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Abstract Excessive vibration of the beam with vary-
ing axial speed could be suppressed by nonlinear tar-
geted energy transfer. Parallel nonlinear energy sink
(NES) devices were attached to the beam for absorb-
ing the vibration energy. Galerkin method was applied
to discretize the equation of the integrated translating
beam–NES system derived fromNewton’s second law.
The numerical method was used to display the effect
of vibration suppression. Results showed that the paral-
lel NES could effectively suppress the vibration of the
axially moving beam. By contrast with the single NES
under the same condition except the attached mass, not
only the one was less and the suppressed effect was
better.
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1 Introduction

The axially moving behaviors can occur in many engi-
neering devices. However, when the moving speed is
faster, the transverse amplitude of the structure turns to
be excessive larger. In order to control the undue vibra-
tion, the axially moving behaviors have been widely
studied by various researchers. In the early time, the
axially moving behaviors had been studied by the
model of string [1] and plate [2]. Chen and Yang [3]
used the method of multiple scales to investigate the
nonlinear free transverse vibration of an axially mov-
ing beam. Ding and Chen [4] applied the fast Fourier
transform to explore the natural frequencies of non-
linear vibration of axially moving beams. Chen and
Tang [5] presented the method of multiple scales for
the steady-state response of axially moving viscoelas-
tic beams with pulsating speed. Based on the differ-
ential quadrature method, Zhou and Wang [6] investi-
gated the vibrations of axiallymoving viscoelastic plate
with parabolically varying thickness. Ghayesh et al. [7]
used the Von Kármán plate theory to study the nonlin-
ear dynamics for forced motions of an axially mov-
ing plate. Marynowski and Kapitaniak [8] put forward
some suggestions for the directions of further research
in the field of dynamics of axiallymoving continua.Wu
and Zhu [9] used different numerical methods to inves-
tigate the parametric instability in a taut string with a
periodically moving boundary. Özhan and Pakdemirli
[10] applied the steady-state solutions based on the
model with arbitrary linear and cubic operators to study
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the axially moving Euler–Bernoulli beam and axially
moving viscoelastic beam. Ghayesh et al. [11] inves-
tigated an axially moving beam with coupled longitu-
dinal and transverse displacements by considering the
case with a three-to-one internal resonance. Pakdemirli
et al. [12] used the method of multiple scales and the
method of matched asymptotic expansions to inves-
tigate the transverse vibrations of an axially moving
beam with small flexural stiffness.

In order to suppress the transverse vibration of the
axially moving system, axial speed-dependent control-
lability of the system has attracted much attention. Var-
ious active control methodologies, including boundary
control method and distributed control method, were
proposed for stabilizing the axially moving continua
[13–18]. It is noted that most these methodologies
require the controllers and actuators to make a closed
loop system for sensing the axial speed and exerting
control force. However, these methodologies are more
complex than passive ones. The passive strategies are
inherently stable and simple to design. Targeted energy
transfers (TETs) are a one-way irreversible form that
energy is directed from a source (donor) to a receiver
(recipient). The nonlinear energy sink (NES) has been
reported to engage in resonance over a broad frequency
range, has a small additional mass, and can perform
TETs. Georgiadesa and Vakakis [19] provided numeri-
cal evidence of passive and broadband targeted energy
transfer from a linear flexible beam under shock excita-
tion to a local essentially nonlinear lightweight attach-
ment. Costa et al. [20] investigated energy transfer
between vibrating systems under linear and nonlinear
interactions. Kerschen et al. [21] studied the dynam-
ics of passive energy transfer from a damped linear
oscillator to an essentially nonlinear end attachment.
Mehmood et al. [22] investigated the effects of a non-
linear energy sink (NES) on vortex-induced vibrations
of a circular cylinder. Costa and Balthazar [23] studied
suppression of vibrations in strongly nonhomogeneous
2DOF systems. Luongo and Zulli [24,25] applied
a mixed multiple scale/harmonic balance method to
study the dynamic analysis of externally excited NES-
controlled systems and the aeroelastic instability analy-
sis of NES-controlled systems. Panagopoulos et al.
[26] used the method of multiple scales to investi-
gate the damped dynamics of an elastic rod with an
essentially nonlinear end attachment. Tsakirtzis et al.
[27] studied the complex dynamics and targeted energy
transfer in linear oscillators coupled to multi-degree-

of-freedom essentially nonlinear attachments. Geor-
giadesa andVakakis [28] examinedTETs froma shock-
excited plate on an elastic foundation to nonlinear and
linear attachments of alternative configurations.

