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Abstract Based on the stability theory of fractional-
order system, a novel unidirectional adaptive full-state
linear error feedback coupling scheme is extended to
control and synchronize all of fractional-order differ-
ential (FOD) chaotic systems with in-commensurate
(and commensurate) orders. The feedback strength is
adaptive to an updated law rather than prescribed as a
constant. The convergence speed of feedback strength
is regulated by a constant. With rigorous linear alge-
braic theorems and precisely numerical matrix compu-
tations, a reasonable interval in which the ultimate final
control strength dwells is suggested, and the reliability
of synchronization state is guaranteed. It demonstrates
that the unidirectional full-state linear feedback cou-
pling scheme can be adopted to control and synchronize
FOD chaotic systems directly. Numerical simulations
of three representative FOD chaotic systems illustrate
the effectiveness of the proposed scheme.
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1 Introduction

Chaotic behavior had been observed in many natural
systems. The most significant property for a determin-
istic chaotic system is sensitivity to initial conditions.
Any arbitrarily small perturbation on the current trajec-
tory may lead to very big differences in future. In the
past several decades, chaos control and synchroniza-
tion have been widely investigated because of impera-
tive needs on the suppression and migration of chaotic
motions. Many effective control and synchronization
methods have been proposed since several pioneering
studies [1–3]. The synchronization of chaos has great
potential applications in many disciplines, especially in
some areas closely related to our real life, e.g., secret
communication [4], neural dynamics [5], mechanical
engineering [6], and image encryption [7]. The essence
of chaos synchronization is that two chaotic systems
follow the same trajectory on the phase space. In the
initial state, the drive system may be very different
with the response system. Their state functions may
be identical but start from different initial conditions
[8], are very different in phase space [9], have dif-
ferent orders [10], and have uncertain or mismatching
parameters [11–13], and even are disturbed by exter-
nal inputs [9,11,12]. However, in the synchronization
regime, the drive system drives the response system via
the transmitted signals rendering the errors in variables
of them are stable locally or globally.

Fractional derivatives have a long history over than
300 years, but which are widely used in modeling
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realistic systems only recently. Fractional derivatives
are able to model memory and hereditary effects
observed in physics due to their non-local essence.
From the end of last century, it has been observed that
nonlinear fractional-order derivatives can also exhibit
chaotic motions (see [14–20] and references therein).
Controlling and synchronizing the complex behavior in
fractional-order differential (FOD) systems using dif-
ferent control schemes recently have been the focus of
much attention [15–20]. And it also has great appli-
cations in real life [17–20]. Most of synchronization
schemes available for integer-order chaotic systems
have been verified to be effective in synchronizing FOD
chaotic systems [15–20]. However, some schemes are
too complex to be applied in practice due to strong
nonlinearity themselves may rendering inexpediency
or non-robustness. It is precisely because so many
uncertainties and intrinsic nonlinearities, eliminating or
weakening the nonlinear terms in error dynamical sys-
tems is essential. In some more extreme cases, another
control scheme has to be involved to eliminate all of the
nonlinear terms and readjust the structure of constant
matrix [21]. Due to the simple configuration and easy
implementation, the unidirectional and bidirectional
linear error feedback coupling schemes were adopted to
control and synchronize chaotic and hyper-chaotic sys-
tems [22–27]. To be more effective, combining linear
error feedback coupling scheme with adaptive control
[28,29] and active control [30,31] was proposed and
applied to both integer-order and FOD chaotic systems.
The success of linear state feedback relies on a proper
choice of feedback gains. Wu et al. [22] proposed
some sufficient synchronization criteria for generalized
Lorenz systems via linear state error feedback control.
Jiang and Tang [23,24] proposed a generic criterion
of global chaos synchronization between two coupled
chaotic systems from unidirectional linear error feed-
back coupling. Li and Liao [25] derived several suffi-
cient conditions for guaranteeing the existence of anti-
synchronization in a class of coupled identical chaotic
systems via linear feedback control and adaptive linear
feedback control. From rigorously mathematical the-
ory, some sufficient conditions of global synchroniza-
tion for linearly coupled chaotic systems are presented
in Lü’s paper [26]. However, most of their works have a
common problem, that is, the chaotic systems they con-
sidered must be able to be decomposed into their lin-
ear and nonlinear parts independently [21–25,27,32].
Specifically, the n-dimensional chaotic systems must

be able to be rewritten in the form of

Dαx = F(x) = Aa x + f (x), (1)

where Dαx refers to a more general derivative of n-
dimensional vector x . Aa is a n×n matrix containing all
of the parameters, thereupon f (x) is an n×1 nonlinear
vector function without any parameters.

