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Abstract This study is concerned with the design
of a non-fragile controller for an offshore steel jacket
platform with nonlinear perturbations. The delay-
dependent sufficient conditions are derived in terms of
linear matrix inequalities based on suitable Lyapunov–
Krasovskii functional, the second-order reciprocally
convex approach and the lower bound lemma. The
results indicate asymptotic stability of the offshore
steel jacket platform utilizing the proposed non-fragile
controller. Besides that, robust stability conditions are
derived for an uncertain offshore platform subject to the
non-fragile controller. A numerical example is given to
illustrate the effectiveness of the proposed theoretical
results.
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1 Introduction

In our modern world, the oil and gas crisis has become
a bottleneck of economy. Therefore, certain offshore
structures, especially the oil and gas production plat-
forms, play an increasingly important role. The envi-
ronment surrounding the offshore platform is harsh
and complicated. They have to endure strong dynamic
forces caused by wind, sea wave, sea current, sea ice,
and even earthquake. Therefore, the structural safety
and durability of offshore platforms have raised great
concerns in the oil and gas industry. In order to increase
stiffness of the offshore platform, many researchers
have attempted to design different controllers, and cor-
responding results were published in the literature (see
e.g., [1–10]). As an example, a network-based model-
ing and active control scheme for offshore steel jacket
platformswith tunedmass damper (TMD)mechanisms
were investigated in [1]. In [4], a new multi-loop feed-
back control design was developed and applied to an
offshore steel jacket platform. A slidingmode H∞ con-
troller was designed to reduce the oscillation ampli-
tudes of the offshore platform in [6]. The problem
of stabilization control for offshore steel jacket plat-
forms with actuator time delays was investigated in
[7]. The authors in [8] studied nonlinear and robust
control schemes for offshore steel jacket platforms. A
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dynamic output feedback controller was proposed to
improve the control performance of offshore platform
with a TMD mechanism in [9]. Active vibration H∞
control of offshore steel jacket platforms using delayed
feedback was investigated in [10]. More recently, pure
delayed non-fragile control was proposed to improve
the performance of the offshore steel jacket platform in
[11].

On the other hand, it is almost impossible to obtain
an exact mathematical model of dynamical systems
due to various factors including modeling errors, mea-
surement errors, linearization approximation. Indeed
it is reasonable and practical to assume that the sys-
tem to be controlled has certain amount of uncertainty
(see e. g., [12–23]). As an example, robust H∞ control
and non-fragile control problems for Takagi–Sugeno
fuzzy systems with linear fractional parametric uncer-
tainties were studied in [12]. An approach to design
static output feedback and non-fragile static output
feedback H∞ controllers for active vehicle suspensions
by using linear matrix inequalities (LMIs) and genetic
algorithms was presented in [16]. Besides that, robust
reliable dissipative filtering for networked control sys-
tems with sensor failure was discussed in [21]. Very
recently, the authors in [24] proposed a new type of
uncertainty named randomly occurring uncertainties
due to the fact that the uncertainties may be subject to
random changes in environmental circumstances, for
instance, repairs of components and sudden environ-
mental disturbances. Therefore, the uncertainties occur
in a probabilistic way with certain types and inten-
sity. In [25], a non-fragile procedure was introduced
to study the problem of synchronization of neural net-
workswith time-varyingdelay.Robust synchronization
of chaotic systems with randomly occurring uncertain-
ties through stochastic sampled-data control was inves-
tigated in [26]. The problem of robust state estimator
design for a class of uncertain discrete-time genetic
regulatory networks with time-varying delays and ran-
domly occurring uncertainties was studied in [27]. In
[28], the problem of robust dissipativity analysis for
uncertain neural networks with time-varying delay was
examined. The design problem of state estimator for
genetic regularity networks with time-varying delays
and randomly occurring uncertainties was addressed
by a delay decomposition approach in [29]. In fact,
offshore platforms involve some uncertainties such as
unknown systemparameters and structure flexibility. In
particular, minor variations in some system parameters

can bring about undesired effects on the performance of
the system in deep water fields. So, designing a robust
controller for offshore platforms subject to parameter
perturbation is of prime significance.

A controller for which the closed-loop system is
destabilized by small perturbations in the controller
coefficients is referred to as a ’fragile’ controller.
In practice, many controllers are implemented digi-
tally. Therefore, controller implementation is subject
to round-off errors and finite word length in numeri-
cal computations. Moreover for any controller design,
it is necessary to conduct manual tuning to obtain the
desired performance of a control system. Therefore,
the controller design must be able to tolerate some per-
turbations in controller coefficients. Such a controller
design is nothing other than the non-fragile controller.

