = k

2π i
, β = q

2π i
, σ = p + πτ

2π i
,

(51)

we have

ϑ(ξ, τ ) = 1 + ẽξ + (e−ξ̃ + e2̃ξ )℘2 + (e−2̃ξ + e3̃ξ )℘6

+ · · · → 1 + ẽξ , as ℘ → 0, (52)

where

ξ̃ = 2π iξ − πτ. (53)

Combining (49) and (53) deduces that

ξ̃ → ω, as ℘ → 0, (54)

ξ → ω + πτ

2π i
, as ℘ → 0. (55)

So we can acquire

ϑ(ξ, τ ) → 1 + eω, as ℘ → 0. (56)

Fromabove,we conclude that the one-periodic solution
(43) just goes to the one-soliton solution (44) as the
amplitude ℘ → 0.

5 Two-periodic waves and asymptotic properties

In this section, we consider two-periodic wave solu-
tions of Eq. (2) and their asymptotic property. In order
to obtain two-periodic solution, we consider the case
of N = 2 and the Riemann theta function (37) takes
the form

ϑ(ξ, r) = ϑ(ξ1, ξ2, r) =
∑
n∈Z2

e−π〈τn,n〉+2π i〈ξ,n〉,

(57)

where n = (n1, n2)T ∈ Z2, ξ = (ξ1, ξ2)
T ∈ C2, ξ j =

α j x+β jφ(y)+θ j t+σ j , j = 1, 2. Here, τ is a positive
definite and real-valued symmetric 2×2 matrix, which
can be taken of the form

τ =
(

τ11 τ12
τ12 τ22

)
, τ11>0, τ22>0, τ11τ22−τ 212>0.

(58)

To make the theta function (57) satisfies the bilinear
Eq. (36), we substitute function (57) into the left of
Eq. (36) and obtain that

G(Dx , Dy, Dt )ϑ(ξ1, ξ2, τ )ϑ(ξ1, ξ2, τ )

=
∑

m,n∈Z2

G[2π i〈n − m, α〉, 2π i〈n − m, β〉φ′(y),

× 2π i〈n − m, θ〉]
× e−π(〈τm,m〉+〈τn,n〉)+2π i〈ξ,n+m〉

=
∑

m′∈Z2

⎧⎨
⎩
∑
n∈Z2

G[2π i〈2n − m′, α〉,

× 2π i〈2n − m′, β〉φ′(y), 2π i〈2n − m′, θ〉]

× e−π [〈τn,n〉+〈τ(n−m′),(n−m′)〉]
⎫⎬
⎭× e2π i〈ξ,m′〉

�
∑

m′∈Z2

G(m′
1,m

′
2)e

2π i〈ξ,m′〉, m′ = m+n. (59)

In the following, we compute each series G(m′
1,m

′
2)

form′
1,m

′
2 ∈ Z2. By shifting summation index by n =

n′ + δ jk, k = 1, 2, we obtain that

G(m′
1,m

′
2) =

∑
n∈Z2

G[2π i〈2n − m′, α〉,

× 2π i〈2n − m′, β〉φ′(y),
× 2π i〈2n − m′, θ〉]
× e−π[〈τn,n〉+〈τ(n−m′),(n−m′)〉]
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=
∑
n∈Z2

G

⎡
⎣2π i

2∑
j=1

(2n′
j − (m′

j − 2δ jk))α j ,

× 2π i
2∑
j=1

(2n′
j − (m′

j − 2δ jk))β jφ
′(y),

× 2π i
2∑
j=1

(2n′
j − (m′

j − 2δ jk))θ j

⎤
⎦

× e−π
∑2

j,l=1[(n′
j+δ jk )(n′

l+δlk )+(m′
j−n′

j−δ jk )(m′
l−n′

l−δlk )]τ jl

=
{
G(m′

1−2,m′
2)e

2π(1−m′
1)τ11−2πm′

2τ12 , k=1,

G(m′
1,m

′
2−2)e2π(1−m′

2)τ22−2πm′
1τ12 , k=2,

(60)

where δi j representing Kronecker’s delta. If

G(0, 0) = 0, G(1, 0) = 0, G(0, 1) = 0,

G(1, 1) = 0, (61)

then it follows that G(m′,m′′) = 0,m′,m′′ ∈ Z , and
thus the theta function (57) is an exact solution to
Eq. (36), namely G(Dx , Dy, Dt )ϑ(ξ1, ξ2)ϑ(ξ1, ξ2) =
0. So we get
∑
n∈Z2

