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Abstract System identification has been applied in
diverse areas over past decades. In particular, para-
metric modelling approaches such as linear and non-
linear autoregressive with exogenous inputs models
have been extensively used due to the transparency
of the model structure. Model structure detection aims
to identify parsimonious models by ranking a set of
candidate model terms using some dependency met-
rics, which evaluate how the inclusion of an individ-
ual candidate model term affects the prediction of the
desired output signal. The commonly used dependency
metrics such as correlation function and mutual infor-
mation may not work well in some cases, and there-
fore, there are always uncertainties in model para-
meter estimates. Thus, there is a need to introduce
a new model structure detection scheme to deal with
uncertainties in parameter estimation. In this work, a
distance correlation metric is implemented and incor-
porated with a bagging method. The combination of
these two implementations enhances the performance
of existing forward selection approaches in that it pro-
vides the interpretability of nonlinear dependency and
an insightful uncertainty analysis for model parame-
ter estimates. The new scheme is referred as bagging
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forward orthogonal regression using distance corre-
lation (BFOR-dCor) algorithm. A comparison of the
performance of the new BFOR-dCor algorithm with
benchmark algorithms using metrics like error reduc-
tion ratio, mutual information, or the Reversible Jump
Markov Chain Monte Carlo method has been carried
out in dealing with several numerical case studies. For
ease of analysis, the discussion is restricted to polyno-
mial models that can be expressed in a linear-in-the-
parameters form.

Keywords Nonlinear system identification · NARX
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Distance correlation

1 Introduction

System identification is a challenging and interesting
engineering problem that has been extensively studied
for decades. It consists in identifying a mathematical
model that describes the behaviour of a system based
on recorded input–output data [1]. In general, most
of the real-life systems of interest are nonlinear [2].
Extensive research has been developed in the nonlin-
ear realm for system identification since 1980s [1,3,4].
In particular, one of the most popular approaches is
the Nonlinear AutoRegressive with eXogenous inputs
(NARX) methodology, which has proved to be a well-
suited scheme for nonlinear system identification prob-
lems [1,5]. Such approach ranks a set of candidate
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terms based on their contribution to the output data
and identifies parsimoniousmodels that generalisewell
on new data. The commonly used criterion to mea-
sure the dependency between candidate model terms
and the desired output is linear correlation; however, it
can only identify linear dependency. Therefore, new
metrics have been implemented recently to identify
nonlinear dependencies. Some of these new metrics
are entropy [6] and mutual information [7–10]. In par-
ticular, mutual information has been extensively used
because it captures both linear and nonlinear correla-
tions and has no assumption on the distribution of the
data [11]. Although most of the research is promising,
the mutual information is hard to interpret because its
maximumvalue is not fixed and depends on the entropy
of the variables involved.

Another important issue is the need to extend the
deterministic notion of the NARXmodel to accommo-
date uncertainties in the parameter estimates, as well
as the identified model and the computed predictions.
Someauthors haveworked towards the incorporationof
the Bayesian approachwithin theNARXmethodology.
An interesting example is thework byBaldacchino et al
[12]which developed a computational Bayesian frame-
work for Nonlinear AutoRegressive Moving Average
with eXogenous inputs (NARMAX) models using the
Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) procedure, an iterative sampling technique for
performing inference in the context of model selection
[13]. In [12], Bayesian inference is a key element to
estimate not only the parameters but also the model.
The results obtained are interesting; however, the main
drawback is that there are many assumptions in the
probability distributions of the parameters involved,
and the likelihood and prior distributions are selected
carefully to be conjugate priors, an assumption thatmay
not always be accurate.

In this work, we address both the use of a novel
metric to detect nonlinearities within the data set, and
the extension of the deterministic notion of the NARX
model. For the first case, the distance correlationmetric
is implemented, which is a measure that belongs to a
new class of functions of distances between statistical
observations and is able to detect all types of nonlin-
ear or non-monotone dependencies between random
vectors with finite first moment, but not necessarily
with equal dimension [14,15]. This is the first time
that the distance correlation is introduced and imple-
mented to the well-known orthogonal forward regres-

sion [16]. For the second case, the bagging method is
used. Bagging consists of running an algorithm several
times on different bootstrap realisations, and the results
obtained are combined to predict a numerical value via
averaging (for regression problems) or via voting (for
classification problems). The combination of these two
implementations enhances the performance of aNARX
model and provides interpretability of nonlinear depen-
dencies together with an insightful uncertainty analy-
sis. For simplicity, the discussion is restricted to poly-
nomial models that can be expressed in a linear-in-the-
parameters form.

This work is organised as follows. In Sect. 2, a
brief summary of nonlinear system identification, that
includes the Orthogonal Forward Regression algo-
rithm, is discussed. Section 3 reviews the bootstrap
and baggingmethod. In Sect. 4, the distance correlation
metric is described. Our newBagging ForwardOrthog-
onal Regression using distance Correlation (BFOR-
dCor) algorithm is proposed in Sect. 5. Three case stud-
ies that show the effectiveness of the new algorithm are
presented in Sect. 6. The work is concluded in Sect. 7.

