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Abstract This paper is concernedwith the problemof
complex function projective synchronization for uncer-
tain networked chaotic complex systems. Based on
Lyapunov stability, an adaptive control method is pro-
posed for complex modified projective synchroniza-
tion, which guarantees that the general drive-response
networked chaotic complex systems are synchronized
up to a complex scaling function matrix. Moreover,
a complex fuzzy logic-based observer is designed to
compensate for themodel uncertainties and the external
disturbances that exist in response networks, without
prior information about uncertain factors. Numerical
simulations are presented to demonstrate the effective-
ness of the proposed method.
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1 Introduction

A complex dynamical network (CDN) is a large set
of nodes that represent dynamic systems and edges
that denote connections among them [1]. In the past
decades, CDN has beenwidely studied in various fields
including metabolic networks, social relationship net-
works, the World Wide Web and communication net-
works [2–9].Recently, synchronization in complex net-
work of chaotic systems has attracted great attention.
Synchronization of coupled chaotic systems is one of
typical collective behaviors in complex networked sys-
tems due to its practical applications such as biological
neural networks and communication security [10,11].
Several types of synchronization have been investi-
gated [12–23]. For example, by using the adaptive-
impulsive control, the complete synchronization for a
class of chaotic and hyperchaotic systems is investi-
gated [14]. Tracking control and generalized projec-
tive synchronization for a class of hyperchaotic system
is investigated by the adaptive control scheme [15].
Generalized outer synchronization between two com-
plex dynamical networks is studied [18]. The hybrid
function projective synchronization in CDNwith time-
varying delay is introduced [22].

However, most of network synchronizationmethods
have focused on the study of chaotic systems in which
the state variables are real numbers. In secure commu-
nication, synchronization of chaotic complex systems
(CCSs) in which the main variables are complex num-
bers has been widely investigated because the doubled

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2128-8&domain=pdf


2096 J. W. Lee et al.

number of equations increases the content and security
of the transmitted information [24,25]. Since Fowler
et al. [26] introduced the complex Lorenz equations,
chaotic synchronization in CDN has been extensively
studied; approaches include finite-time synchroniza-
tion of CDN with CCS [27], and pinning synchroniza-
tion of CDN with CCS [28]. Various patterns of syn-
chronization for CCS have been investigated, including
PS [29], modified PS (MPS) [30], hybrid PS [31], mod-
ified projective phase synchronization (MPPS) [32],
complex PS (CPS) [33,34] and complex FPS (CFPS)
[35].

Among these methods, CFPS synchronizes the
drive-response CCSs with a desired complex scaling
function for both modulus and phase of their trajec-
tories [35]. In practice, the relationship between the
drive and response CCSs may evolve in different direc-
tions with a complex variable [33–35]. Hence, a com-
plex function scaling factor should be considered in
projective synchronization. In view of this, a complex
function scaling matrix in networked CCS is essen-
tial to study, which we call complex modified function
projective synchronization. (CMFPS). CMFPS can be
represented as PS, MPS, FPS, MFPS, CPS, CMFPS
and CFPS. Meanwhile, most of research on networked
CCSs has not considered the influence of uncertainties
and external disturbances. In many practical cases, the
parameters of the dynamic system or system models
cannot be exactly known; furthermore, external distur-
bances may influence the system. Together these com-
plications make synchronization of CCSs a difficult
task.

Among various methods, adaptive control has been
widely used for uncertain CCSs [24,36–42]. Liu et al.
[42] considered CCSs with unknown parameters and
external disturbances and introduced a compensator
in the controller to remove the influence of external
disturbances by using prior knowledge. However, in
real engineering applications, prior information about
uncertainties and disturbances may be difficult to use.

In one of effective ways of dealing with unknown
factors, fuzzy observers can be used to compensate for
unknown factors. Wu et al. [43] investigated H∞ fuzzy
adaptive control for nonlinear systems with uncertain-
ties and disturbances. Jeong et al. [44] proposed the
fuzzy disturbance observer for CDN with real vari-
ables to estimate model uncertainties and disturbances.
Although fuzzy observer is an effective method for
estimating unknown states and compensating for dis-

turbing factors, most of previous studies considered
dynamic systems with real variables.