G(2π i〈2n − �1, α〉, 2π i〈2n − �1, β〉φ′(y),

× 2π i〈2n − �1, θ〉)
× e−π [〈τ(n−�1),n−�1〉+〈τn,n〉] = 0, (62)∑

n∈Z2

G(2π i〈2n − �2, α〉, 2π i〈2n − �2, β〉φ′(y),

× 2π i〈2n − �2, θ〉)
× e−π [〈τ(n−�2),n−�2〉+〈τn,n〉] = 0, (63)∑

n∈Z2

G(2π i〈2n − �3, α〉, 2π i〈2n − �3, β〉φ′(y),

× 2π i〈2n − �3, θ〉)
× e−π [〈τ(n−�3),n−�3〉+〈τn,n〉] = 0, (64)∑

n∈Z2

G(2π i〈2n − �4, α〉, 2π i〈2n − �4, β〉φ′(y),

× 2π i〈2n − �4, θ〉)
× e−π [〈τ(n−�4),n−�4〉+〈τn,n〉] = 0, (65)

where � j = (�1
j , �

2
j )
T, �1 = (0, 0)T, �2 =

(1, 0)T, �3 = (0, 1)T, �4 = (1, 1)T, j = 1, 2, 3, 4,
By introducing the notations as

H = (h jk)4×4, b = (b1, b2, b3, b4)
T,

h j1 = −4π2
∑

(n1,n2)∈Z2

〈2n − δ j , β〉(2n1 − δ
j
1 )

×φ′(y)λ j (n),

h j2 = −4π2
∑

(n1,n2)∈Z2

〈2n − δ j , β〉(2n1 − δ
j
2 )

×φ′(y)λ j (n),

h j3 = 12π2
∑

(n1,n2)∈Z2

〈2n − δ j , α〉2

×φ′(y)λ j (n),

h j4 =
∑

(n1,n2)∈Z2

λ j (n),

b j = −16π4
∑

(n1,n2)∈Z2

〈2n − δ j , α〉3〈2n − δ j , β〉

×φ′(y)λ j (n),

λ j (n)=℘
n21+(n1−δ

j
1 )2

1 ℘
n22+(n2−δ

j
2 )2

2 ℘
n1n2+(n1−δ

j
1 )(n2−δ

j
2 )

3 ,

℘1 = e−πτ11 , ℘2 = e−πτ22 , ℘3 = e−2πτ12 ,

where j = 1, 2, 3, 4. (66)

Eqs. (62–65) can be written as a linear system

H(θ1, θ2, μ0, c)
T = b. (67)

Then, we get a two-periodic wave solution of Eq. (2)

{
v = μ0φ

′(y) − 2∂2xy ln ϑ(ξ1, ξ2),

r = −2∂2xx ln ϑ(ξ1, ξ2),
(68)

where ϑ(ξ1, ξ2, τ ) and parameters θ1, θ2, μ0, c are
given by Eqs. (57) and (67), respectively. The other
parameters α1, α2, β1, β2, σ1, σ2, τ11, τ12 and τ22 are
free. Figs. 11, 12, 13 and 14 show the two-periodic
waves for different choice of the parameters and spe-
cial φ(y).

Finally, we further consider asymptotic properties of
the two-periodicwave solution. In a similar way to one-
periodic solution, we rewrite the two-soliton solution
as the following form

{
v = −2

[
ln
(
1 + eω1 + eω2 + eω1+ω2+A12

)]
xy ,

r = −2
[
ln
(
1 + eω1 + eω2 + eω1+ω2+A12

)]
xx ,

(69)

where A12 = ln(a12) and ω1, ω2, a12 are given in (7,
18) and (20).