2 Nonlinear system identification

System identification is an experimental approach that
aims to identify and fit a mathematical model of a sys-
tem based on experimental data that record the sys-
tem inputs and outputs behaviour [1,17]. Linear system
identification has been extensively used in past years;
however, its applicability is limited since the linear-
ity assumption is strict, and in real life most of the
systems of interest are nonlinear [2]. One of the most
popular approaches used to deal with nonlinear sys-
tems is the Nonlinear AutoRegressive with eXogenous
inputs (NARX) methodology, which has been exten-
sively used in different case studies and interesting
results have been obtained [1,5,18–21].

In general, system identification consists of three
steps [17,22]:

1. Model structure detection
2. Parameter estimation
3. Model validation

Model structure detection has been extensively studied,
and there is considerable amount of information in the
literature [3]. It consists of determining themodel order
and selecting model terms that contribute to explaining
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the variation of the system output [1]. In general, most
of the candidate model terms in an initially predeter-
minedmodel are redundant or spurious; therefore, their
contribution to the system output is negligible [23].
Furthermore, a model that includes a large number of
terms tends to generalise poorly on unseen data [24].
Because of this, different methods have been devel-
oped to search and select the significant model terms
that play a major role in the identification process.
Some of these methods include clustering [24,25],
the Least Absolute Shrinkage and Selection Operator
(LASSO) [26,27], elastic nets [28,29], genetic pro-
gramming [30,31], the Orthogonal Forward Regres-
sion (OFR) using the Error Reduction Ratio (ERR)
approach [19], and a recently developed multiobjective
extension known as the Multiobjective ERR (MERR)
[32].Once the structure has been identified, the parame-
ter of each model term needs to be estimated for testing
the term’s significance [33,34]. Finally, a fundamental
part of system identification is model validation. It con-
sists in testing the identifiedmodel to checkwhether the
parameter estimates are biased and if the final model
is an adequate representation of the recorded data set
[1,22]. For the latter, Billings and Voon [35] developed
a set of statistical correlation tests that can be used for
nonlinear input–output model testing and validation. In
summary, system identification has to consider a trade-
off between model parsimony, accuracy, and validity
[36].

2.1 Orthogonal forward regression algorithm

The NARX model is a nonlinear recursive difference
equation with the following general form:

y (k) = f
(
y (k − 1) , . . . , y

(
k − ny

)
,

u (k − 1) , . . . , u (k − nu)
)

+ ξ (k) (1)

where f (·) represents an unknown nonlinear mapping,
y (k), u (k), and ξ (k) are the output, input, and predic-
tion error sequences with k = 1, 2, . . . , N , where N is
the total number of observations, and themaximumlags
for the output and input sequences are ny and nu [9].
For simplicity, in this work we assume that the function
f (·) is a polynomial model of nonlinear degree �.
One of the most popular algorithms to work with

the NARX identification approach is the Orthogonal
Forward Regression (OFR) algorithm, which is also

known as the Forward Orthogonal Regression (FOR)
algorithm [1,37]. This was developed in the late 1980s
by Billings et al. [1]. It is a greedy algorithm [38] that
belongs to the class of recursive-partitioning proce-
dures [39]. It identifies and fits a deterministic parsi-
monious NARX model that can be expressed in a gen-
eralised linear regression form [4,9]. The original OFR
algorithm used the Error Reduction Ratio (ERR) index
as dependency metric [1]. The ERR of a term repre-
sents the percentage reduction in the total mean square
error that is obtained if such term is included in the
final model [6], and it is defined as the non-centralised
squared correlation coefficient C (x, y) between two
associated vectors x, and y [8]

C (x, y) =
(
xT y

)2
(
xT x

) (
yT y

) (2)

The non-centralised squared correlation only detects
linear dependencies; therefore, new metrics have been
implemented recently to identify nonlinear dependen-
cies [6,8,9]. Some of these newmetrics are entropy [6]
and mutual information [7–10]. In particular, mutual
information I (x, y) provides a measure of the amount
of information that two variables share with each other
[8]. It is defined as

I (x, y) =
∑
xεX

∑
yεY

p (x, y) ln

(
p (x, y)

p (x) p (y)

)
(3)

Although most of the research is promising, the mutual
information is hard to interpret. Furthermore, the con-
ventional OFR method may incorrectly select some
spurious model terms due to the effect of noise, and
there is still a need to extend the deterministic notion
of the NARX methodology to deal with uncertainties
in the parameter estimates, the identified model and the
computed predictions.

In the remaining of this work, we refer to the origi-
nal OFR algorithm as OFR-ERR (Orthogonal Forward
Regression using Error Reduction Ratio) [1], and if the
mutual information is used as dependency metric, then
it is referred as FOR-MI (Forward Orthogonal Regres-
sion using Mutual Information) [8]. These will be used
later in Sect. 6 for comparison with our new developed
algorithm.