Indeed, there are a lot of integer-order and FOD
chaotic systems that can be represented in the form
of (1), such as Chua system [33], Lorenz system
[34,35], Chen system [35,36], Lü system [36,37],
and the unified system [38]. However, the simplest
Rössler system cannot because parameter b is inde-
pendent of any variables in the third equation. Luck-
ily, the error dynamical system of two linearly cou-
pling Rössler systems can be represented by (1) [24].
Besides Rössler system, many chaotic systems can-
not be written as (1) because some parameters are
the coefficient of nonlinear terms, e.g., other Lorenz-
like systems with integer order or fractional order
[39–44]. In order to compensate for such a lim-
itation, in some works, some untamed parameters
have to be included in f (x), which is rewritten as
f (x, a). Such a unavoidable treatment makes the iden-
tification of uncertain parameters impossible if there
are. In order to seek the unidirectional linear feed-
back coupling strengths, f (x, a) or f (x) should be
immersed in mathematical constraints. Hereby, the
assumption of Lipschitz condition of the functions
and the computation of bounded norms of the attrac-
tors in Euclidean space are two common approaches.
However, it is very hard to work out the local Lip-
schitz constant for every nonlinear equations in prac-
tice [27]. The bounded norms are always evaluated
with the boundaries of orbits in phase space [23–
25,45]. As a result, these loose approaches always
trigger improper outcomes. For instance, the cou-
pling strengths may be very big or unequal. It may
bring out unexpected dynamical behavior in experi-
ence, such as desynchronization bursts [46] in both
one-way and full-state linear couplings [46–49]. Such
a desynchronization burst is usually overlooked or
difficult to be found because it always starts at a
long synchronization time [46]. Better yet, Wang
and Liu [50] presented a new scheme for seek-
ing the proper identical control gain by calculating
the largest Lyapunov exponent of a chaotic system.
This method is very general and splendid because
it is based on the average rate of separation of
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infinitesimally close trajectories. It informs us that,
with very small control strengths (in amplitude), the
synchronization of two identical systems can be achieved
via full-state linear feedback coupling. This is because
the largest Lyapunov exponents of most chaotic sys-
tems usually are very small. It was also extended suc-
cessfully to FOD chaotic Liu system by Wang et al.
[42]. Based on the invariance principle of differential
equations, Huang [51] proposed a simple adaptive lin-
ear feedback scheme to synchronize chaotic systems.
Different with the usual linear feedback, the variable
feedback strength is automatically adapted to com-
pletely synchronize two linear coupling chaotic sys-
tems. In an augment system, the feedback coupling
terms are linearly dependent on the errors in variables.
Although this scheme is very analytical and has been
extended extensively [52–57], how to choose a proper
regulation factor in the update law should be further
investigated because it affects the convergence rate and
the final strength of control gains.

Motivated by these considerations, we extend the
adaptive full-state linear error feedback coupling
scheme to synchronize all of FOD chaotic systems with
incommensurate (or commensurate) orders. Based on
the stability theory of fractional-order system, the inter-
action terms are designed with linear error feedback
in full state. The feedback strength is not prescribed
as a constant, but adaptive to an updated law, which
is of integer-order derivative. Following the principles
of adaptive full-state linear feedback scheme, the con-
vergence speed of feedback strength is regulated by a
constant. A reasonable interval in which the ultimate
control strength dwells is suggested. From basic lin-
ear algebraic results, it rectifies a previous conclusion
that the control gains in the linear coupling feedback
strengths should be lower than a critical value [23–
25,45]. However, such a critical value is taken as the
lower bound of the present adaptive law. The relia-
bility of the control scheme is guaranteed with rigor-
ous linear algebraic theorems and precisely numerical
matrix computations. It shows that the unidirectional
adaptive full-state linear feedback coupling scheme can
be applied on the control and the identical synchro-
nization of FOD chaotic systems without any hesita-
tion. Not matter whether the FOD chaotic systems can
be decomposed as (1) or not. Numerical simulations
demonstrate the feasibility of adaptive full-state linear
feedback control scheme working well on controlling
and synchronizing all of FOD chaotic systems with

in-commensurate (or commensurate) orders. The cost
on stabilizing and achieving identical synchronization
of FOD chaotic systems is also very low as long as
the regulation factor in the adaptive law is opportune.
In addition, the effects of the regulation factors affect
the convergence speed, and the final strength is stud-
ied dynamically with concrete examples. The present
scheme is so simple that it can be realized in physics
easily.

2 Prerequisites and mathematical description

2.1 The definition of fractional derivatives

Fractional calculus is a generalization of integration
and differentiation to non-integer-order fundamental
operator a Dα

t , where a and t are the bounds of the
operation and α ∈ R. The continuous FOD operator is
defined as [17]

a Dα
t =

⎧
⎪⎪⎨

⎪⎪⎩

dα

dtα α > 0,

1 α = 0,
∫ t

a (dτ)−α α < 0,

(2)

There are a lot of different definitions for FOD [58].
Two frequently used definitions are introduced here to
describe αth-order fractional derivative of a function
f (x). The first one is named as Riemann–Liouville
(R–L) definition. It is the simplest definition about
αth-order fractional derivative of a function f (x) with
respect to t and the terminal value 0. It is described as
[58]

dα f (x)

dtα
= 1

Γ (m − α)

dm

dtα

∫ t

0
(t − τ)m−α−1 f (τ )dτ ,

(3)

where m is the first integer larger than α, m − 1 < α ≤
m. Γ (·) is the Gamma function,

Γ (x) =
∫ ∞

0
t x−1e−tdt .

Note that the term terminal value refers to the lower
limit in (3). It may be a nonzero value in the general
definition of the FOD. In addition, the Laplace trans-
form is a powerful integral transform, which is used
to switch a function from the time domain to the s-
domain. The Laplace transform can be used in some
cases to solve linear differential equations with given
initial conditions. The Laplace transform of the R–L
derivative is described as [59]
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L

{
dα f (t)

dtα

}

= sαL { f (t)}

−
m−1∑

k=0

sk d
α−k−1 f (0)

dtα−k−1 ,

m − 1 < α ≤ m. (4)

The R–L fractional derivative is not suitable to be
treated by the Laplace transform technique because it
requires the non-integer-order derivatives of the func-
tion f (t) at initial time. Another fractional derivative is
named as Caputo definition, which is sometimes called
smooth fractional derivative. It is described as [58]

dα f (x)

dtα

=
⎧
⎨

⎩

1
Γ (m−α)

∫ t
0

f (m)(τ )

(t−τ)α+1−m dτ , m − 1 < α < m,

dm

dtm f (t), α = m,

(5)

where m is the first integer larger than α, i.e., m − 1 <

α ≤ m.
In contrast, the Caputo definition of the fractional

derivative is suitable to be treated by the Laplace trans-
form technique. The Laplace transform of the Caputo
fractional derivative is [60]

L

{
dα f (t)

dtα

}

= sαL { f (t)}

−
m−1∑

k=0

sα−k−1 f (k)(0),

m − 1 < α ≤ m. (6)

Contrary to the Laplace transform of the R–L frac-
tional derivative, only integer-order derivatives of func-
tion f (t) appear in the Laplace transform of the Caputo
fractional derivative [61]. Especially with zero initial
conditions, the Laplace transform of the Caputo frac-
tional derivative can be reduced as [60]

L

{
dα f (t)

dtα

}

= sαL { f (t)} , m − 1 < α ≤ m. (7)

In the following studies, Caputo’s fractional deriva-
tive is used throughout.