So far, the structures tend to reduce the total mass.
Therefore, it is important to develop new absorbers for
reducing the additional vibration energy by adding as
less as possible extra mass to the main structure. Vauri-
gaud et al. [29,30] put forward to a new method using
parallel nonlinear energy sinks for targeted energy
transfer.

In this paper, we use the parallel NES based on the
idea of nonlinear TET to suppress excessive vibration
of an axially moving beam. The Galerkin method is
applied to analysis equations of motion, and the effect
of vibration suppression is displayed. Although the
total mass of the parallel NES system is less than that
of the single NES system, the effectiveness of vibration
suppression is good or even better.

2 Equation of motion

As shown in Fig. 1, the target system consists of a
simple supported axially moving beam, with parallel
attached essentially nonlinear, damped attachment. The
attachment represents the parallel NES, which is hoped
to irreversibly absorb the vibration energy.

The length of the axially moving beam is L; the
axial speed is V . The displacements of the beam, the
NES1 and the NES2 relative to the horizontal X -axis
are represented as U (X, T ),U 1(X, T ) and U 2(X, T ),
respectively. The governing equation of motion can be
obtained by Newton’s second law as follows

Fig. 1 An axially moving beam with parallel nonlinear energy
sinks (NES)
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ρA

(
∂2U (X, T )

∂T 2 +2V
∂2U (X, T )

∂X∂T
+ V 2 ∂2U (X, T )

∂X2

)

−P
∂2U (X, T )

∂X2

+E I
∂4U (X, T )

∂X4 + ηI
∂5U (X, T )

∂X4∂T
= [R1(t) + R2(t)]δ(X − d) (1)

where ρ is the linear density, A is the cross-sectional
area, P is the initial tension, E is the modulus of elas-
ticity, I is the moment of inertia, η is the viscosity coef-
ficient of the beam material and R(t) is the interaction
force between the beam and the NES.

The equation of motion for the NES is

mNES1
∂2U1(X, T )

∂T 2 + R1(t) = 0 (2)

mNES2
∂2U2(X, T )

∂T 2 + R2(t) = 0 (3)

wheremNES1 andmNES2 are the mass of the NES1 and
NES2, respectively.

The interaction force R(t) can be written as

R1(t) = K1
[
Ū1(T ) − Z(T )

]3
+D1

(
∂Ū1(T )

∂T
− ∂Z(T )

∂T

)
(4)

R2(t) = K2
[
Ū2(T ) − Z(T )

]3
+D2

(
∂Ū2(T )

∂T
− ∂Z(T )

∂T

)
(5)

where K1, K2 is nonlinear (cubic) spring stiffness,
D1, D2 is the NES dissipation.

The attachment point displacement and velocity can
be expressed as [31]

Z(T ) = U (d, T ),
∂Z(T )

∂T
= ∂U (d, T )

∂T

+V
∂U (d, T )

∂X
(6)

where d is the NES adding position on the beam.
The following is nondimensional quantities

x = X

L
, u = U

L
, t = T

L

√
P

ρA
, v = V

√
ρA

P
, v2f = E I

PL2

k = K L4

P
, σ = DL√

ρAP
, ε = mNES

ρAL
, α = Iη

L3
√

ρAP
(7)

Substituting Eq. (7) into Eqs. (1) to (6) yields the fol-
lowing dimensionless form

∂2u(x, t)

∂t2
+ 2v

∂2u(x, t)

∂x∂t

+(v2 − 1)
∂2u(x, t)

∂x2
+ v2f

∂4u(x, t)

∂x4
+ α

∂5u(x, t)

∂x4∂t

+
[
k1 [u(d, t) − ū1(t)]

3 + σ1

(
∂u(d, t)

∂t
+ v

∂u(d, t)

∂x

−∂ ū1(t)

∂t

)]
δ(x − d) +

[
k2 [u(d, t) − ū2(t)]

3

+ σ2

(
∂u(d, t)

∂t
+ v

∂u(d, t)

∂x

−∂ ū2(t)

∂t

)]
δ(x − d) = 0 (8)

ε1
∂2ū1(x,t)

∂t2
+ k1 [ū1(t) − u(d, t)]3

+ σ1

(
∂ ū1(t)

∂t
− ∂u(d, t)

∂t
− v

∂u(d, t)

∂x

)
= 0 (9)

ε2
∂2ū2(x,t)

∂t2
+ k2 [ū2(t) − u(d, t)]3

+ σ2

(
∂ ū2(t)

∂t
− ∂u(d, t)

∂t
− v

∂u(d, t)

∂x

)
= 0 (10)

3 Galerkin method

Based on the Galerkin method, the governing equa-
tions (8), (9) and (10) can be approximated by a more
tractable finite dimensional dynamical system. The dis-
placement expansion is assumed as following

u(x, t) =
N∑

r=1

φr (x)qr (t) (11)

where φr (x) are the eigenfunctions for the free
undamped vibration of a beam and are required to sat-
isfy the same boundary conditions, and qr (t) are the
generalized coordinates of the discretized system.