In this paper, we propose adaptive complexmodified
function projective synchronization for a partially lin-
early coupled CCS of CDNs with model uncertainties
and external disturbances. The main contribution is to
develop adaptive controllers to achieve complex mod-
ified function projective synchronization of networked
CCS by means of adaptive fuzzy logic. First, based on
Lyapunov stability theory, we design an adaptive con-
troller to achieve complex modified function projective
synchronization for networked CCS. Then we propose
an adaptive complex fuzzy observer (CFO) to estimate
the model uncertainties and external disturbances with
arbitrary small error about which there is no need for
prior knowledge. Finally, we present simulation exam-
ples to demonstrate the effectiveness of the proposed
method.

Notation: Throughout this paper, for any complex num-
ber y, ȳ implies the complex conjugate of y. yr and yi

denote the real and imaginary parts of y, respectively.
yl can express yr or yi , and Y denotes the complex
fuzzy number. ⊗ is the Kronecker product, and bold
face denotes matrices and vectors.

2 Problem statements

Consider a drive-response CDN consisting of 1 + N
identical, linearly diffusive, coupled partially linear
chaotic complex systems as follows

ẋ = M(z)x

ż = f (x, z), (1)

ẏi = M(z)yi + ci
N∑

k=1

aik�yk + ui (2)

for i = 1, 2, . . . , N , where x = [x1, x2, . . . , xn]T ∈
Cn is the state variable vectors and z ∈ R is the state
variable of the drive system. The complex matrix M(z)
is dependent on the state variable z. f : Cn × R → R
is the known continuous nonlinear function. In the
response system, yi = [yi1, yi2, . . . , yin]T ∈ Cn

denotes the state vector of i-th node in the response
systems and ui is the controller. The positive constant
ci is the coupling strength, A = (aij)N×N is the cou-
pling configuration matrix representing the topologi-
cal structure of the network with zero row sum. aij are
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defined as follows : If node i is connected to node j
(i �= j), then aij = aji �= 0 ; otherwise, aij = a ji = 0.
A is a symmetric and irreducible matrix and � ∈ Rn×n

is the inner coupling matrix.
The system uncertainties, uncertain coupling

strength and disturbance �M,�c and di are consid-
ered in the network. Then the response systems (2) can
be represented as

ẏi = M(z)yi + �M(z)yi + (ci + �ci )
N∑

k=1

aik�yk

+di + ui . (3)

By combining three sources of uncertain terms,
lumped uncertainty �i = [ω1, ω2, . . . , ωin]T ∈ Cn is
defined, and the dynamics of the response system can
be rewritten as

ẏi = M(z)yi + ci

N∑

k=1

aik�yk + �i + ui . (4)

We define the complex-valued function projective
synchronization error as follows

Definition 1 For the drive-responseCDN, it is said that
CMFPS can be achieved, if there exists a complex func-
tion with a full block scaling matrix �(t) such that

lim
t→∞ ‖ei‖= lim

t→∞ ‖yi −�(t)x‖=0, (i=1, . . . , n),

(5)

where, ei = [e1, . . . , en]T ∈ Cn and �(t) =
(ψij(t))n×n ∈ Cn×n . The scaling factorsψij(t) : Cn →
C (i, j = 1, . . . , n) are complex-valued functions,
which are bounded holomorphic functions and are
nonzero for all t.

The dynamics of the synchronization error can be
rewritten as

ėi = M(z)yi − �M(z)x + ci

N∑

k=1

aik�ek

+�i − �̇x + ui . (6)

The objective is to design appropriate controllers in
the response network to make CMFPS error approach
the origin.

Remark 1 Most chaotic complex systems can be repre-
sented in form [1]; for example, the complex Lü system
[25], the complex Chen system [45], and the complex

Lorenz system [37]. Therefore, Eq. (2) can be used as
a representative model for general networked CCS.

Remark 2 Previous research [27,28,33] ignored both
model uncertainties and external disturbances. From
the practical point of view, considering uncertain fac-
tors is more general and essential.