2.2 Stability theorems of fractional derivatives

The first theorem is proposed for stability discrimina-
tion of in-commensurate fractional-order linear time-
invariant systems in general. It is also available for the

degenerated case, i.e., the systems with commensurate
fractional order.

Theorem 1 [62] Consider the following n-dimensio-
nal fractional-order system,

Dα
0,t x(t) = Ax(t), (8)

where A = (
ai, j
)

i, j=1,2,...,n, α � [α1, α2, . . . , αn],
0 < αi < 1. Suppose that M is the lowest common
multiple of the denominators ui’s of αi’s, where αi =
vi/ui , (ui , vi ) = 1, ui , vi ∈ Z

+ for i = 1, 2, . . . , n.

Define Δ(λ) = λMαi E − A, i = 1, 2, . . . , n,

Δ(λ)=

⎛

⎜
⎜
⎜
⎜
⎝

λMα1 − a11 −a12 · · · −a1n

−a21 λMα2 − a22 · · · −a2n
...

... · · · ...

−an1 −an2 · · · λMαn − ann

⎞

⎟
⎟
⎟
⎟
⎠

.

(9)

Then the zero solution of system (8) is globally
asymptotically stable in the Lyapunov sense if all
roots λi , i = 1, 2, . . . , n of the characteristic equation
det(Δ(λ)) = 0 satisfy

|arg(λi )| >
π

2M
. (10)

A nonlinear FOD autonomous system with initial
conditions can be described as

Dα
0,t x(t) = F(x), t ∈ [0, T ],

x(0) = F(x0), (11)

where 0 < α ≤ 1, x ∈ R
n . The nonlinear function

F(x) : Rn → R
n is bounded, i.e., F ∈ C1(Ω) with

F(0) = 0. Here, Ω ⊂ R is a bounded domain that
contains the origin x = 0, x0 ∈ Ω . Dα

0,t x(t) denotes
Caputos fractional derivative with the lower limit 0 for
F(x).

It is known that the necessary condition for (11)
having chaotic attractors is similar to its integer-order
counterpart. In a word, the equilibrium points of (11)
in Ω are in the state of instability. According to (10),
the necessary condition for generating chaotic attrac-
tors is mathematically equivalent to the following the
instability measure for the equilibrium points in (11)
[61]

	 = π

2M
− min

i
{|arg(λi )|} , i = 1, 2, . . . , n, (12)

where λi ’s are roots of equations:

det
(

diag
(
[λMα1, λMα2 , . . . , λMαn ]

)
−∂ F/∂x |x=x∗

)

= 0, ∀x∗ ∈ Ω.
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Fig. 1 The separatrices for unstable and stable regions of dif-
ferent fractional orders

If 	 < 0, the equilibrium point x∗ is asymptotic
stable; otherwise, it is unstable.

Remark 1 For the commensurate fractional-order
chaotic systems, 1/M = α, the condition (10) degener-
ates as |arg(λi )| > απ/2. The necessary condition (12)
becomes α ≥ (2/π)mini {|arg(λi )|}. In a special case
as α = 1, it degenerates to the stability of integer-order
derivatives. In Fig. 1, the stable region and the unstable
region for different fractional orders are schematically
illustrated on the complex plane. The dashed lines are
the separatrices of stable region and unstable region as
fractional order α ∈ (0, 1). The solid line along with the
imaginary axis is the separatrix for integer-order deriv-
ative. The separatrices of stable and unstable regions
for 1 < α < 2 are marked with dash-dot line.

In the context of Lyapunov stability and Caputo
fractional derivative, Norelys et al. [63,64], Hu et al.
[65,66] proposed several new sufficient stability theo-
rems for FOD systems very recently. They are summa-
rized as follows:

Theorem 2 [63–66]: Suppose that x∗ = 0 is the equi-
librium point of system (11), 0 < α ≤ 1. P is a real
positive-definite matrix such that the candidate func-
tion H = xTP(Dα

0,t x) is negative semi-definite at x∗.
Then, the equilibrium point x∗ is stable. Furthermore,
if H < 0, ∀x 
= 0, x∗ is asymptotically stable.

2.3 Some algebraic prerequisites

The following two primary algebraic lemmas are nec-
essary to the adaptive unidirectional full-state linear
feedback control scheme. They are also the fundamen-
tals of the validation of our propositions.

Lemma 1 [67] For any vector x ∈ R
n×1, and A =

(ai j )n×n with real entries, the quadratic form xTAx is
a scalar quantity. It means that xTAx is a real num-
ber if A is symmetric, but zero if A is skew-symmetric.
A = (ai j )n×n can be represented as a summation
of a symmetric matrix (A + AT)/2 (referred as the
symmetric part of A) and a skew-symmetric matrix
(A − AT)/2 (referred as the skew-symmetric part of
A). Therefore, xTAx = xT((A + AT)/2)x due to
xT((A − AT)/2)x ≡ 0.