Substituting Eq. (11) into Eqs. (8), (9) and (10)

N∑
r=1

[
φr (x)q̈r (t) + 2vφ′

r (x)q̇r (t) + (v2 − 1)φ′′
r (x)qr (t)

+v2f φ
(4)
r (x)qr (t) + αφ(4)

r (x)q̇r (t)
]

+
[
k1 [u(d, t) − ū1(t)]

3

+σ1

(
∂u(d, t)

∂t
+ v

∂u(d, t)

∂x
− ∂ ū1(t)

∂t

)]
δ(x − d)

123



64 Y.-W. Zhang et al.

+
[
k2 [u(d, t) − ū2(t)]

3

+ σ2

(
∂u(d, t)

∂t
+ v

∂u(d, t)

∂x
− ∂ ū2(t)

∂t

)]
δ(x − d)

= 0 (12)

ε1 ¨̄u1(t) + k1

(
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N∑
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)3
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ū2(t) −
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)3

+ σ2

(
˙̄u2(t) −

N∑
r=1

φr (d)q̇r (t) − v

N∑
r=1
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)
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The beam is supported by pinned ends so we designate
φr (x) = √

2 sin λr x λr = rπ where the
√
2 factor is

for ensuring orthonormality. Multiplying Eq. (12) by
φs(x) and integrating over the domain [0, 1] yield.
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+
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)]
φr (d) = 0 (15)
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(
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)3
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where

δsr =
∫ 1

0
φs(x)φr (x)dx, bsr =

∫ 1

0
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′
r (x)dx,

csr =
∫ 1

0
φs(x)φ

′′
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0
φs(x)φ

(4)
r (x)dx

(18)

δsr is theKronecker’s delta, λr is the r th eigenvalues for
the free undamped vibration of a beam with the same
boundary conditions.

Equations (15), (16), (17) can be written as
Mq̈r (t) + Cq̇r (t) + Kqr (t)

+
[
k1 [u(d, t) − ū1(t)]

3
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= 0 (19a)
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(
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)3

+ σ1
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= 0 (19b)

ε2 ¨̄u2(t) + k2

(
ū2(t) −

N∑
r=1

φr (d)qr (t)

)3

+ σ2

(
˙̄u2(t) −

N∑
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φr (d)q̇r (t) − v

N∑
r=1

φ′
r (d)qr (t)
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= 0 (19c)

where

M = δsr, C = 2vbsr + αesr,

K = (v2 − 1)csr + v2f esr = ω2
r (20)

whereM,C andK are, respectively, the mass, damping
and stiffness matrices, ωr is the r th natural frequency
of the axially moving beam. Equation (19) shows a
multi-degree-of-freedom nonlinear system. It can be
seen that the parallel NES couple to all modes of the
beam thereby being able to extract vibration energy
from each mode of the beam.
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Table 1 Convergence study of the ENES for the Galerkin truncation term

d = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N = 1 55.5404 69.4617 86.6778 91.2647 92.8649 93.7288 86.6802 79.3747 42.5164 31.6615

N = 2 53.2844 67.1932 81.2013 86.3087 90.3842 91.8589 82.0702 76.0865 41.7530 31.0869

N = 3 53.0131 66.8907 80.8811 86.6320 90.4058 91.9163 82.8747 75.8321 41.6801 30.9779

N = 4 53.0190 66.8860 80.8630 86.5805 90.3534 91.8585 82.8378 75.8039 41.7463 31.0013

Fig. 2 a Response of the
axially moving beam and
the single NES for different
axial speeds (solid line
response of the axially
moving beam (u); dashed
line response of the NES
(u)). b Response of the
axially moving beam, the
NES1 and the NES2 for
different axial speed (solid
line response of the axially
moving beam (u); dashed
line response of the NES1
(u1); dotted line response of
the NES2 (u2))
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Fig. 2 continued