Furthermore, we establish the relation between two-
periodic solution (68) and the two-soliton solution (69)
as follows.
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Fig. 11 A degenerate
two-periodic wave for the
GSWW equation, where
α1
α2

= β1
β2

and
μ0 = σ = 0, α1 =
0.3, α2 = 0.03, β1 =
2, β2 = 0.2, τ11 = 2, τ12 =
0.2, τ22 = 2, φ(y) = y.
This figure shows that the
degenerate two-periodic
wave is almost one
dimensional. a Perspective
view of the wave and b
overhead view of the wave

Fig. 12 An asymmetric
two-periodic wave for the
GSWW equation, where
μ0 = σ = 0, α1 =
0.3, α2 = 0.2,
β1 = 0.2, β2 = −0.3, τ11 =
2, τ12 = 0.2, τ22 = 2 and
φ(y) = y. This figure shows
that every asymmetric
two-periodic wave is
spatially periodic in two
directions, but it need not be
periodic in either the x- or
y-direction. a Perspective
view of the wave and b
overhead view of the wave

Fig. 13 An symmetric
two-periodic wave for the
GSWW equation, where
μ0 = σ = 0, α1 =
0.13, α2 = 0.13, β1 =
0.13, β2 = −0.13, τ11 =
2, τ12 = 0.2, τ22 = 2 and
φ(y) = y. This figure shows
that the symmetric
two-periodic wave is
periodic both in x- or
y-direction. a Perspective
view of the wave and b
overhead view of the wave

Firstly, we expand the periodic function ϑ(ξ1, ξ2) in
the following form

ϑ(ξ1, ξ2, τ ) = 1 +
(
e2π iξ1 + e−2π iξ1

)
e−πτ11

+
(
e2π iξ2 + e−2π iξ2

)
e−πτ22 (70)

+
(
e2π i(ξ1+ξ2) + e−2π i(ξ1+ξ2)

)

× e−π(τ11+2τ12+τ22).

By using the following transformation

μ0 = 0, α j = k j
2π i

, β j = q j

2π i
,

σ j = p j + πτ j j

2π i
, τ12 = A12

2π i
, j = 1, 2, (71)

we get

ϑ(ξ1, ξ2, τ ) = 1 + ẽξ1 + ẽξ2 + ẽξ1+ξ̃2−2πτ12 + ℘2
1e

−ξ̃1

+℘2
2e

−ξ̃2 + ℘2
1℘

2
2e

−ξ̃1−ξ̃2−2πτ12
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Fig. 14 An symmetric
two-periodic wave for the
GSWW equation with a
interesting phenomenon,
where μ0 = σ = 0,
α1 = 0.13, α2 = 0.13, β1 =
0.13, β2 = −0.13,
τ11 = 2, τ12 = 0.2, τ22 = 2
and φ(y) = 1

1+y2
. a

Perspective view of the
wave and b overhead view
of the wave

+ · · · → 1 + ẽξ1 + ẽξ2 + ẽξ1+ξ̃2+a12 ,

as ℘1, ℘2 → 0, (72)

where

ξ̃ j = 2π iξ j −πτ j j =k j x + q jφ(y) + θ̃ j t + p j , (73)

θ̃ j = 2π iθ j , j = 1, 2. (74)

From above, we can expand each function in a jk, bk ,
k = 1, 2, 3, 4 into a series with ℘1, ℘2. Actually, we
only need to make the first-order expansions of matrix
M and vector b with ℘1, ℘2 to show the asymptotic
relations. Here, we consider their second-order expan-
sions to see relations among parameters for the two-
periodic solution and the two-soliton solution (69). The
expansions for the matrix M and the vector b are given
by

H =

⎛
⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0 0 0
−8π2β1φ

′(y) 0 24π2α2
1φ

′(y) 2
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠℘1

+

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 −8π2β2φ

′(y) 24π2α2
2φ

′(y) 2
0 0 0 0

⎞
⎟⎟⎠℘2

+

⎛
⎜⎜⎝

−32π2β1φ
′(y) 0 96π2α2

1φ
′(y) 2

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠℘2

1

+

⎛
⎜⎜⎝
0 −32π2β2φ

′(y) 96π2α2
2φ

′(y) 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠℘2

2

+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−8π2(β1−β2)φ
′(y) Δ1φ

′(y) 24π2(α1−α2)
2φ′(y) 2

⎞
⎟⎟⎠

×℘1℘2 + o(℘i
1℘

j
2 ), (75)

whereΔ1 = 8π2(β1−β2)−8π2(β1+β2)λ3, i+ j ≥ 2.