Lemma 2 [68] Suppose that λ(A) is the eigenvalue
of A = (ai j )n×n with real entries, and ξ = (ξ1, ξ2, . . . ,

ξn)
T is the corresponding eigenvector of λ(A). The

real part of eigenvalues of matrix A, �(λ(A)) =
ξH
(
(A + AT)/2

)
ξ , where ξH is the conjugate trans-

pose of ξ , and ξHξ = 1. Suppose that (λ1, λ2, . . . , λn)

is the spectrum of A. Then, (λ1+ρ, λ2+ρ, . . . , λn +ρ)

is the corresponding spectrum of summation matrix
A+ρE, in which ρ can be a real constant or a complex
number, while E is the n-dimensional identity matrix.

Theorem 3 Suppose that λ̄max
(
(A + AT)/2

)
is the

maximum algebraic eigenvalue of matrix (A + AT)/2.
Clearly, xTAx ≤ λ̄max

(
(A + AT)/2

) ‖x‖2
2, where ‖·‖2

denotes the 2-norm of a vector x in n-dimensional
Euclidean space. Furthermore, (1) λ̄max

(
(A + AT)/2

)

is existing and bounded if the entries ai j of A is
bounded, 1 ≤ i, j ≤ n; (2) �(λ(A)) ≤ λ̄max(
(A+ AT)/2

)
. Obviously, �(λ(A)) ≤ ∥

∥(A+ AT)/2
∥
∥

2.

The proof of Theorem 3 can be seen in the “Appen-
dix.”

2.4 The synchronization scheme

System (11) is taken as the drive system. The response
system is identical, but is configured with a control
input vector Ux,y ,

Dα
0,t y(t) = F(y) + Ux,y, t ∈ [0, T ],

y(0) = F(y0), (13)
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where y = (y1, y2, . . . , yn)T is the state vector of the
response system (13). Ux,y is the unidirectional cou-
pling term.

We define the error vector e as the discrepancy in
variable vectors y and x , namely,

e = y − x . (14)

The proposed unidirectional controller Ux,y is in the
format of linear feedback coupling,

Ux,y = K (t)(y − x) = K (t)e, (15)

where K (t) = diag (ki (t))n×n, ki (t) 
= 0, i =
1, 2, . . . , n, is the coupling strength. The entries on the
primary diagonal of K (t) are identical, i.e., ki (t) =
k(t), i = 1, 2, ...., n. The feedback strength k(t) will
be given adaptively rather than a prescribed constant.
The adaptive law is designed as following

k̇(t) = −γ ‖y − x‖2
2 = −γ eTe, (16)

where γ will be prescribed as a positive constant to
regulate the convergence speed and finally, determine
the coupled strength. Suppose that k∗ is the upper
bound, and k∗ is lower bound of k(t), respectively.
The integer-order differential Eq. (16) will converge
to a constant k = ∫ t

0 k̇(τ )dτ once the synchronization
state is achieved. It is because at this moment, e → 0
as t → ∞. F(y) and F(x) are same in structure. The
dynamical difference between them can be represented
as

F(y) − F(x) = Bx,y(y − x) = Bx,ye, (17)

where Bx,y is a n × n matrix that depends on vectors
x and y.

The error dynamical system can be represented as

Dα
0,t e(t) = (F(y) − F(x) + k(t)E) e

= (
Bx,y + k(t)E

)
e. (18)

Remark 2 The proposed synchronization scheme is
suitable for all of fractional-order and integer-order
systems since the differential order α ∈ (0, 1]. On
the other hand, the synchronization can be turned into
a chaos control problem if the objective state is the
desired orbit. We assume that the plant system (13) is
controlled to y∗, where y∗ is an equilibrium point or
any trajectory of the response system. It is represented
as

Dα
0,t y(t)=F(y) + k̄(t)(y − y∗)=F̄(y), t ∈ [0, T ],

y(0) = F̄(y0), (19)

where k̄(t) follows the updated law

˙̄k(t) = −γ
∥
∥y − y∗∥∥2

2 , (20)

where the regulation factor γ is taken as before.

For a small perturbation around y∗, system (19) can
be rewritten as,

Dα
0,t y(t) = [J (y∗) + k̄(t)E](y − y∗) + F(y∗), (21)

where J (y∗)+ k̄(t)E = (∂ F/∂x)
∣
∣y=y∗ + k̄(t)E is the

Jacobian matrix evaluated at y∗. The equilibrium point
y∗ of the controlled system (19) is locally asymptot-
ically stable if all of the eigenvalues of the Jacobian
matrix J (y∗) + k̄(t)E satisfy (10).

It is noticed that

Dα
0,t y∗ = F(y∗). (22)

Defining the error e = y − y∗ and subtracting (22)
from (21), it results in

Dα
0,t e = Dα

0,t (y − y∗)
= [

J (y∗) + k̄(t)E
]
(y − y∗)

= [
J (y∗) + k̄(t)E

]
e. (23)

Theorem 4 There is a bounded constant k∗ such that
the error dynamical system (18) (or (21)) can be sta-
bilized at the origin if all of the entries of matrix Bx,y

(or J (y∗)) are bounded.

Proof Obviously, the origin is the fixed point of the
error dynamical system (18). Define ek(t) = k(t)−k∗.
A candidate negative-definite function is chosen as,

H (e(t), ek(t)) = (
eT(t)ek(t)

)
P

(
Dα

0,t e(t)

k̇(t)

)

,

in which, P = diag(1, 1, . . . , 1, 1
γ
). Thus, we have

H (e, ek) = eT[(Bx,y + k∗E)e + eke] − ekeTe

= eT(Bx,y + k∗E)e

= eT
(

Bx,y + BT
x,y

2
+ k∗E

)

e
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≤
[

λ̄max

(
Bx,y + BT

x,y

2

)

+ k∗
]

eTe

=
[

λ̄max

(
Bx,y +BT

x,y

2

)

+k∗
]

‖e‖2
2 . (24)

From above, the algebraic maximum eigenvalue,

λ̄max

(
(Bx,y + BT

x,y)/2
)

, is real and bounded if the

trajectories of both drive and response systems are

bounded. If k∗ ≤ −λ̄max

(
(Bx,y + BT

x,y)/2
)

,H (e, ek)

is surely negative definite. Moreover, in the state of syn-
chronization, the response system will follow the way
of drive system. Therefore, the reasonable interval on
which the limit value of k(t) dwells for achieving syn-
chronization is that

− ∣
∣� (λmax

(
Bx,y

))− � (λmax
(
Bx,x

))∣
∣ ≥ k ≥ k∗.