3 The bootstrap and bagging methods

The bootstrap method was developed by Bradley Efron
[40]. It is a computer-basedmethod that computesmea-
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Fig. 1 Schematic of the
moving blocks bootstrap for
time series methodology.
The upper line corresponds
to the original time series.
The lower line corresponds
to a bootstrap realisation
generated by choosing a
block length B = 3

sures of accuracy to statistical estimates. Bootstrapping
consists of randomly sampling R times, with replace-
ment, from a given data set where it is assumed that the
observations are independent of each other. Each of the
resamples is called a bootstrap realisation and has the
same length as the original data set. The bootstrap real-
isations can be treated as unique data sets that produce
their own results when used in a specific algorithm,
method, or technique. Such results contain information
that can be used to make inferences from the original
data set [41,42].

The bootstrap method has been previously used for
system identification of NARX models. In [43,44],
bootstrapping was used for structure detection where
a backward elimination scheme was implemented to
find the significant model terms. Such methodology
is computationally expensive, as the bootstrap method
must be applied every time a model term is eliminated.
Furthermore, the methodology may not work when the
lag order of the system is large. In [45], the bootstrap
was used for parameter estimation of a fixed model.
Although the parameter estimation is improved, by
fixing the model there is no guarantee that the boot-
strapped data come from the true model. The main
drawback of these previous works is that the model
structure needs to be correct for bootstrap to work [45].

In this work, the bootstrap method is applied in a
different way based on [41]. Considering that observa-
tions at a given time may depend on previously mea-
sured observations, the data set is split into overlapping
blocks of fixed length B. The first and last observa-
tions appear in fewer blocks than the rest; therefore,
the data set is wrapped around a circle to make all
data points participate equally [42]. Then the blocks
are sampled with replacement until a new data set is
created with the same length as the original one. This
methodology is known as moving blocks bootstrap for
time series [41], and it is illustrated in Fig. 1. By sam-
pling the blocks, the correlation present in observations

less than B units apart is preserved. This methodology
is less “model dependent” than the bootstrapping of the
residuals approach [41]. It is important to notice that
the choice of B is quite important. If it is too small,
the correlation within the observations may be lost. If
it is too big, there would be no distinction between the
original data set and the bootstrap realisations. Effec-
tive methods for choosing B are still been investigated.
In the remaining of this work, we assume that B is
known beforehand.

The bootstrap technique can be extended to a very
popular approach nowadays. Assume that a total of R
bootstrap realisations have been carried out and each of
them has been used in a specific algorithm to duplicate
a result of its own. Therefore, R outputs are generated
and all of them can be used to predict a numerical value
via averaging (for regression problems) or via voting
(for classification problems). This procedure is known
as bagging (that stands for bootstrap aggregating) and
was proposed by Leo Breiman [46].

4 The distance correlation

The distance correlation was recently developed by
Székely, et al. [14]. It is a measure that belongs to
a new class of functions of distances between statis-
tical observations [15]. Distance correlation, denoted
as dCor (x, y), provides a new approach to measure
all types of nonlinear or non-monotone dependencies
between two random vectors with finite first moment,
but not necessarily with equal dimension.

The distance correlation has the following properties
[14,15]:

(i) 0 ≤ dCor (x, y) ≤ 1
(ii) If dCor (x, y) = 1, then the dimensions of the lin-

ear subspaces spanned by x and y are almost surely
equal. Therefore, there exists a vector a, a nonzero
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real number b and an orthogonal matrixC such that
y = a + bCx.

The distance correlation is analogous to Pearson
product-moment correlation coefficient ρ. However,
Pearson’s coefficient only characterises linear depen-
dency between two variables while distance correla-
tion is a more general measure that characterises inde-
pendence of random variables [15]. The procedure to
compute this metric is shown in [14,15].

As a simple comparison, Fig. 2 displays three dis-
tinct noisy data sets. These have been created using a
linear (y = x), sinusoidal (y = sin

(
x + π

2

)
), and cir-

cular (x2 + y2 = 1) relationship with additive white
noise. Each of the figures shows the respective val-
ues for the Pearson product-moment correlation coef-
ficient, mutual information, and distance correlation.
The Pearson coefficient is able to detect a linear depen-
dency in the first data set, but finds no such dependency
in the other cases, as expected. The mutual information
provides a better insight in each of the data sets, but
its value is difficult to interpret because the maximum
valueof themutual information is not fixed anddepends
on the entropy of each of the variables involved. Finally,
the distance correlation is able to detect dependencies
in all cases. Also, the distance correlation is not as strict
as the Pearson coefficient, and the fixed range between
0 and 1 for possible values of the distance correlation is
an important characteristic that plays a key role in our
new algorithm when determining significant terms. It
is important to mention that one drawback of the dis-
tance correlation metric is its computation time, since
it can take three times longer to compute it compared
with the Pearson coefficient or the mutual information.