Remark 3 According to the concept of scaling factor,
CMFPS can be represented as PS, MPS, FPS, MFPS,
CPS, CMPS and CFPS where �(t) = α (α is a con-
stant), �(t) = diag(α), �(t) = α(t) (α(t) is a real
function), �(t) = diag(α(t)), �(t) = β (β is a com-
plexnumber),�(t) = diag(β) (β is a complexnumber)
and �(t) = diag(β(t)) (β(t) is a complex function),
respectively. Therefore, PS, MPS, FPS, MFPS, CPS,
CMPS and CFPS are special cases of CMFPS; i.e.,
CMFPS covers previous work and is a more general
expression.

To compensate lumped uncertainties �i in the
response network, a fuzzy logic-based observer is pro-
posed for describing complex variables. Before pro-
ceeding further, we introduce complex fuzzy number
(CFN) [46,47] and fuzzy logic systems (FLS) [44].

Definition 2 [47] If X and Y are real fuzzy numbers
with the corresponding membership functions μ(x |X)

and μ(y|Y ) , then

Z = X + iY .

is CFN with membership function

μ(z|Z) = min(μ(x |X), μ(y|Y )), (7)

where z = x + iy. μ(z|Z) is a mapping from the com-
plex numbers into [0, 1].

To define fuzzy complex membership function
μ(z|Z), the complex number Z is decomposed into its
real part X and imaginary part Y to obtain correspond-
ing real membership functions μ(x |X) and μ(y|Y ) .
Then, based on the CFN theory, we can expand tradi-
tional fuzzy observer to a CFO.

Consider an n-input, single-output FLS with a fuzzy
rule base that consists of M fuzzy if-then rules :

Rl : If v1 is Al1 and · · · and vn is Ain

then w is wl ,

where v = [ v1, . . . , vn] ∈ V ⊂ Cn is the input of
the FLS and w ∈ W ⊂ C is the output of the FLS.
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Al1, . . . , Aln are fuzzy set, and wl is a fuzzy singleton
number for l = 1, . . . , M.

By using a product inference engine, a singleton
fuzzifier and a center-average defuzzifier, the output
of the fuzzy system can be described as

w(v) =
∑M

l=1 wl

(∏n
j=1 μl j (v j |V )

)

∑M
l=1

(∏n
j=1 μl j (v j |V )

) = θT ξ(v), (8)

where μl j (v j |V ) is the membership function value of
the complex fuzzy variable v j , M is the number of
fuzzy rules, and θ = [ w1, . . . , wM ] T is an adjustable
complex parameter vector composed of consequent
parameters. Fuzzy basis function vector is defined as
follows:

ξ(v) =
∏n

j=1 μl j (v j |V )
∑M

l=1(
∏n

j=1 μl j (v j |V ))
, (l = 1, . . . , M)

(9)

Based on FLS, an adaptive CFO is developed to
monitor lumped uncertainties�i To construct theCFO,
the following dynamic observer is proposed,

˙̂yi = M(z)yi + ci

N∑

k=1

aik�yk + �̂i +ui +Pi (yi −ŷi ),

(10)

where ŷi = [ ŷ1, . . . , ŷn] T ∈ Cn , Pi is n×n a positive
diagonal matrix and �̂i = [ ω̂i1, . . . , ω̂i1] T , ω̂ij =
θTij ξij with i = 1, . . . , N and j = 1, . . . , n. N is the

number of response network. θij ∈ CM is the complex
fuzzy parameter vector, ξij is the fuzzy basis function
vector.

We define the observation error as follows

φi = yi − ŷi . (11)

FromEqs. (4) and (11),we obtain the following dynam-
ics of the observation error

φ̇i = −Pi (yi − ŷi ) + �i − �̂i . (12)

Then, disturbance reconstruction error εi , minimum
approximation error li and optimal parameter error mi

are defined as

εi = �i − �̂i , (13)

li = �i − �̂
∗
i , (14)

mi = �̂
∗
i − �̂i

=
[

θ̃Ti1ξi1(y), . . . , θ̃
T
inξin(y)

]
, (15)

where

�̂
∗
i = �̂i (yi |θ∗) = [ ω̂∗

i1, . . . , ω̂
∗
in] T , (16)

ω̂∗
ij = ω̂i (yi |θ∗) = θ∗T

ij ξij(y), (17)

θ∗
ij = argmin

[
sup
x→0

|ωij(yi |θij − ωij(yi )|.
]

(18)

By the universal approximation theorem [44], a CFO
ω̂i j exists such that

|ωi j − ω̂i j | < ε̂i j , (19)

where ε̂i j is an arbitrary fuzzy approximation error
bound.