(25)

At the meantime, note that ek is positive all the time,
but k̇(t) is negative before achieving synchronization
in terms of the updated law (16). In combination with
Theorem 2, the error dynamical system (18) will be
asymptotically stable at the origin. In this case, the syn-
chronization states of all variables can be achieved with
the adaptive linear feedback control if condition (25) is
satisfied.

The proof is completed. ��
Remark 3 The case for chaos control can be proved
similarly if the error dynamical system (23) is involved.
In fact, Theorem 4 guarantees the validity and the
adaptability of the proposed synchronization (or con-
trol) scheme. It also demonstrates the flexibility of the
the proposed synchronization scheme as long as the
condition (25) is satisfied no matter how big ek is.
Meanwhile, it also informs us that the importance on
the choice of proper regulatory factor γ , because it reg-
ulates the convergence speed and determines the ulti-
mate feedback strength. For example, too small or too
big γ should be avoid. This is because a too small γ may
result in a too weak coupled strength k such that the con-
dition (25) is not satisfied or the costing of elapsed time
is too expensive. On the contrary, a too big γ may pro-
duce a too strong coupled strength k such that k ≤ k∗.
In this case, ek will be negative such that H (e, ek) is
not negative definite. In the context of Theorem 2, k∗
is just a expected lower bound but not a necessary con-
dition for achieving synchronization as stated in Ref.
[45].

3 Numerical simulations

3.1 Control and synchronization of FOD chaotic
Lorenz system

The drive system is described as [34,35]

⎧
⎪⎪⎨

⎪⎪⎩

dα1 xd
dtα1 = σ(yd − xd),

dα2 yd
dtα2 = −xd zd + ρxd − yd ,

dα3 zd
dtα3 = xd yd − βzd ,

(26)

where the subscript d in x, y and z denotes that they
are the variables of drive system. System (26) has three
equilibrium points, one is trivial, O = (0, 0, 0), which
is a saddle point of index 1 if ρ > 1. Another two,
P+ = (

√
β(ρ − 1),

√
β(ρ − 1), ρ − 1) and P− =

(−√
β(ρ − 1),−√

β(ρ − 1), ρ − 1) are saddle points
of index 2 if ρ > σ(σ +β +3)/(σ −β −1). These two
symmetric equilibria may be surrounded by a chaotic 2-
scroll attractor. Previous studies have shown that it can
generate a double-scroll chaotic attractor when para-
meters σ = 10, ρ = 28, and β = 8/3 with commen-
surate fractional order α = 0.993 [69] and α = 0.995
[70], respectively. The instability measures for these
two chaotic attractors are 	 = 1.1369 × 10−6 and
	 = 1.3689×10−6, respectively. With the same para-
meters, if the fractional orders are in-commensurate,
e.g., α1 = 0.993, α2 = 0.994 and α3 = 0.995,
respectively, 	 = 1.1863 × 10−6 > 0. The lowest
order for generating chaotic attractors in FOD Lorenz
system is 2.97 [71]. We can make an assertion that
it will be a double-scroll chaotic attractor. Iterated
with the Adams–Bashforth–Moulton method [72], the
projection on the x − y plane of the chaotic attrac-
tor is depicted in Fig. 2. Initiating from the point
x (0)

d = (xd(0), yd(0), zd(0)) = (10.1, 10.1, 10.1), its
trajectory is marked with solid line after eliminating
transient response. The largest Lyapunov exponent of
this chaotic attractor is 1.063 by using the algorithm of
small data sets [42]. Two saddle points of index 2, P+
and P−, are superimposed in the double scrolls.

System (26) can be rewritten in the form of (1),

⎛

⎜
⎜
⎝

dα1 xd
dtα1

dα2 yd
dtα2

dα3 zd
dtα3

⎞

⎟
⎟
⎠ =

⎛

⎝
−σ σ 0
ρ −1 0
0 0 −β

⎞

⎠

⎛

⎝
xd

yd

zd

⎞

⎠+
⎛

⎝
0

−xd zd

xd yd

⎞

⎠.

(27)
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Fig. 2 Projections and two saddle points of index 2 of the FOD
Lorenz system on the x − y plane

The response system is configured as
⎧
⎪⎪⎨

⎪⎪⎩

dα1 xr
dtα1 = σ(yr − xr ) + u,

dα2 yr
dtα2 = −xr zr + ρxr − yr + u,

dα3 zr
dtα3 = xr yr − βzr + u,

(28)

where u is the adaptive full-state linear feedback
controller as designed before. Similarly rewrite the
response system in the form of (1),
⎛

⎜
⎜
⎝

dα1 xr
dtα1

dα2 yr
dtα2

dα3 zr
dtα3

⎞

⎟
⎟
⎠ =

⎛

⎝
−σ σ 0
ρ −1 0
0 0 −β

⎞

⎠

⎛

⎝
xr

yr

zr

⎞

⎠

+
⎛

⎝
0

−xr zr

xr yr

⎞

⎠+
⎛

⎝
u
u
u

⎞

⎠ . (29)

Without any control inputs, i.e., u = 0, the response
system can also generate a different two-scroll chaotic
attractor with another set of initial condition x (0)

r =
(−0.8,−0.9,−1.0)). The projection on the x −y plane
of the chaotic attractor is marked with dotted line in
Fig. 2. The maximal eigenvalue λ̄(J (y))max of this
chaotic attractor is real, λ̄(J (y))max = 10.0651, and
λ̄max((J (y) + JT(y))/2) = 11.9244. As stated as
before, such a two-scroll chaotic attractor can be con-
trolled to a desired state. Hereby, the error dynamical
system (23) is involved. It is described precisely as

Dα
0,t e = [J (y∗) + k̄(t)E]e

=
⎡

⎢
⎣

⎛

⎝
−σ σ 0

ρ − zr −1 −xr

yr xr −β

⎞

⎠

y∗

+
⎛

⎝
k̄(t) 0 0

0 k̄(t) 0
0 0 k̄(t)

⎞

⎠

⎤

⎥
⎦ e.