In the literature, the problem of non-fragile passive
control for uncertain singular time-delay systems with
time-invariant norm-bounded uncertainty was investi-
gated in [30]. Robust integral sliding mode control for
an offshore steel jacket platforms subject to nonlin-
ear wave-induced force and parameter perturbations
was discussed in [31]. The problem of non-fragile H∞
controller design for linear time-invariant systems with
multiplicative controller gain variations was discussed
in [32]. In [33], the authors proposed a robust and non-
fragile H∞ state feedback controller design method
for discrete systems with multiplicative uncertainty.
The problem of non-fragile synchronization control for
complex networks with time-varying coupling delay
and missing data was addressed in [34]. Exponen-
tial synchronization of fractional-order chaotic systems
with mixed uncertainties was discussed in [35]. More-
over, the problem of non-fragile synchronization con-
trol for complex networks with additive time-varying
delays was investigated in [36].

Motivated by the above account, we design a non-
fragile controller for an offshore steel jacket platform
subject to nonlinear perturbations in this paper. Some
sufficient conditions which ensure asymptotic stabil-
ity of the offshore platform are presented in terms of
LMIs. Furthermore, the robust asymptotic stabilization
is proposed for an uncertain system by employing the
second-order reciprocally convex approach. To the best
of authors’ knowledge, no results have been found in
the existing literature for asymptotic stabilization of
the offshore platform with randomly occurring uncer-
tainties under the non-fragile controller by using the
second- order reciprocally convex approach.
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Fig. 1 A steel jacket platform with TMD [8]

The rest of the paper is organized as follows: Prelim-
inaries and problem formulations are given in Sect. 2.
In Sect. 3, some sufficient conditions which guarantee
the asymptotic stabilization of the considered system
under the non-fragile controller are proposed. In addi-
tion, the stabilization of the systemwith random occur-
ring uncertainties is discussed. In Sect. 4, a numerical
example is presented to illustrate the effectiveness of
the results. Finally, conclusions are drawn in Sect. 5.

2 Notations

Throughout this paper, superscript T stands for matrix
transposition.Rn denotes the n-dimensional Euclidean
space. Rn×n denotes the set of all n × n real matrices.
P > 0 (P ≥ 0) means that P is positive definite (pos-
itive semi-definite). In and 0n stand for n × n identity
matrix and n × n zero matrix, respectively. The sym-
metric term in a symmetric matrix is denoted by �. Let
Prob {α} denote the occurrence probability of an event
α. The conditional probability of α and β is denoted
by Prob {α|β}. E{x} is the expectation of a stochas-
tic variable x , and diag{.} stands for a block-diagonal
matrix.

3 Preliminaries and problem formulation

Consider an offshore steel jacket platform model with
an TMDmechanism shown in Fig. 1, [8]. The dynamic
equation of the model can be expressed as

z̈1(t) = −2ξ1ω1 ż1 − ω2
1z1 − φ1KT [φ1z1(t)

+ φ2z2(t)] + φ1KT zT (t) + φ1KT żT

− φ1CT [φ1 ż1(t) + φ2 ż2(t)] − φ1u(t)

+ f1(z1(t), z2(t), t)+ f2(z1(t), z2(t), t), z̈2(t)

z̈2(t) = −2ξ2ω2 ż2 − ω2
2z2 − φ2KT [φ1z1(t)

+ φ2z2(t)] + φ2KT zT (t) + φ2KT żT
− φ2CT [φ1 ż1(t) + φ2, ż2(t)] − φ2u(t)

+ f3(z1(t), z2(t), t) + f4(z1(t), z2(t), t), (1)

z̈T (t) = −2ξTωT [żT (t) − φ1 ż1(t) − φ2 ż2(t)]
+ 1

mT
u(t) − ω2

T [zT (t) + φ1z1(t) + φ2z2(t)],

where z1 and z2 are the generalized coordinates of
vibrationmodes 1 and2, respectively; zT is the horizon-
tal displacement of the TMD; ξ1 and ξ2 are the damping
ratios in the first two modes of vibration, respectively;
ω1 and ω2 represent the natural frequencies of the first
two modes of vibration, respectively; φ1 and φ2 are the
first- and second-mode shape vectors, respectively; ξT
is the damping ratio of the TMD. Damping, mass, and
stiffness of the TMD are denoted by CT ,mT and KT

respectively; ωT = √
KT /mT is the natural frequency

of the TMD; u is the control force; f1, f2, f3 and f4
are nonlinear self-excited force terms. By defining

x1(t) = z1(t), x2(t) = ż1(t), x3(t) = z2(t)

x4(t) = ż2(t), x5(t) = zT (t), x6(t) = żT (t) (2)

as state variables and vectors

x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)],
f (x, t) =

[
f1(x1, x3, t) + f2(x1, x3, t)
f3(x1, x3, t) + f4(x1, x3, t)