5 The new BFOR-dCor algorithm

The bagging method and distance correlation are com-
bined with the OFR algorithm to produce the Bag-
ging Forward Orthogonal Regression using distance
Correlation (BFOR-dCor) algorithm. This is the first
time that the distance correlation metric is introduced
and incorporated to the well-known orthogonal for-
ward regression [16]. This algorithm is divided into two
parts. In Algorithm 1, the Forward Orthogonal Regres-
sion algorithm using the distance correlation depen-
dency metric is described. It is important to mention
that in contrast to the original algorithm developed by
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Fig. 2 Three distinct noisy data sets displaying a a linear, b
sinusoidal, and c circular dependency. In each case, the Pearson
product-moment correlation coefficient (ρ), mutual information
(MI), and distance correlation (dCor) are computed

Billings et al. [1], that requires a threshold in the Error-
to-Signal Ratio (ESR), the user needs to specify the
maximumnumber of terms nmax that the algorithmwill
look for [23]. In this algorithm, lines 1–4 search for the
candidate term that has the most significant influence
on the system output based on the distance correlation
metric. Once found, lines 5–8 create an orthogonal pro-
jection ofywith respect toq1 using themodifiedGram–
Schmidt process. This orthogonalisation sequence is
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repeated in lines 11–25 until the maximum number of
models nmax specified by the user is achieved. To avoid
redundant candidate terms, we introduced lines 14–16,
which check the squared norm-2 of a candidate term,
and if it is less than 10−10, it is simply removed. Follow-
ing [23], we introduced the concept of Leave-One-Out
Cross Validation (LOOCV) in order to prevent under-
and over-fitting. Every time a newmodel term is added,
theLOOCVstatistic is computedwith its standard error
(SE) using the following equations:

LOOCV = 1

N

N∑
i=1

(
ei

1 − hi

)2

(4)

SE =
√√√√ 1

N
Var

iε{1,...,N }

[(
ei

1 − hi

)2
]

(5)

where ei is the residual obtained from fitting the model
to all N observations using the selected candidate terms
at each iteration s, and hi are the diagonal values of the
influence matrix for the fitted model [47]. Once the
maximum number of terms nmax is achieved, the most
parsimoniousmodel with n ≤ nmax terms is selected in
line 26 using the 1 SE rule [48], i.e. select the simplest
model for which the LOOCV is within 1 SE from the
minimum LOOCV. Finally, the parameters θ are com-
puted in line 27, and the algorithm returns them together
with the significant terms selected. The parameter nmax

can be selected heuristically, by running Algorithm 1
a couple of times and inspecting the resulting LOOCV
curve.

Algorithm 2 describes the new BFOR-dCor algo-
rithm.Here, Algorithm 1 is repeated R times, eachwith
a different bootstrap realisation taken from the original
input and output signals. Every time a bootstrap real-
isation is used, the identified model is recorded in a
table. After all the R bootstrap realisations are taken,
the table is summarised to identify the different models
that were found, and each of them is assigned a value
that is equal to the number of times it was selected
within the R bootstrap realisations.

The BFOR-dCor algorithm is a newmethod that has
been applied for the first time to nonlinear model selec-
tion. The proposed algorithm outperforms the conven-
tional OFR algorithm in that the new method aims to
find correct model terms within noisy data by introduc-
ing a voting mechanism in the algorithm.

Algorithm 1 Forward Orthogonal Regression using
distance Correlation
Input:Dictionary D = {

φ1,φ2, . . . ,φM
}
, output signaly,max-

imum number of terms nmax
Output: NARX model with significant terms selected from D
and corresponding parameters θ estimated
1: for all φi in D do
2: Define wi = φi/‖φi‖2

3: Compute dCor (i) (wi , y)
4: Find j = max

1≤i≤M

{
dCor (i) (wi , y)

}

5: Define q1 = w j
6: Define a11 = ∥∥φ j

∥∥
2

7: Define g1 = qT1 y

8: Define y(1)
new = y − g1q1

9: Compute LOOCV with standard error and store them
10: Remove φ j from D
11: for s = 2 to nmax do
12: for all φi in D do
13: Orthonormalize φi with respect to

[
q1, . . . ,qs−1

]
to

obtain wi
14: if wT

i wi < 10−10 then
15: Remove φ j from D
16: Go to next iteration
17: Compute dCor (i)

(
wi , y

(s−1)
new

)

18: Find j = max
1≤i≤M−s−1

{
dCor (i) (wi , y)