0 10 20 30 40 50
-0.04

-0.02

0

0.02

0.04

t

R
es

po
ns

e

beam
NES1
NES2

0 10 20 30 40 50
-0.04

-0.02

0

0.02

0.04

t

R
es

po
ns

e

beam
NES1
NES2

(a) v = 0 (b) v = 0.5 

0 10 20 30 40 50
-0.04

-0.02

0

0.02

0.04

t

R
es

po
ns

e

beam
NES1
NES2

0 10 20 30 40 50
-0.06

-0.04

-0.02

0

0.02

0.04

t
R

es
po

ns
e

beam
NES1
NES2

0 10 20 30 40 50
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

t

R
es

po
ns

e

beam
NES1
NES2

0 10 20 30 40 50
-0.1

-0.05

0

0.05

0.1

t

R
es

po
ns

e

beam
NES1
NES2

(e) v = 2                              (f) v = 2.5  

(c) v = 1 (d) v = 1.5 

(B)

4 Effectiveness of the parallel NES

In this part, a series of study about the effective-
ness of the parallel NES for stabilizing the axi-
ally moving beam will be carried out. The effec-
tiveness of the parallel NES attached to an axially
moving beam with varying axial speed is exam-
ined and compared with that of the single NES,
meanwhile.

It is usually to truncate the expansion to a finite num-
ber of modes when dealing with the high-dimensional
nonlinear dynamical systemasEq. (19).McDonald and
Namachchivaya [32] presented that it is indispensable
to take at least two modes of the amplitude of the dis-
placement for a good approximation in the Galerkin
procedure for gyroscopic systems. Therefore, N = 1,
2, 3 and 4 is taken, respectively, to examine the numeri-
cal convergence via the following quantitative measure
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ENES(t) = σ1
∫ t
0 [ ˙̄u1(τ ) − ∑N

i=1 �i (d)q̇i (t)]2dτ + σ2
∫ t
0 [ ˙̄u2(τ ) − ∑N

i=1 �i (d)q̇i (t)]2dτ

(X2/2)
× 100 (21)

The ENES(t) [33] indicates the percentage of the
impulsive energy that is absorbed and dissipated by the
parallelNESup to time t . It is noted that in the following
numerical simulations, ENES are all calculated up to
t = 150. The initial vibration of the axially moving
devices is caused by initial speed. So, the following
initial distributed velocity is imposed

q̇1(0) = X, qr (0) = q̇2(0) = · · · = q̇r

= ū1(0) = ˙̄u1(0) = ū2(0) = ˙̄u2(0) = 0 (22)

where X is a constant.
And the system parameters are σ1 = 0.04, σ2 =

0.06, k1 = 6000, k2 = 2000, ε1 = 0.03, ε2 =
0.07, v f = 0.8, v = 1, α = 0.001 and X = 0.18.

Fig. 3 Comparison of the
transient response of axially
moving beam without NES,
with single NES and with
parallel NES (dashed line
beam without NES; dotted
line beam with single NES;
solid line beam with parallel
NES)
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Fig. 4 Comparison of the
transient response of axially
moving beam without NES,
with single NES and with
parallel NES (dashed line
beam without NES; dotted
line beam with single NES;
solid line beam with parallel
NES)
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(e) v = 2                             (f) v = 2.5  

Based on the above, Table 1 is obtained so as to show
the ENES as a function of Nand d. Obviously, the value
of ENES when N = 1 has much difference compared
with that when N = 2, 3 and 4. It can be found that
N = 1 does not meet the requirements of convergence,
but N = 2, 3 and 4 does. So, in this paper, the 2-term
Galerkin truncation is applied.

The critical axial speed of the beam vcri and the
dimensional flexural stiffness v f satisfy the following
equation

vcri =
√
1 + π2v2f (23)

In this paper, the dimensional flexural stiffness is v f =
0.8; therefore, the critical speed is vcri = 2.7. So, the
axial speed of the beam is designated to vary from 0 to
2.5 (close to the critical speed).