Before proceeding with the main result, the follow-
ing lemma and assumption are required.

Lemma 1 [33] Let m × m complex matrix H be Her-
mitian, then

(a) xTHx̄ is real for all x ∈ Cm;
(b) All the eigenvalues of H are real.

Assumption 1 [33] Suppose that there exists a con-
stant λ such that

λmax(Ms) ≤ λ

where Ms = MT + M̄ and λmax(Ms) is the largest
eigenvalue of Hermitian matrix Ms .

3 Main results

In this section, firstly the CMFPS of general networked
CCSwithout uncertainties and external disturbances by
the feedback control method is discussed. To achieve
CMFPS, an appropriate adaptive controller is designed
in the following lemma.

Lemma 2 For given complex scaling matrix �(t), the
CMFPS between the drive-response CDN (1) and (2)
can be achieved if the controller and adaptation law
are designed as follows

ui = uai + ubi , (20)

uai = �Mx − M�x + �̇x, (21)

ubi = −η̂iei , (22)
˙̂ηi = αieTi Qēi . (23)
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and Q and 
 exist that satisfy


 + c(A ⊗ �TQ)s − 2H ⊗ Q < 0, (24)

where αi is a positive constant and Q is a positive
diagonal matrix. Then CMFPS of the drive-response
complex dynamical networks is achieved.

Proof From the definition of CMFPS, the derivative of
synchronization error is defined as

ėi = M(z)yi + ci

N∑

k=1

aik�ek − �M(z)x − �̇x + ui .

(25)

Substituting Eqs. (20–21) into the system (25) yields
the error system

ėi = M(z)ei + ci

N∑

k=1

aik�ek + ubi . (26)

Construct the following Lyapunov function candi-
date:

V1 =
N∑

i=1

eTi Qēi +
N∑

i=1

1

2αi
(η̂i − ηi )

2, (27)

The time derivative of V1 is

V̇1=
N∑

i=1

⎧
⎨

⎩

(
Mei + ci

n∑

k=1

aik�ek + ubi

)T

×Qēi + eTi Q

(
Mei + ci

n∑

k=1

aik�ēk + ūbi

)}

+
N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi

=
N∑

i=1

{
eTi M

TQēi +ci

n∑

k=1

aikeTk �TQēi +uTbiQēi

+ eTi QMei + ci

n∑

k=1

aikeTi Q�ēk + eTi Qūbi

}

+
N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi

=
N∑

i=1

{
eTi M

s ēi +ci

n∑

k=1

aik
(
eTk �TQēi +eTi Q�ēk

)

+uTbiQēi +eTi Qūbi

}
+

N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi .

(28)

According to Assumption 1, the following inequality
can be obtained:

V̇1 ≤
N∑

i=1

λieTi ē
T
i +ci

N∑

i=1

n∑

k=1

aik
(
eTk �TQēi +eTi Q�ēk

)

+
N∑

i=1

+uTbiQēi + eTi Qūbi +
N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi .

=
N∑

i=1

λieTi ē
T
i +ci

N∑

i=1

n∑

k=1

aik
(
eTk �TQēi +eTi Q�ēk

)

+
N∑

i=1

−2ηieTi Qēi

= eT (
 + c
(
A ⊗ �TQ

)s − 2H ⊗ Q)ē, (29)

where 
1 = diag(λ1, . . . ,λn), c = diag(c1, . . . , cn)
andH = diag(η1, . . . , ηn).One can chooseηi to satisfy
the condition 
1 + c(A ⊗ �TQ)s − 2H ⊗ Q. Then,
Eq. (29) can satisfy the Lyapunov stability condition,
V̇1 ≤ 0 for all errors. According to Lyapunov stability
theory, the error dynamics (25) can be asymptotically
stable, i.e., limt→∞ ‖ei (t)‖ = 0. This means that the
control law (20–22) and the adaptation laws (23) can
achieve CMFPS of chaotic complex response network
(2). This completes the proof.