}

19: Define qs = w j
20: Define ars = qTr φ j , ∀r = 1, 2, . . . , s − 1

21: Define ass =
∥∥∥φ j − ∑s−1

r=1 arsqr
∥∥∥
2

22: Define gs = qTs y
(s−1)
new

23: Define y(s)
new = y(s−1)

new − gsqs
24: Compute LOOCV with standard error and store them
25: Remove φ j from D
26: Using the stored LOOCVs, select the most parsimonious

model with n ≤ nmax terms that satisfies the one standard
error rule

27: Solve An×nθn×1 = gn×1
28: Return matrix of terms selected Q = [

q1 q2 . . . qn
]
and

vector of coefficients θ = [
θ1 θ2 . . . θn

]T

Algorithm 2Bagging Orthogonal Forward Regression
using Distance Correlation
Input: Number of bootstrap realisations R, block length B, dic-
tionary D = {

φ1,φ2, . . . ,φM
}
, output signal y, maximumnum-

ber of terms nmax
Output: Table with R models
1: for all i ε {1, . . . , R} do
2: Obtain a bootstrap realisation by applying the moving

blocks bootstrap method to D and y using a block length
B

3: Apply Algorithm 1 to the bootstrap realisation
4: Record the identified model in a table
5: Summarise the table to identify the different models
6: Rank each model with respect to the number of votes
7: Return table with ranking
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6 Case studies

In this section, several examples are provided to illus-
trate the effectiveness of the BFOR-dCor algorithm.
First, a comparison of the newmethodwith both the tra-
ditional OFR-ERR and the recent FOR-MI algorithms
is performed. Second, the BFOR-dCor technique is
applied to a testing model in [12] where the RJM-
CMC algorithm is applied. Finally, the BFOR-dCor
algorithm is applied to the sunspot data provided by the
Solar Influences Data Center (SIDC), RWC Belgium,
World Data Center for the Sunspot Index, Royal Obser-
vatory ofBelgium [49]. Thedata consist of annual num-
ber of sunspots from 1700 to 2013.

6.1 Comparison with OFR-ERR and FOR-MI

The following model was taken from [9]:

y (t) = − 0.5y (t − 2) + 0.7y (t − 1) u (t − 1)

+ 0.6u2 (t − 2) + 0.2y3 (t − 1)

− 0.7y (t − 2) u2 (t − 2) + e (t) (6)

where the input u (t) ∼ U (−1, 1), that is u (t) is
evenly distributed over [−1, 1], and the error e (t) ∼
N (

0, 0.022
)
. Following [9], the maximum lags for the

input and output are chosen to be nu = ny = 4 and
the nonlinear degree is � = 3. The stop criterion for
the OFR-ERR and FOR-MI algorithms is when the
ESR is less than 0.05. A total of 500 input–output data
points were generated, and the same random seed is
used to ensure a fair comparison. The results for the
OFR-ERR algorithm are shown in Table 1 and Fig.
3. It can be seen that all the model terms selected are
correct except for the first one. Likewise, the results for

Table 1 Identified model for (6) using the OFR-ERR algorithm

Term Parameter ERR (%) t-test

True Estimate

y (t − 4) u2 (t − 2) 0 0.328736 43.056150 16.00

u2 (t − 2) 0.6 0.503997 14.272569 74.26

y (t − 2) −0.5 −0.635566 25.125802 −71.24

y (t − 1) u (t − 1) 0.7 0.704811 11.976353 51.66

y3 (t − 1) 0.2 0.186616 2.901262 23.20

1 2 3 4 5

0
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0

Index

%

y(t − 4)u2 (t − 2)

u2 (t − 2)
y(t − 2)

y(t − 1)u(t − 1)

y3 (t − 1)

ERR
SERR

Fig. 3 Model terms selected for (6) by the OFR-ERR algo-
rithm with their corresponding ERR and the updated sum of
ERR (SERR)

Table 2 Identified model for (6) using the FOR-MI algorithm

Term Parameter Mutual
Information

t-test

True Estimate

y (t − 2) −0.5 −0.487327 0.7947960 −37.10

u2 (t − 2) 0.6 0.618496 0.9245362 83.38

y (t − 1) u (t − 1) 0.7 0.616732 1.0218413 38.93

y (t − 2) u2 (t − 2) −0.7 −0.639457 0.9498118 −20.21

1 2 3 4 5

0
20

40
60

80
10

0

Index

%

y(t − 2)

u2 (t − 2)

y(t − 1)u(t − 1)
y(t − 2)u2 (t − 2)

1−ESR

Fig. 4 Model terms selected for (6) by the FOR-MI algorithm
with the updated ESR

the FOR-MI algorithm are displayed in Table 2 and Fig.
4. The four model terms selected are correct, still the
algorithm failed to find one of the five terms required.
FromTables 1 and 2, bothmodels failed to select all the
true model terms in (6). It is interesting to notice that,
except by the spurious term found by the OFR-ERR
algorithm, the union set of the model terms found by
the OFR-ERR and FOR-MI algorithms is equivalent
to the true model terms set. As explained in [9], both
the OFR-ERR and FOR-MI algorithms can be used at
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Table 3 Three top model structures identified for (6) using the BFOR-dCor algorithm