(30)

Table 1 �(λ(J (y∗)))max, k̄ and k̄(t) for different equilibria

Equilibria �(λ(J (y∗)))max k̄ k̄(t)

O 11.8277 −11.8277 −11.8825

P+ 0.094 −0.1954 −2.1692

P− 0.094 −0.1954 −0.2855

In the following illustrations, three equilibria O, P+,
and P− are taken as the desired state, respectively.
The relations of �(λ(J (y∗)))max, the necessary control
strength k̄ and the maximal updated control strength
k̄(t) for different equilibria are shown in Table 1. The
eigenvalues of the simultaneous equilibria P+ and P−
are same. Two conjugate eigenvalues have positive real
part, λ1,2(J (y∗)) = 0.094 ± 10.1945i . Figure 3a–c
present the control effects as γ = 0.1. It is worth notic-
ing that the actual costs of control toP+ andP− are not
same due to different control inputs. The evaluations of
k̄(t) as γ varying in the interval (0, 0.2] for different
control objectives are shown in Fig. 3d.

In synchronization, the error dynamical system can
also be represented in the format of (1),

⎛

⎜
⎜
⎝

dα1 ex
dtα1

dα2 ey
dtα2

dα3 ez
dtα3

⎞

⎟
⎟
⎠ =

⎡

⎣

⎛

⎝
−σ σ 0
ρ −1 0
0 0 −β

⎞

⎠+
⎛

⎝
0 0 0

−zr 0 −xd

yd xr 0

⎞

⎠

+ k(t)

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎤

⎦

⎛

⎝
ex

ey

ez

⎞

⎠

= (A+Bx,y +k∗E)e+(k(t)−k∗)e. (31)

where the identity matrix E ∈ R
3×3.

A + AT

2
=

⎛

⎜
⎜
⎝

−σ
σ+ρ

2 0
σ+ρ

2 −1 0

0 0 −β

⎞

⎟
⎟
⎠ ,

Bx,y + BT
x,y

2
=

⎛

⎜
⎜
⎝

0 − zr
2

yd
2

− zr
2 0 xr −xd

2
yd
2

xr −xd
2 0

⎞

⎟
⎟
⎠ .

It is easy to obtain the maximal eigenvalue of (A +
AT)/2 is 14.0256. It can be found that λ̄max

(
(Bx,y +

BT
x,y)/2

) = 28.0887 by numerical computing all of
the eigenvalues of matrix (Bx,y + BT

x,y)/2 along with

the attractors starting from different initial points, x (0)
d
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Fig. 3 Numerical results of the control effects. a Controlled to
O, b controlled to P+, c controlled to P−, d the evaluations of
k̄(t) as γ varying
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Fig. 4 The respective distribution of eigenvalues in initial
regime and synchronization regime. a In initial regime, b in syn-
chronization regime

and x (0)
r . Without loss of generality, k∗ will be set

a value slightly lower than −λ̄max
(
(A + AT)/2

) −
λ̄max

(
(Bx,y + BT

x,y)/2
)

, e.g., k∗ = −42.5. In Fig. 4a,

all of the numerical eigenvalues of the objective matrix
A + Bx,y is plotted on their complex plane. The max-
imum eigenvalue is real, λ̄max

(
A + Bx,y

) = 12.1391.
In the synchronization regime, the distribution of all of
numerical eigenvalues of the objective matrix A+ Bx,x

is presented in Fig. 4b. The maximum eigenvalue is
also real, λmax

(
A + Bx,x

) = 10.6709. It means that
the maximum eigenvalue should be reduced by at least
1.7996. Therefore, the error dynamical system can
be stabilized once the feedback strength k∗ ≤ k ≤
−1.7996. We restrict the elapsed time for achieving
synchronization is 50 with fixed time-step 0.001, and
sufficient iteration time 105. The synchronization errors
are monitored by the root-mean-square error (RMSE)
in variables, RMSE = √

eTe/n. The relationship of
ultimate control strength k andγ is plotted in Fig. 5. The
γ values before vertical dashed line are unacceptable
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Fig. 5 The evaluations of k(t), and the elapsed time versus dif-
ferent γ of the FOD Lorenz system

because RMSE we monitored is not lower than what
we expected (10−4), in the restricted elapsed time. The
effectiveness of the errors in variables is illustrated in
Fig. 6 when γ = 0.001. Therefore, to avoid long-time
running and big feedback strengths, the suggested inter-
val for regulation factor γ is [0.001, 0.2].

3.2 Synchronization of FOD chaotic Rössler system

The Rössler system is the simplest three-dimensional
nonlinear system that can produce screw-type and
spiral-type chaotic attractor [73]. Its chaotic attractor
belongs to the 1-scroll attractor family. The equations
of the drive system are [14],
⎧
⎪⎪⎨

⎪⎪⎩

dα1 xd
dtα1 = −(yd + zd),

dα2 yd
dtα2 = xd + ayd ,

dα3 zd
dtα3 = b + zd(xd − c).

(32)

System (32) satisfies the necessary condition for
exhibiting one-scroll chaotic attractor when the para-
meters (a, b, c) = (0.63, 0.2, 10) and fractional orders
(α1, α2, α3) = (0.9, 0.8, 0.7) [74].