Figure 2a depicts the transient response of the axi-
ally moving beam and the single NES for different val-
ues of the axial speed v varying from 0 to 2.5 and
other parameters σ = 0.1, k = 8000, ε = 0.1, d =
0.6, v f = 0.8, α = 0.001 and X = 0.18. The solid and
the dashed lines, respectively, represent the response
of the beam and the single NES. Figure 2b depicts
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Fig. 5 Response of the
axially moving beam
without NES and with
parallel NES for different
adding position (dashed line
beam without NES; solid
line beam with parallel
NES)
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(a) d = 0.3 (b) d = 0.5
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 d= 0.7(c) 

the transient response of the axially moving beam
and the parallel NES for different values of the axial
speed v varying from 0 to 2.5 and other parameters
σ1 = 0.04, σ2 = 0.06, k1 = 6000, k2 = 2000, ε1 =
0.03, ε2 = 0.07, d = 0.6, v f = 0.8, α = 0.001 and
X = 0.18. The solid, the dashed and the dotted line,
respectively, represent the response of the beam, the
NES1 and the NES2. It can be seen from Fig. 2 that
the amplitudes of the two NES devices are all much
higher than the beam. Obviously, the energy transfers
from the beam to the NES devices. Then, the energy
began to be exchanged between the beam and the NES.
During this process, the vibration energy is irreversibly
transferred and eventually damped by the NES. So, it
can be known that the single NES and the parallel NES
each can effectively absorb the vibration energy and
prevent the beam from excessive vibration for varying
axial speed, and the energy absorbing is realized over
a wide range of axial speed.

As shown in Fig. 3, we compare the response of
the beam without NES, with the single NES and
with the parallel NES for varying speed v from 0 to
2.5 so as to further demonstrate the effectiveness of

the parallel NES. Parameters of the parallel NES are
σ1 = 0.04, σ2 = 0.06, k1 = 6000, k2 = 2000, ε1 =
0.03, ε2 = 0.07, d = 0.6, v f = 0.8, α = 0.001 and
X = 0.18, and that of the single NES are σ = 0.1, k =
8000, ε = 0.1, d = 0.6, v f = 0.8, α = 0.001 and
X = 0.18. Visibly, the total parameters of the parallel
NES system are the same as that of the single NES sys-
tem. The dashed, dotted and solid lines, respectively,
represent the response of the beam without NES, with
the single NES and with the parallel NES. It can be
known from Fig. 3, as time goes on, the response of the
beam without NES slowly decays, in contrast, parallel
NES and single NES attached to the beam both cause
rapidly decay of the transient response of the beam.
Comparing the dotted and the dashed lines, the dashed
line performs better than another in the aspect of close
to 0. In particular, in Fig. 3c, when v= 1, after 7th sec-
onds, the amplitude of the dashed line is already less
than 0.0005; however, the same amplitude of the dotted
line is achieved until after 17th seconds. These show
that for vibration suppression of the axially moving
beam, compared to the single NES system, the parallel
NES system has the good or even better effectiveness.
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Based on Fig. 3, in order to reduce the mass of the
parallel NES, Fig. 4 is demonstrated. Parameters of
the parallel NES are σ1 = 0.02, σ2 = 0.08, k1 =
6500, k2 = 1500, ε1 = 0.01, ε2 = 0.04, d =
0.5, v f = 0.8, α = 0.001 and X = 0.18, and that
of the single NES are σ = 0.1, k = 8000, ε =
0.1, d = 0.5, v f = 0.8, α = 0.001 and X = 0.18.
The total parameters except the mass of these two sys-
tems are the same. Although the total mass of the par-
allel NES system is much less than that of the single
NES system, the effectiveness of vibration suppression
is good or even better. In particular, when the axial
speed is v = 0.5 as shown in Fig. 4b, the superiority
of the parallel NES system for vibration suppression is
remarkable.

In Fig. 5, the response of the beam without NES and
with the parallel NES for different adding position d
varying from 0.3 to 0.7 is presented. Parameters of the
parallel NES system are σ1 = 0.02, σ2 = 0.08, k1 =
6500, k2 = 1500, ε1 = 0.01, ε2 = 0.04, v f =
0.8, v = 0.5, α = 0.001 and X = 0.18. The dashed
and the solid lines, respectively, represent the response
of the beamwithout theNES andwith the parallel NES.
It can be known from Fig. 5 that different adding posi-
tions lead to different effectiveness of vibration sup-
pression. When the adding position d is around the
0.5, the approximate optimum vibration suppression
effectiveness is achieved.

5 Conclusions

In this study, the vibration suppression of the axially
moving beam based on the nonlinear TET theory is
investigated. The effectiveness of the single NES and
the parallel NES attached to the axially moving beam
for stabilizing the axially moving beam with varying
axial speed is compared. Although the total mass of the
parallel NES is much less than that of the single NES,
the effectiveness of vibration suppression is good or
even better.
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