Model 1 Model 2 Model 3 All Other Models

Structure # of votes Structure # of votes Structure # of votes # of votes

y (t − 2) 924 y (t − 4) u2 (t − 2) 30 y (t − 2) 11 35

u2 (t − 2) u2 (t − 2) u2 (t − 2)

y (t − 1) u (t − 1) y (t − 2) y (t − 1) u (t − 1)

y (t − 2) u2 (t − 2) y (t − 1) u (t − 1) y (t − 2) u2 (t − 2)

y3 (t − 1) y (t − 2) u2 (t − 2) y3 (t − 1)

y3 (t − 1) y (t − 3) u (t − 3)

Fig. 5 Beanplots for the
parameter estimates of the
model terms identified in the
most-voted model structure
using the BFOR-dCor
algorithm for identification
of (6), where the red dotted
line represents the
parameter true value while
the black solid line
represents the parameter
mean estimated value.
(Colour figure online)

−0.520 −0.510 −0.500 −0.490

y(t − 2)

Parameter Estimates

0.590 0.595 0.600 0.605 0.610

u2 (t − 2)

Parameter Estimates

0.690 0.700 0.710 0.720

y(t − 1)u(t − 1)

Parameter Estimates

−0.74 −0.70 −0.66

y(t − 2)u2 (t − 2)

Parameter Estimates

0.19 0.20 0.21 0.22

y3 (t − 1)

Parameter Estimates

the same time to select the model terms based on the
t-tests; however, this example shows that the selection
is still hard to perform as all the terms selected by both
methods are statistically significant.

The BFOR-dCor algorithm is applied to model (6)
using a total of R = 1000 bootstrap realisations and a
block length B = 5. The maximum number of terms
to look for is nmax = 10. On Table 3, the 3 top model
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Table 4 Statistical summary for the parameter estimates of the
model terms identified in the most-voted model structure using
the BFOR-dCor algorithm for identification of (6)

Term Parameter

True Mean SD

y (t − 2) −0.5 −0.5063 0.003942010

u2 (t − 2) 0.6 0.5996 0.002224131

y (t − 1) u (t − 1) 0.7 0.7074 0.004407982

y (t − 2) u2 (t − 2) −0.7 −0.6860 0.011675221

y3 (t − 1) 0.2 0.2078 0.003721392

structures obtained by the BFOR-dCor algorithm are
shown. These 3 model structures correspond to 96.5%
of the bootstrap realisations. The most-voted model
structure has a structure that coincides with the true
model (6), something that was not obtained with the
OFR-ERR and FOR-MI algorithms.

For the 924 realisations that have the most-voted
model structure, Fig. 5 shows the beanplots [50] for
each of the parameter estimates, which clearly sug-
gest that each parameter bootstrap distribution is not
Gaussian. Furthermore, Table 4 shows a statistical sum-
mary of the parameter estimates. It is interesting to
notice that all but one of the true values are within 2
standard deviation (SD) from the mean. The exception
is the y3 (t − 1) term. A frequency analysis may reveal
an insightful understanding of the contribution of this
term.

The results presented here show that theBFOR-dCor
algorithm is able to identify 924 realisations with the
true model structure together with a bootstrap distrib-
ution of the parameter estimates. Furthermore, having
different equal-structure models is beneficial for the
forecasting task since all the models or a sample from

themcan be used to compute an average predictionwith
the corresponding SD.

6.2 Comparison with RJMCMC algorithm

The following model was taken from [12]:

y (t) = − 0.5y (t − 2) + 0.7y (t − 1) u (t − 1)

+ 0.6u2 (t − 2) − 0.7y (t − 2) u2 (t − 2)

+ e (t) (7)

In [12], the authors developed a computational
Bayesian identification framework forNARMAXmod-
els that uses the RJMCMC algorithm to perform struc-
ture detection and parameter estimation together with
a characterisation of the probability distribution over
models. The algorithm is stochastic in nature, which
encourages a global search over the model term space
while at the same time ensuring that the identified
model is parsimonious [12,13]. In their work, the algo-
rithm is executed 10 times on the same input–output
data. From the 10 runs, the algorithm is able to get
the true model structure 7 times. The main drawbacks
of this method are that it is computationally expensive,
and it needs to define different probability distributions
for the parameters involved.Most of these distributions
are chosen to be conjugate prior to ease the computa-
tions, but of course this does not mean that such distri-
butions are faithful to the real unknown distributions.