Secondly, the networked CCS with uncertainties
and external disturbances is considered. The network
is still subject to disturbance observation errors that
cause serious degradation of system performance. The
uncertainties are cancelled out by applying the adaptive
CFO in the controller. The fuzzy approximation error is
reduced, and the response networks are synchronized
to drive CCS in the sense of CMFPS with arbitrarily
small error bound. ��
Theorem 1 Consider the drive-responseCDN (1), (3),
the error dynamics (6) and the observer system (10).
For given complex scaling function �(t), if the robust
adaptive controllers and adaptation laws for complex
fuzzy observer �̂ are given by

ui = uai + ubi , (30)

uai = �Mx − M�x + �̇x − �̂i , (31)

ubi = −η̂iei − ν̂i sign(ei ), (32)
˙̂ηi = αieTi Qēi , (33)
˙̂νi = βieTi Qsgn(ēi ), (34)

θ̇ij = γi1ξ̄ij(y)(φij + γi2εij), (35)
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and Q > 0,
, ε̂i and νi exist that satisfy


 + c(A ⊗ �TQ)s − 2H ⊗ Q < 0, (36)

ε̂i − νi < 0, (37)

where αi , βi , γi1 and γi2 > 0 are positive constants.
Then the drive-response complex dynamic networks
are synchronized in the sense of CMFPS with arbitrar-
ily small error bound which guarantees the following
robust performance.

N∑

i=1

∫ T

0
φT
i Pi φ̄i dt +

N∑

i=1

∫ T

0
mT

i �i2m̄i dt

≤
N∑

i=1

∫ T

0
ei (0)TQēi (0)dt+

N∑

i=1

∫ T

0
φi (0)

T φ̄i (0) dt

+
N∑

i=1

∫ T

0

1

2αi
(η̂i (0) − ηi (0))

2dt

+
N∑

i=1

∫ T

0

1

2αi
(ν̂i (0) − νi (0))

2dt

+
N∑

i=1

∫ T

0

1

γi1

n∑

i=1

θ̃Tij (0)θ̃ij(0)dt

+
N∑

i=1

∫ T

0
lTi (�i2 + P−1

i )l̄i dt,

(38)

where �i2 = diag(γi2) > 0.

Proof From Eqs. (13–15), the observation error (10)
can be rewritten as

φ̇i = −Pi (yi − ŷi ) + εi

= −Pi (yi − ŷi ) + mi + li . (39)

The definition of CMFPS, the dynamics of the synchro-
nization error can be obtained as

ėi = M(z)yi + ci

N∑

k=1

aik�ek − �M(z)x

+�i − �̇x + ui . (40)

Substituting Eqs. (30–31) into the system (40) yields
the error system

ėi = M(z)ei + ci

N∑

k=1

aik�ek + εi + ubi . (41)

Let us consider the following Lyapunov function can-
didate:

V = V1 + V2 + V3 (42)

V1 =
N∑

i=1

eTi Qēi +
N∑

i=1

1

2αi
(η̂i − ηi )

2, (43)

V2 =
N∑

i=1

1

2βi
(ν̂i − νi )

2, (44)

V3 =
N∑

i=1

φT
i φ̄i +

N∑

i=1

1

γi1

n∑

j=1

θ̃Tij
¯̃
θij, (45)

where ηi and νi are positive constants.
The time derivative of V along the trajectory of error

dynamics systems is

V̇ =
N∑

i=1

(
ėTi Qēi + eTi Q ˙̄ei

)
+

N∑

i=1

(
φ̇
T
i φ̄i + φT

i
˙̄φi

)

+
N∑

i=1

1

γi1

n∑

j=1

(
˙̃
θTij

¯̃
θij + θ̃Tij

˙̃̄
θij

)

+
N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi +

N∑

i=1

1

βi
(ν̂i − νi ) ˙̂νi

=
N∑

i=1

⎧
⎨

⎩

(
Mei + ci

n∑

k=1

aik�ek + ubi + εi

)T

Qēi

+ eTi Q

(
Mei + ci

n∑

k=1

aik�ēk + ūbi + ε̄i

)⎫
⎬

⎭

+
N∑

i=1

−2φT
i Pi φ̄i

+
N∑

i=1

(
lTi φ̄i + mT

i φ̄i + φT
i l̄i + φT

i m̄i

)