The response system is configured as
⎧
⎪⎪⎨

⎪⎪⎩

dα1 xr
dtα1 = −(yr + zr ) + u,

dα2 yr
dtα2 = xr + 0.63yr + u,

dα3 zr
dtα3 = 0.2 + zr (xr − 10) + u,

(33)

where u is the adaptive linear feedback controller as
(15).

Note that the Rössler system cannot be represented
as (1), but its linearly coupling error dynamical system
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Fig. 6 Numerical results of the scheme on linearly coupled FOD
Lorenz systems when γ = 0.001. a The errors in variables,
b the evaluation of k(t)

can [24]. Rewrite the error dynamical system in the
form of (1), which reads

⎛

⎜
⎜
⎝

dα1 ex
dtα1

dα2 ey
dtα2

dα3 ez
dtα3

⎞

⎟
⎟
⎠ =

⎡

⎣

⎛

⎝
0 −1 −1
1 0.63 0
0 0 −10

⎞

⎠+
⎛

⎝
zd 0 0
0 0 0
0 0 xr

⎞

⎠

+ k(t)

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎤

⎦

⎛

⎝
ex

ey

ez

⎞

⎠

= (A+Bx,y +k∗E)e+(k(t)−k∗)e. (34)

where the identity matrix E ∈ R
3×3.

A + AT

2
=
⎛

⎝
0 0 − 1

2
0 0.63 0

− 1
2 0 −10

⎞

⎠ ,
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Fig. 7 The respective distribution of eigenvalues in initial
regime and synchronization regime. a In initial regime, b in syn-
chronization regime

Bx,y + BT
x,y

2
=
⎛

⎝
0 0 zr

2
0 0 0
zr
2 0 xd

⎞

⎠ .

It easy to get λ̄max
(
(A + AT)/2

) = 0.63. The
eigenvalues of matrix (Bx,y + BT

x,y)/2 are calcu-
lated along with the attractors starting from differ-
ent initial points x (0)

d , x (0)
r as before. The numerical

result is λ̄max

(
(Bx,y + BT

x,y)/2
)

= 11.4254. Then

k∗ ≤ −12.0554. In the initial regime of drive sys-
tem (32) and response system (33), λmax

(
A + Bx,y

) =
1.3585. In the synchronization regime, y → x ,
λmax

(
A + Bx,x

) = 0.8869. The numerical results of
all of the eigenvalues of FOD Rössler system are shown
in Fig. 7a, b. Thus, the expected evolutions of k(t)
had better fall into the interval [−12.0554,−0.4716]
for successful synchronization via unidirectional full-
state adaptive linear feedback control. In Fig. 8, the
corresponding evolutions of k(t) and the elapsed time
are plotted against the suggested regulation factors γ

dynamically.
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Fig. 8 The evaluations of k(t) and the elapsed time versus dif-
ferent γ of the FOD Rössler system

3.3 Synchronization of FOD chaotic Liu system

Both the Liu system and its linearly coupling error
dynamical system cannot be represented as (1) [39–
42]. The incommensurate fractional-order model of Liu
system is rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

dα1 xd
dtα1 = −axd − ã y2

d ,

dα2 yd
dtα2 = byd − m̃xd zd ,

dα3 zd
dtα3 = −czd + mxd yd .

(35)

It has been reported that the lowest order for existing
chaotic attractor in the case of commensurate orders is
2.76, whereas in the incommensurate case is 2.60 [41].
The parameter values of the fractional-order Liu system
are set as a = ã = 1, b = 2.5, m = m̃ = 4 and c =
5 to ensure the chaotic motion with incommensurate
fractional orders α1 = 0.98, α2 = α3 = 0.95.

The response system is configured as
⎧
⎪⎪⎨

⎪⎪⎩

dα1 xr
dtα1 = −axr − ã y2

r + k(t)(xr − xd),

dα2 yr
dtα2 = byr − m̃xr zr + k(t)(yr − yd),

dα3 zr
dtα3 = −czr + mxr yr + k(t)(zr − zd),

(36)

where k(t) follows the update law (16).
The error dynamical system between them is

⎛

⎜
⎜
⎝

dα1 ex
dtα1

dα2 ey
dtα2

dα3 ez
dtα3

⎞

⎟
⎟
⎠ =

⎡

⎣

⎛

⎝
−1 −(yr + yd) 0

−4zr 2.5 −4xd

yr xd −5

⎞

⎠

+ k(t)

⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠

⎤

⎥
⎦

⎛

⎝
ex

ey

ez

⎞

⎠

= (Bx,y + k(t)∗E)e, (37)
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Fig. 9 The respective distribution of eigenvalues in initial
regime and synchronization regime. a In initial regime, b in syn-
chronization regime

where the identity matrix E ∈ R
3×3.

Bx,y + BT
x,y

2

=

⎛

⎜
⎜
⎝

−1 −2zr − yr +yd
2

yr
2

−2zr − yr +yd
2 2.5 − 3

2 xd

yr
2 − 3

2 xd −5

⎞

⎟
⎟
⎠ .

The initial conditions still are x (0)
d and x (0)

r . λ̄max(
(Bx,y + BT

x,y)/2
)

= 5.0871 after long-time com-

putations. In the initial regime, Fig. 9a shows λmax(
Bx,y

) = 3.2891. While in the synchronization regime,
as shown in Fig. 9b, λmax

(
Bx,x

) = 2.4938. Therefore,
the expected evolutions of k(t) had better fall into the
interval [−5.0871,−0.7953] for successful synchro-
nization. In Fig. 9, the corresponding evolutions of
k(t) and elapsed time are plotted against the regula-
tion factors γ dynamically. Too small γ values (the
values before the vertical dashed line in Fig. 10) are
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Fig. 10 The evaluations of k(t), and the elapsed time versus
different γ of the FOD Liu system

not acceptable because the chaotic Liu attractor has a
long-time transient response starting from x (0)

d .