The BFOR-dCor algorithm requires no assump-
tions about probability distributions, and it can work
extremely well once the basic parameters are defined.
Here again the maximum lags for the input and output
are nu = ny = 4 and the nonlinear degree is � = 3,
exactly the same values as in [12]. A total of 500 input–
output data points were generated. The BFOR-dCor

Table 5 Three top model structures identified for (7) using the BFOR-dCor algorithm

Model 1 Model 2 Model 3 All Other Models

Structure # of votes Structure # of votes Structure # of votes # of votes

y (t − 2) 839 y (t − 2) 26 y (t − 2) 16 119

u2 (t − 2) u2 (t − 2) u2 (t − 2)

y (t − 1) u (t − 1) y (t − 1) u (t − 1) y (t − 1) u (t − 1)

y (t − 2) u2 (t − 2) y (t − 2) u2 (t − 2) y (t − 2) u2 (t − 2)

y2 (t − 2) y (t − 4) y (t − 3) u (t − 3)

123



210 J. R. Ayala Solares, H.-L. Wei

Fig. 6 Beanplots for the
parameter estimates of the
model terms identified in the
most-voted model structure
using the BFOR-dCor
algorithm for identification
of (7), where the red dotted
line represents the
parameter true value while
the black solid line
represents the parameter
mean estimated value.
(Colour figure online)

−0.520 −0.505 −0.490

y(t − 2)

Parameter Estimates

0.590 0.600 0.610

u2 (t − 2)

Parameter Estimates

0.690 0.705 0.720

y(t − 1)u(t − 1)

Parameter Estimates

−0.74 −0.70 −0.66

y(t − 2)u2 (t − 2)

Parameter Estimates

Table 6 Statistical summary for the parameter estimates of the
model terms identified in the most-voted model structure using
the BFOR-dCor algorithm for identification of (7)

Term Parameter

True Mean SD

y (t − 2) −0.5 −0.5046 0.004108452

u2 (t − 2) 0.6 0.6000 0.002256691

y (t − 1) u (t − 1) 0.7 0.7067 0.004533588

y (t − 2) u2 (t − 2) −0.7 −0.6839 0.011785278

algorithm is applied to (7) using a total of R = 1000
bootstrap realisations, a block length B = 5, and the
maximum number of terms is nmax = 10. On Table
5, the 3 top model structures obtained by the BFOR-
dCor algorithm are shown. These 3 model structures
correspond to 88.1% of the bootstrap realisations. The
most-voted model structure has a structure that coin-
cides with the true model (7).

Figure 6 shows the beanplots for each of the parame-
ter estimates, which suggest that each parameter may
be treated as a Gaussian random variable. Likewise,

Table 7 Five top model structures identified for the sunspot time series using the BFOR-dCor algorithm

Model 1 Model 2 Model 3 Model 4 Model 5 All Other Models

Structure # of votes Structure # of votes Structure # of votes Structure # of votes Structure # of votes # of votes

y (t − 1)
y (t − 10)

30 y (t − 1)
y (t − 10)

19 y (t − 1)
y (t − 9)

12 y (t − 1)
y (t − 9)

6 y (t − 1)
y (t − 10)

5 823

y (t − 2)
y2 (t − 10)

y (t − 2)
y2 (t − 10)

y (t − 2)
y2 (t − 9)

y (t − 2)
y2 (t − 9)

y (t − 2)
y2 (t − 10)

constant constant y (t − 1) constant constant

y (t − 1) y2 (t − 1)
y (t − 10)

y2 (t − 1)
y (t − 9)

y (t − 1) y (t − 1)

y (t − 2) y (t − 1) y (t − 2) y2 (t − 1)
y (t − 9)

y (t − 2)

y2 (t − 1)
y (t − 10)

y (t − 3) constant y (t − 3) y3 (t − 1)

y3 (t − 2)
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Fig. 7 Beanplots for the
parameter estimates of the
model terms identified in the
most-voted model structure
using the BFOR-dCor
algorithm for forecasting
the annual sunspot number,
where the black solid line
represents the parameter
mean estimated value.
(Colour figure online)

0.004 0.008 0.012

y(t − 1)y(t − 10)

Parameter Estimates

−2e−05 2e−05

y(t − 2)y2 (t − 10)

Parameter Estimates

8 9 10 11 12 13 14

const

Parameter Estimates

0.9 1.0 1.1 1.2 1.3 1.4 1.5

y(t − 1)

Parameter Estimates

−0.75 −0.65 −0.55 −0.45

y(t − 2)

Parameter Estimates

−7e−05 −5e−05 −3e−05

y2 (t − 1)y(t − 10)

Parameter Estimates

Table 6 shows a statistical summary of the parameter
estimates. It is interesting to notice that all the true val-
ues are within 2 SD from the mean.

These results show that the BFOR-dCor algorithm
is extremely efficient and works well without the need
of assumptions of probability distributions.