+
N∑

i=1

1

γi1

n∑

j=1

(
˙̃
θTij

¯̃
θij + θ̃Tij

˙̃̄
θij

)

+
N∑

i=1

1

αi
(η̂i − ηi ) ˙̂ηi +

N∑

i=1

1

βi
(ν̂i − νi ) ˙̂νi (46)

Applying Eq. (33)–(46) yields

V̇ =
N∑

i=1

{
eTi M

s ēi +ci

n∑

k=1

aik
(
eTk �TQēi +eTi Q�ēk

)

+
(
uTbiQēi + eTi Qūi

)
+

(
εTi Qēi + eTi Qε̄i

) }
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+
N∑

i=1

−2φT
i Pi φ̄i

+
N∑

i=1

(
lTi φ̄i + mT

i φ̄i + φT
i l̄i + φT

i m̄i

)

+
N∑

i=1

1

γi1

n∑

j=1

(
˙̃
θTij

¯̃
θij + θ̃Tij

˙̃̄
θij

)

−
N∑

i=1

2ηieTi Qēi +
N∑

i=1

1

βi
(ν̂i − νi ) ˙̂νi . (47)

Here, by utilizing Lemma 1 and the definition of opti-
mal parameter error (15), the following inequality can
be obtained

V̇3 ≤ eT (
 + c(A ⊗ �TQ)s

− 2H ⊗ Q)ē +
N∑

i=1

−2φT
i Pi φ̄i

+
N∑

i=1

(
lTi φ̄i + φT

i l̄i
)

+
N∑

i=1

(ubi + εi )
T Qēi

+ eTi Q(ubi + εi ) +
N∑

i=1

1

βi
(ν̂i − νi ) ˙̂νi

+
N∑

i=1

1

γi1

n∑

j=1

{
θ̃Tij

(
γi1φ̄ijξij + ˙̃̄

θij

)

+
( ˙̃
θTij + γi1ξ̄

T
ij φij

) ¯̃
θij

}
. (48)

Substituting Eqs. (32, 34–35) into Eq. (48) yields

V̇ ≤ eT
(

 + c(A ⊗ �TQ

)s − 2H ⊗ Q)ē

+
N∑

i=1

(
eTi Qε̄i + εTi Qēi

)
−

N∑

i=1

2νieTi Qsgn(ēi )

+
N∑

i=1

n∑

j=1

{−2piφijφ̄ij + lijφ̄ij + φijl̄ij

− 2γi2mijm̄ij − γi2(mijl̄ij + lijm̄ij)
}

≤ eT
(

 + c

(
A ⊗ �TQ

)s − 2H ⊗ Q
)
ē

+
N∑

i=1

2
(
ε̂i − νi

)
eTi Qsgn (ēi )

+
N∑

i=1

n∑

j=1

{−2piφijφ̄ij + lijφ̄ij + φijl̄ij

− 2γi2mijm̄ij − γi2
(
mijl̄ij + lijm̄ij

)}
. (49)

One can choose ηi , νi to satisfy the condition that 
 +
c(A ⊗ �TQ)s − 2H ⊗ Q < 0 and ε̂i − νi < 0.

Then

V̇ ≤
N∑

i=1

n∑

j=1

{−2piφijφ̄ij + lijφ̄ij + φijl̄ij

− 2γi2mijm̄ij − γi2
(
mijl̄ij + lijm̄ij

)}
. (50)

By applying the following inequality:

φijl̄ij + φ̄ijlij ≤ piφijφ̄ij + p−1
i lijl̄ij,

−mijl̄ij − m̄ijlij ≤ mijm̄ij + lijl̄ij. (51)

Eq. (50) becomes

V̇ ≤
N∑

i=1

(
−φT

i Pi φ̄i −mT
i �i2m̄i +lTi

(
�i2+P−1

i

)
l̄i
)
.