4 Conclusions

In this paper, an adaptive synchronization scheme
designed with full-state linear error feedback is pro-
posed for general FOD chaotic systems. Rigorous the-
oretical and numerical results have been presented to
demonstrate the effectiveness. Synchronization of two
identical FOD chaotic systems with a unidirectional
full-state linear feedback coupling can be achieved
effectively if the ultimate adaptive feedback strengths
fall into the suggested interval of regulation factor. It
is believed that the proposed synchronization scheme
is useful for realizing in practice due to their simple
interactions.

However, it should be noted that the stability region
of the error system is constraint on the left-half part only
of a differential equation with fractional-order α, and
α should be in the interval of (0, 1]. In other words,
the two stability regions between the imaginary axis
and the unstable region are never considered due to
the limitation of Theorem 2. Moreover, the interven-
tion of system H in some way restraints the adaptive
control scheme in extension to different synchroniza-
tion. In this sense, the present scheme loses sight of the
fact that a FOD system has a wider stable amplitude
region in comparison with its integer-order counter-
part. In addition, the upper bound of the evolutions of
k(t) is closely related to the precision of the adopted
numerical algorithm of FOD systems. The regulatory
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factor γ in the adaptive law for every linear-coupled
FOD chaotic systems can be optimized only from a
posteriori approach. On the other hand, this bound is
just a difference of maximum eigenvalues in the initial
regime and the synchronization regime of an identical
FOD chaotic system starting from different initial con-
dition. In comparison with the results of [42,50], the
upper bound we obtained may be compact or loose.
Thus, how to adjust the complex eigenvalues of a FOD
system into the amplitude region, in which the error
dynamical system will be asymptotic stable, is worth
going on. Moreover, the optimization on the present
adaptive linear error coupling scheme will be studied
further, such as, bidirectional coupling [75] and partial
coupling [76,77].

Acknowledgments The research was supported by NNSFs of
China (Grant Nos. 11161027, 11262009), Key FSN of Gansu
Province, China (Grant No. 1104WCGA195), and the Special-
ized RF for the Doctoral Program of Higher Education of China
(Grant No. 20136204110001).

Appendix: The proof of Theorem 3

Proof A symmetric matrix has exactly n real eigenval-
ues (counting multiplicities). There is an orthogonal
matrix Q, such that

QT
(

A + AT

2

)

Q = Λ̄ = (
λ̄1, λ̄2, . . . , λ̄n

)
,

where Λ̄ is the spectrum of the symmetric part of A,
and λ̄i ∈ R, i = 1, 2, . . . , n.

Due to

λ̄max

(
A + AT

2

)

= max
{
λ̄1, λ̄2, . . . , λ̄n

}
,

and

λ̄max

(
A + AT

2

)

= max
x 
=0

xT
(

A+AT

2

)
x

xTx
,

one has

λ̄max

(
A + AT

2

)

≥
uT
(

A+AT

2

)
u

uTu
.

Let uT = (1, 1, . . . , 1),

λ̄max

(
A + AT

2

)

≥ uT
(

A + AT

2

)

u

=
n∑

i j

(
ai j + a ji

2

)

.

On the other hand, according to the Gershgorin’s
circle theorem, we have

λ̄max

(
A + AT

2

)

≤
n∑

i 
= j

(∣
∣ai j + a ji

∣
∣

2

)

+ aii .

Suppose qi is the i th column of Q,

‖x‖2
2 = xTx = xTQ QTx = (

QTx
)T (

QTx
)

=
n∑

i=1

(
qT

i x
)2

.

And,

xTAx = xT
(

A + AT

2

)

x = xT
(
QΛ̄QT) x

= (
QTx

)T
Λ̄
(
QTx

)

=
n∑

i=1

λ̄i
(
qT

i x
)2 ≤ max

i
(λ̄i )

n∑

i=1

(
qT

i x
)2

= λ̄max

(
A + AT

2

)

‖x‖2
2 .

Next, �(A) = ξH
(
(A + AT)/2

)
ξ = ξH

(
QΛ̄QT

)

ξ . Denotes that y = Qξ = (y1, y2, . . . , yn)T. Obvi-
ously, yHy = 1 and �(A) = λ̄1 |y1|2 + λ̄2 |y2|2 +· · ·+
λ̄n |yn|2.

Therefore,

�(A) ≤ λ̄max

(
A+ AT

2

)(
|y1|2+|y2|2+· · ·+|yn|2

)

= λ̄max

(
A + AT

2

)

.

Obviously,

�(A) ≤
∥
∥
∥
∥

A + AT

2

∥
∥
∥
∥

2
,

because the spectral radius ρ of a symmetric matrix
satisfies,

λ̄max

(
A + AT

2

)

≤ ρ

(
A + AT

2

)

≤
∥
∥
∥
∥

A + AT

2

∥
∥
∥
∥

2
.

This is the end of the proof. ��
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77. Uǧur, E.K., Ylmaz, U.: Controlling Rucklidge chaotic sys-
tem with a single controller using linear feedback and pas-
sive control methods. Nonlinear Dyn. 75, 63–72 (2014)

123


	Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling
	Abstract
	1 Introduction
	2 Prerequisites and mathematical description
	2.1 The definition of fractional derivatives
	2.2 Stability theorems of fractional derivatives
	2.3 Some algebraic prerequisites
	2.4 The synchronization scheme

	3 Numerical simulations
	3.1 Control and synchronization of FOD chaotic Lorenz system
	3.2 Synchronization of FOD chaotic Rössler system
	3.3 Synchronization of FOD chaotic Liu system

	4 Conclusions
	Acknowledgments
	Appendix: The proof of Theorem 3
	References