6.3 Forecasting the annual sunspot number

The sunspot time series provided by the Solar Influ-
ences Data Center (SIDC), RWCBelgium,World Data
Center for the Sunspot Index, Royal Observatory of
Belgium [49] consists of 314 observations of the annual
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Table 8 Statistical summary for the parameter estimates of the
model terms identified in the most-voted model structure using
the BFOR-dCor algorithm for forecasting the annual sunspot
number

Term Parameter

Mean SD

y (t − 1) y (t − 10) 0.007665 1.337115e−03

y (t − 2) y2 (t − 10) 5.239e−06 1.052117e−05

constant 10.649 1.072295

y (t − 1) 1.1685 8.355630e−02

y (t − 2) −0.5890 4.830107e−02

y2 (t − 1) y (t − 10) −5.443e−05 6.126128e−06

number of sunspots from 1700 to 2013. The data from
1700 to 1950 are used for structure detection and para-
meter estimation while the data from 1951 to 2013 is
used for model performance testing and validation. It
is assumed that the annual number of sunspots depends
only on previous annual observations, i.e. nu = 0. Fur-
thermore, it is well known that the sun’s north and south
poles reverse around every 11 years which corresponds
to a period of great solar activity known as the solar
max [51]. Therefore, we choose ny = 12, and employ
aNonlinearAutoRegressive (NAR)modelwith nonlin-
ear degree � = 3 to test the performanceof the proposed
BFOR-dCor algorithm.

The BFOR-dCor algorithm is applied using a total
of R = 1000 bootstrap realisations, a block length B =
15, and the maximum number of terms is nmax = 15.
The five top model structures obtained by the BFOR-
dCor algorithm are shown in Table 7, which correspond
to 7.2% of the bootstrap realisations.

For the 30 realisations that have the most-voted
model structure, Fig. 7 shows the beanplots for each
of the parameter estimates, which clearly suggest that
most of the bootstrap parameter distributions are not
Gaussian. Furthermore, Table 8 shows a statistical
summary of the parameter estimates. Figures 8 and 9
show the one-step ahead and model predicted outputs
together with the 2 SD region, respectively. In both
cases, from these two graphs we can see that a sim-
ple NAR model has successfully captured the general
trend of the sunspots behaviour. The root-mean-square
error (RMSE) for the one-step ahead predicted output
is 19.39716, while the RMSE for the model predicted
output is 28.77858.

Fig. 8 One-step ahead predicted output for the sunspot time
series using the most-voted model structure identified by the
BFOR-dCor algorithm, where the black solid line with circles
indicates the true measurements, the empty blue circles repre-
sent the one-step ahead predicted output, and the blue shadow
represents the 2 SD region. (Colour figure online)

Fig. 9 Model predicted output for the sunspot time series using
the most-voted model structure identified by the BFOR-dCor
algorithm, where the black solid line with circles indicates the
true measurements, the green diamonds represent the model pre-
dicted output, and the green shadow represents the 2 SD region.
(Colour figure online)

In [52], Billings and Tao developed a set of tests that
are effective for time series model validation:⎧⎪⎪⎨
⎪⎪⎩

φξ ′ξ ′ (τ ) = δ (τ ) ∀τ

φ
ξ ′(ξ2)′ (τ ) = 0 ∀τ

φ(ξ2)
′
(ξ2)

′ (τ ) = δ (τ ) ∀τ

(8)

where ξ (k) = ξk is the prediction error sequence with
k = 1, 2, . . . , N , ξ ′

k = ξk−ξ and
(
ξ2

)′
k = ξ2k −ξ2. Fig.

10 shows the statistical correlation tests for the one-step
ahead predicted output of the most-voted NAR model
identified by the BFOR-dCor algorithm. It can be seen
that the second and third tests, i.e. φ

ξ ′(ξ2)′ (τ ) = 0
and φ(ξ2)

′
(ξ2)

′ (τ ) = δ (τ ) ∀ τ , are not ideally satis-
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Fig. 10 Statistical
correlation tests (8), with
95% confidence limits, for
the one-step ahead predicted
output of the most-voted
NAR model identified for
the sunspot time series using
the BFOR-dCor algorithm
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fied, suggesting that autoregressive models may not be
sufficient to fully characterise the entire dynamics of
the process. Nevertheless, the results obtained by the
BFOR-dCor algorithm are still remarkable given the
complexity of the system.

7 Conclusion

A new algorithm for model structure detection and
parameter estimation has been developed. This new
algorithmcombines twodifferent concepts that enhance
the performance of the original OFR algorithm. First,
the distance correlation metric is used, which mea-
sures all types of nonlinear or non-monotone depen-
dencies between random vectors. Second, the bagging
method is implemented,which produces differentmod-
els for each resample from the original data set. Identi-
fied models, or a subset of them, can be used together
to generate improved predictions via averaging (for
regression problems) or via voting (for classification

problems). A main advantage of these concepts in the
new BFOR-dCor algorithm is that it provides the inter-
pretability of nonlinear dependencies and an insight-
ful uncertainty analysis. The algorithm can be slow
since the distance correlation is a complex computation
compared with other metrics; nevertheless, it produces
results that outperform its counterparts and requires no
assumptions of probability distributions like the RJM-
CMC algorithm. All these have been demonstrated
through numerical case studies.
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