]
,

the state space model of system (1) can be written as

ẋ(t) = Ax(t) + Bu(t) + Df (x(t), t), x(0) = x0, (3)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0
−ω2

1 − KTφ2
T −2ξ1ω1 − CTφ2

1 −KTφ1φ2

0 0 0
−KTφ1φ2 −CTφ1φ2 −ω2

2 − KTφ2
2

0 0 0
ω2
Tφ1 2ξTωTφ1 ω2

Tφ2

123



2046 K. Sivaranjani et al.

0 0 0
−CTφ1φ2 φ1KT φ1CT

1 0 0
−2ξ2ω2 − CTφ2

2 φ2KT φ2CT

0 0 1
2ξTωTφ2 −ω2

T −2ξTωT

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =
[
0 −φ1 0 −φ2 0 1

mT

]T
, D=

[
0 1 0 0 0 0
0 0 0 1 0 0

]T

.

The non-fragile control law can be defined as

u(t) = [K + �K (t)]x(t − τ(t)), (4)

where 0 ≤ τ1 ≤ τ(t) ≤ τ2, τ12 = τ2 − τ1,

�K (t) = EF(t)H (5)

with E and H are the known matrices of appropriate
dimension, F(t) is the unknown time-varying matrix
satisfying FT (t)F(t) ≤ I, t ≥ 0 and K is the gain
matrix to be determined. Then the controlled system
can be written in the form as

ẋ(t) = Ax(t) + B[K + �K (t)]x(t − τ(t))

+ Df (x(t), t), x(0) = x0. (6)

Before derivingourmain results, the necessary assump-
tion, lemmas and definition are introduced.

Assumption 1 The nonlinear wave force f (x(t), t) in
(3) is uniformly bounded and satisfies the following
constraint

‖ f (x(t), t)‖ ≤ α1‖x(t)‖. (7)

Lemma 1 [26] For any constant matrix X ∈ R
n×n,

X = XT > 0, two scalars h2 ≥ 0, h1 > 0, such that
the integrations concerned are well defined, then

− h22 − h21
2

∫ t−h1

t−h2

∫ t

t+θ

xT (s)Xx(s)dsdθ

≤ −
(∫ t−h1

t−h2

∫ t

t+θ

x(s)dsdθ

)T

X

(∫ t−h1

t−h2

∫ t

t+θ

x(s)dsdθ

)
,

(8)

− (h2 − h1)
∫ t−h1

t−h2
xT (x)Xx(s)ds

≤ −
(∫ t−h1

t−h2
x(s)ds

)T

X

(∫ t−h1

t−h2
x(s)ds

)
. (9)

Lemma 2 [37] (lower bound lemma) Let f1, f2, . . . ,
fn : Rm → R have positive values in an open subset
D of Rm . Then the reciprocally convex combination of
fi over D satisfies

min
{αi |αi>0,

∑
i αi=1}

∑
i

1

αi
fi (t)=

∑
i

fi (t)+max
gi j (t)

∑
i 	= j

gi j (t)

subject to

{
gi j : Rm → R, gi j (t),

[
fi (t) gi j (t)
gi j (t) f j (t)

]
≥ 0

}
.

Lemma 3 [38] For the symmetric matrices R > 0, Ω

and matrix Γ , the following statements are equivalent:

1. Ω − Γ T RΓ < 0,
2. There exists an appropriate dimensional matrix 


such that

[
Ω + Γ T
 + 
TΓ 
T

� −R

]
< 0.

Lemma 4 [39] For a positive definite matrix M and
any differentiable function w̄ in [a, b] → R

n, the fol-
lowing inequality holds:

∫ b

a

˙̄wT (u)M ˙̄w(u)du ≥ 1

b − a
wT (a, b)M̄w(a, b),

where

w(a, b) =
⎡
⎣ w̄(b)

w̄(a)
1

b−a

∫ b
a w̄(u)du

⎤
⎦ ,

M̄ =
⎡
⎣ M −M 0

� M 0
� � 0

⎤
⎦ + π2

4

⎡
⎣ M M −2M

� M −2M
� � 4M

⎤
⎦ .