b =

⎛
⎜⎜⎝

0
−32π4α31β1φ

′(y)
0
0

⎞
⎟⎟⎠℘1 +

⎛
⎜⎜⎝

0
0

−32π4α32β2φ
′(y)

0

⎞
⎟⎟⎠℘2

+

⎛
⎜⎜⎝

−512π4α31β1φ
′(y)

0
0
0

⎞
⎟⎟⎠℘2

1 +

⎛
⎜⎜⎝

0
−512π4α32β2φ

′(y)
0
0

⎞
⎟⎟⎠℘2

2

+

⎛
⎜⎜⎝

0
0
0

Δ2φ
′(y)

⎞
⎟⎟⎠℘1℘2 + o(℘i

1℘
j
2 ), (76)

whereΔ2 = −32π4(α1+α2)
3(β1+β2)λ3−32π4(α1−

α2)
3(β1 −β2), i + j ≥ 2. We also assume the solution

of system (67) in the following form
⎛
⎜⎜⎝

θ1
θ2
μ0

c

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

θ
(0)
1

θ
(0)
2
0
c(0)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

θ
(1)
1

θ
(1)
2
0
c(1)

⎞
⎟⎟⎟⎠℘1 +

⎛
⎜⎜⎜⎝

θ
(2)
1

θ
(2)
2
0
c(2)

⎞
⎟⎟⎟⎠℘2

+

⎛
⎜⎜⎜⎝

θ
(11)
1

θ
(11)
2
0

c(11)

⎞
⎟⎟⎟⎠℘2

1+

⎛
⎜⎜⎜⎝

θ
(22)
1

θ
(22)
2
0

c(22)

⎞
⎟⎟⎟⎠℘2

2+

⎛
⎜⎜⎜⎝

θ
(12)
1

θ
(12)
2
0

c(12)

⎞
⎟⎟⎟⎠

×℘1℘2 + o(℘i
1℘

j
2 ), i + j ≥ 2. (77)

Substituting (75–77) into (67) and comparing the same
order of ℘, we obtain

c(0) = c(1) = c(2) = c(12) = 0,

β1θ
(0)
1 = 4π2α3

1β1, β2θ
(0)
3 = 4π2α3

2β2,

β1θ
(1)
1 = 0, β2θ

(1)
2 = 0,

c(11) − 32π2β1θ
(0)
1 = −512π4α3

1β1,

c(22) − 32π2β2θ
(0)
2 = −512π4α3

2β2,

· · · (78)
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so we can obtain

c = o(℘1, ℘2) → 0,

θ1 = 4π2α3
1 + o(℘1, ℘2) → 4π2α3

1,

θ2 = 4π2α3
2 + o(℘1, ℘2) → 4π2α3

2,

as ℘1, ℘2 → 0. (79)

From above, we conclude that the two-periodic solu-
tion (68) tends to the two-soliton solution (69) as
℘1, ℘2 → 0.

6 Conclusion

In this work, we conduct an analysis on a (2 + 1)-
dimensional shallow water wave equation. In the light
of the construction of the Eq. (4), the new spe-
cial multiple-soliton solutions and the singular-soliton
solutions are acquired by means of the Hirota method.
Also, the rational function solution is obtained through
the limit method. By means of the graphic analysis
and asymptotic analysis, dynamic properties and inter-
action mechanisms for the solitons are revealed. Fur-
thermore, the breather-type and lump-type solitons are
obtained for the certain φ(y). The higher level soli-
ton solutions, for n ≥ 4 can be obtained in a parallel
manner. And their dynamic properties and asymptotic
analysis can be discussed similarly.

Using the Hirota method and Riemann theta func-
tion, we construct quasi-periodic wave solutions with
a generalized form. Besides, the asymptotic analysis
of the quasi-periodic(multi-periodic) wave solution is
presented and the relation between the quasi-periodic
solutions and soliton solutions acquired in this paper
are rigorously established. Furthermore, all the solu-
tionswe obtained above can be verified byMaple.Also,
the results perhaps can be extended to the case when
N > 2, but there are still certain numerical difficul-
ties in the calculation. We will consider it in our future
work.
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