(52)

Integrating both sides of Eq. (52) from 0 to T yields
the following inequality:

N∑

i=1

∫ T

0
φT
i Pi φ̄idt+

N∑

i=1

∫ T

0
mT

i �i2m̄idt≤V (0)−V (T )

+
N∑

i=1

∫ T

0
lTi (�i2 + P−1

i )l̄idt, (53)

which gives the inequality (38).
From inequality (38), if li ∈ L2 , then φi ∈ L2

and mi ∈ L2; this means that lim
t→∞ ||φi (t)|| = 0 and

lim
t→∞ ||mi (t)|| = 0 by Barbalats Lemma [48]. Regard-

less of li /∈ L2, theφT
i φ̄i is bounded by l

T
i l̄i with prede-

termined positive matrix �i2 + P−1
i . This implies that

disturbance observation error can be made arbitrarily
small by adjusting predetermined factor. As a result, �̂i

can monitor �i with arbitrarily small error. According
to Lyapunov stability theory, we can guarantee that the
error dynamics (6) can be bounded. This means that the
control law (30–32) and adaptation laws (33–35) can
synchronize the nodes of the chaotic complex response
network (3) in the sense of CMFPS. This completes the
proof. ��
Remark 4 Previous literature [42] considers CCS with
external disturbance. However it was assumed that the
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Fig. 1 Chaotic attractors of the complex Lorenz system (a, b) and the complex Chen system (c, d)

upper bound of external disturbances was known a pri-
ori. In this paper, the structure of the uncertain factor
and the bounds of the disturbances can be estimated
without prior information.

4 Numerical examples

In this section, two numerical examples are presented
to verify the effectiveness of the proposed method. The
one is a complex network that consists of 6+ 1 identi-
cal partially linear chaotic complexLorenz system. The
other is a drive-response network coupled with a 20+1
chaotic complex Chen system with system uncertain-
ties and external disturbances. In the following simu-
lations, the initial values of response systems are ran-
domly chosen in given ranges. Because the behavior
of chaotic complex system is highly sensitive to ini-

tial conditions, the behaviors of networked response
systems are completely different. To verify the effec-
tiveness of the proposed scheme, the simulation results
have been illustrated.

Example 1 (CMFPS of complex Lorenz system) The
drive system is described by

ẋ = M(z)x

ż = −bz + 1/2(x̄1x2 + x1 x̄2)

M(z) =
[

−σ σ

(r − z) −a

]
, (54)

where σ = 2, r = 60 + 0.02 j, a = 1 − 0.06 j and
b = 0.8with the initial condition x0 = [2+1i, 3+3i]T
and z0 = 10.With given parameters, the drive complex
Lorenz system exhibits chaotic behavior as shown in
Fig. 1a, b.
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Fig. 2 The real and
imaginary part CMFPS
error in Example 1. a The
real part trajectories of the
error (eri ) by the proposed
method (i = 1, . . . , 6). b
The imaginary part
trajectories of the eii by the
proposed method
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The response network system (2) is described as

ẏi = M(z)yi + ci

N∑

k=1

aik�yk + ui , (55)

where i = 1, . . . , 6 and ui is control law which is
designed according to Theorem 1.

The coupling strength ci = 1 and the coupling con-
figuration matrix A = (aij)6×6 was randomly selected
as zero-sum rows and the inner coupling matrix � =
I6×6. The initial values yi0 were randomly chosen
in [−1, 1]. The following complex scaling function
matrix was arbitrarily selected.

� =
[
2sin(2t) + jcos(0.5t) sin(t) + jcos(0.3t)

0.5sin(0.5)t + jcos(t) sin(t) + jcos(2t)

]
.

(56)

The input vector of the CFLS is vi = [yi1, yi2]T ,
where the range of the real part yri1 ∈ [−12, 12] and
yri2 ∈ [−28, 33], and of the imaginary part yii1 ∈
[−14, 16] and yii2 ∈ [−37, 49].

Five centers of the Gaussian membership functions
were chosen μr

ij and μi
ij for each real and imaginary

part of input vector vi as follows

μl
ij

(
ylij

)
= exp

[
−

(
ylij − clmj

)2
/σ l2

j

]
, (57)

where l indicates real and imaginary part of variables.
We choose the center of the membership function clm1,
clm2 for m = 1, . . . , 5 where σ r

j = [2.548, 6.476] and
σ i

j = [3.185, 9.130] with uniform distance.
For the controller and adaptation laws, we set para-

meters as αi = 5, βi = 5, η̂0 = 0, ν̂0 = 0, pi = 100,
γi0 = 60 and γi1 = 90.