Definition 1 Let Φ1, Φ2, Φ3, . . . , ΦN : Rm → R be
a given finite number of functions that have positive
values in an open subset D of Rm . Then, a second-
order reciprocally convex combination of these func-
tions over D is a function of the form

1

α2
1

Φ1 + 1

α2
2

Φ2 + · · · + 1

α2
N

ΦN : D → R
n, (10)

where the real numbers αi satisfy αi > 0 and
∑

i
αi = 1.
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4 Main results

Now, we are in a position to derive the sufficient con-
ditions for which the considered system (6) can be
asymptotically stable, which can be realized through
the following theorem.

Theorem 1 Given scalars 0 ≤ τ1 ≤ τ2, system (6) is
asymptotically stable if there exist matrices P̃ > 0,
Q̃i > 0, i = 1, 2, 3, T̃i , W̃i , i = 1, 2, R̃i > 0,
S̃i > 0, i = 1, 2, . . . , 6. and 
̃1, 
̃2 with appropriate
dimensions such that the following conditions hold:

⎡
⎢⎣

Φ̃1 
̃T
1 
̃T

2

� −T̃1 0

� � −T̃2

⎤
⎥⎦ < 0, (11)

⎡
⎢⎢⎣
2R̃5 0 S̃1 0
� R̃5 0 S̃2
� � 2R̃5 0
� � � R̃5

⎤
⎥⎥⎦ > 0,

⎡
⎢⎢⎣
2R̃6 0 S̃3 0
� R̃6 0 S̃4
� � 2R̃6 0
� � � R̃6

⎤
⎥⎥⎦ > 0, (12)

[
R̃3 + τ 212 R̃5 S̃5

� R̃3 + τ 212 R̃5

]
> 0,

[
R̃4 S̃6
� R̃4

]
> 0, (13)

where

Φ =
⎡
⎣Ω 2Γ1(t)W̃1 2Γ2(t)W̃2

� −2W̃1 0
� � −2W̃2

⎤
⎦ +

⎡
⎣Γ T

1 (t)
02n
02n

⎤
⎦ 
̃1

+ 
̃T
1

⎡
⎣Γ T

1 (t)
02n
02n

⎤
⎦
T

+
⎡
⎣Γ T

2 (t)
02n
02n

⎤
⎦


̃2 + 
̃T
2

⎡
⎣Γ T

2 (t)
02n
02n

⎤
⎦
T

T̃1 =
[
3R̃5 S̃1 + S̃2
� 3R̃5

]
, T̃2 =

[
3R̃6 S̃3 + S̃4
� 3R̃6

]

and Ω = [Ωi j ]14×14, Γ1, Γ2, Ŕ5 and Ŕ6 are defined
as

Ω1,1 = Q̃1 + Q̃2 + Q̃3 −
(
R̃1 + π2

4
R̃1

)

−
(
R̃2 + π2

4
R̃2

)
+ AG̃

+ G̃ AT + τ 212 R̃5 + ρα2
1 ,

Ω1,2 = BE, Ω1,3 = P̃ − G̃ + AG̃,

Ω1,5 = −
(

π2

4
R̃1− R̃1

)
, Ω1,6=−

(
π2

4
R̃2 − R̃2

)
,

Ω1,8 = π2

2
R̃1, Ω1,9 = π2

2
R̃2, Ω1,14 = D, Ω2,2 = − 1

ε1
,

Ω3,3 = τ 21 R̃1 + τ 22 R̃2 + τ 212 R̃3 + τ 412

4
R̃5 + τ 412

4
R̃6 − 2G̃,

Ω3,7 = BK , Ω3,14 = D, Ω4,4 = − 1

ε2
,

Ω5,5 = −Q̃1 − (R̃1 + π2

4
R̃1), Ω5,8 = π2

2
R̃1,

Ω6,6 = −Q̃2 − (R̃2 + π2

4
R̃2), Ω6,9 = π2

2
R̃2,

Ω7,7 = −(1 − μ)Q̃3 + ε−1
1 HT H + ε−1

2 HT H,

Ω8,8 = −π2 R̃1, Ω9,9 = −π2 R̃2, Ω10,10 = −R̃4,

Ω10,11 = −S̃6, Ω11,11 = −R̃4, Ω12,12 = −R̃4 − τ 212

2
R̃5,

Ω12,13 = −S̃5, Ω13,13 = −R̃4 − τ 212

2
R̃5, Ω14,14 = −ρ I

Γ11 =
[
0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n 0n 0n 0n
0n 0n 0n 0n 0n 0n τ12 In 0n 0n 0n −In 0n 0n 0n

]
,

Γ12 =
[
0n 0n 0n 0n τ12 In 0n 0n 0n 0n −In 0n 0n 0n 0n
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n 0n 0n

]
,

Γ21 =
[
0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n 0n 0n 0n
0n 0n 0n 0n 0n −τ12 In 0n 0n 0n 0n 0n 0n In 0n

]
,

Γ22 =
[
0n 0n 0n 0n 0n 0n −τ12 In 0n 0n In 0n 0n 0n 0n
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n

]
.