Figure 2 shows that synchronization errors eri and e
i
i

converged to zero; therefore, CMFPS was achieved.

Example 2 (CMFPS of complex Chen system) In this
example, 20+1 coupled complex Chen system is con-
sidered. According to general form of chaotic com-
plex system (1), the parameters of drive system are
described as σ = 27, r = −4, a = 23 and b = 1
with the initial condition x0 = [3 + 1 j, 1 + 2 j]T
and z0 = 5. With given parameters, the drive com-
plexChen system exhibits chaotic behavior as shown in
Fig. 1c, d.

In the response network (3), model uncertainties
�M(z), �ci , di were defined as

�M(z) =
[

−ψi1σ ψi2σ

ψi3(r − z) −ψi4a

]
,

�ci = 0.1,

di = [ ki1(sin(li2t) + jcos(ki3t)) ki4(sin(k15t)

+ jcos(ki6t))] T , (58)

where i = 1, . . . , 6. The parameters used in the uncer-
tain term were randomly selected in the following
ranges:

ψi1 ∈ [−0.1, 0.1], ψi2 ∈ [−0.2, 0.2], ψi3 ∈
[−0.5, 0.5], ψi4 ∈ [−0.3, 0.3], ki1 ∈ [1.5, 2.0],
ki2 ∈ [2.0, 2.5], ki3 ∈ [0.5, 1.0], ki4 ∈ [1.5, 2.0],
ki5 ∈ [2.0, 2.5], ki6 ∈ [1.0, 1.5].

The coupling strength ci = 1 and the coupling
configuration matrix A = (aij)20×20 was arbitrar-
ily selected as zero-sum rows and the inner coupling
matrix � = I20×20. Initial values yi0 were randomly
chosen in [−2, 2]. The following complex scaling func-
tion matrix was chosen.

� =
[

sin(2t) + jcos(t) 1.5sin(t) + jcos(0.5t)

2sin(t) + jcos(1.5t) sin(0.5t) + jcos(t)

]
.

(59)
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Fig. 3 The real and
imaginary part CMFPS
error in Example 2. a The
real part trajectories of the
error (eri ) by the proposed
method (i = 1, . . . , 20). b
The imaginary part
trajectories of the error (eii )
by the proposed method
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Fig. 4 Time evolution of
actual disturbances �i (red)
and estimated disturbances
�̂i (blue) in Example 2. a
The real and imaginary part
of �1 and �̂1 of node 1. b
The real and imaginary part
of �20 and �̂20 of node 20.
(Color figure online)
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The input vector of the CFLS is vi = [yi1, yi2]T ,
where the range of the real part yri1 ∈ [−28, 22] and
yri2 ∈ [−35, 36], and of the imaginary part yii1 ∈
[−13, 17] and yii2 ∈ [−22, 21]. We choose the cen-
ter of the Gaussian membership function clm1, c

l
m2

for m = 1, . . . , 5 where σ r
j = [5.31, 7.54] and

σ i
j = [3.186, 4.567] with uniform distance. Accord-

ing to Eqs. (30–35), the parameters of controller and
adaptation laws are selected αi = 10, βi = 10, η̂0 = 0,
ν̂0 = 0, pi = 100, γi0 = 50 and γi1 = 100.

In Fig. 3, synchronization error converged to nearly
zero in the sense of CMFPS. This means that the
response networks arewell-synchronizedwith themas-

ter system by proposed method. The CFO estimated
overall disturbances within small bounds in Fig. 4. All
of these simulation results demonstrate that the pro-
posedmethod achieved adaptive CMFPS and estimates
of uncertainties by using the CFO.

5 Conclusion

A complex modified function projective synchroniza-
tion for networked chaotic complex systems was intro-
duced. Firstly, based on Lyapunov stability theory,
adaptive controllerswere developed to achieveCMFPS
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for general networked chaotic complex systems. Sec-
ondly, an adaptive controller with a CFOwas proposed
for networked chaotic complex systems with model
uncertainties and external disturbances. By using the
CFO, uncertain factors existed in networks were esti-
matedwithout prior information about them. The effec-
tiveness of the proposed scheme was verified by apply-
ing it to the CMFPS of general chaotic complex Lorenz
systems and the CMFPS of uncertain chaotic complex
Chen systems.
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