W̃1 =
[
R̃5 0
� R̃5

]
, W̃2 =

[
R̃6 0
� R̃6

]
.

Moreover, if the above condition is feasible, a desired
controller gain matrix is given by K = LG̃−1.

Proof Consider the Lyapunov–Krasovksii functional
as

V (t) =
7∑

i=1

Vi (t), (14)

where,

V1(t) = xT (t)Px(t),

V2(t) =
∫ t

t−τ(t)
xT (s)Q1x(s)ds+

∫ t

t−τ1

xT (s)Q2x(s)ds

+
∫ t

t−τ2

xT (s)Q3x(s)ds,

V3(t) =
∫ 0

−τ1

∫ t

t+θ

ẋ T (s)R1 ẋ(s)dsdθ

+
∫ 0

−τ2

∫ t

t+θ

ẋ T (s)R2 ẋ(s)dsdθ,

V4(t) = τ12

∫ −τ1

−τ2

∫ t

t+θ

ẋ T (s)R3 ẋ(s)dsdθ,
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V5(t) = τ12

∫ −τ1

−τ2

∫ t

t+θ

xT (s)R4x(s)dsdθ,

V6(t) = τ 212

2

∫ −τ1

−τ2

∫ −τ1

θ

∫ t

t+λ

ẋ T (s)R5 ẋ(s)dsdλdθ,

V7(t) = τ 212

2

∫ −τ1

−τ2

∫ θ

−τ2

∫ t

t+λ

ẋ T (s)R6 ẋ(s)dsdλdθ.

Define the infinitesimal operator, L as follows:

LV (t) = limh→0+
1

h
{{V (t + h)|t} − V (t)}.

Setting λ = (τ (t)−τ1)
τ12

, δ = (τ2−τ(t))
τ12

, it can be seen that

LV (t) = LV1(t)+LV2(t)+LV3(t)+LV4(t)+LV5(t)

+ LV6(t) + LV7(t),

where

LV1(t) = 2xT (t)Pẋ(t), (15)

LV2(t) ≤ xT (t)(Q1 + Q2 + Q3)x(t)

−xT (t − τ1)Q1x(t − τ1)

− xT (t − τ2)Q2x(t − τ2)

− (1 − μ)xT (t − τ(t))Q3x(t − τ(t)), (16)

LV3(t) = τ 21 ẋ
T (t)R1 ẋ(t) + τ 22 ẋ

T (t)R2 ẋ(t)

−τ1

∫ t

t−τ1

ẋ T (s)R1 ẋ(s)ds

−τ2

∫ t

t−τ2

ẋ T (s)R2 ẋ(s)ds,

(17)

LV4(t) = τ 212 ẋ
T (t)R3 ẋ(t)

−τ12

∫ t−τ(t)

t−τ2

ẋ T (s)R3 ẋ(s)ds

− τ12

∫ t−τ1

t−τ(t)
ẋ T (s)R3 ẋ(s)ds,

≤ τ 212 ẋ
T (t)R3 ẋ(t)

− 1

δ

∫ t−τ(t)

t−τ2

ẋ T (s)dsR3

∫ t−τ(t)

t−τ2

ẋ(s)ds

− 1

λ

∫ t−τ1

t−τ(t)
ẋ T (s)R3

∫ t−τ1

t−τ(t)
ẋ(s)ds, (18)

LV5(t) = τ 212x
T (t)R4x(t)

−τ12

∫ t−τ(t)

t−τ2

xT (s)R4x(s)ds

− τ12

∫ t−τ1

t−τ(t)
xT (s)R4x(s)ds,

≤ τ 212x
T (t)R4x(t)

− 1

δ

∫ t−τ(t)

t−τ2

xT (s)dsR4

∫ t−τ(t)

t−τ2

x(s)ds

− 1

λ

∫ t−τ1

t−τ(t)
xT (s)dsR4

∫ t−τ1

t−τ(t)
x(s)ds, (19)

LV6(t) = τ 212

4
ẋ T (t)R5 ẋ(t)

− τ 212

2

∫ −τ1

−τ2

∫ t−τ1

t+θ

ẋ T (s)R5 ẋ(s)dsdθ,

= τ 212

4
ẋ T (t)R5 ẋ(t)

− τ 212

2

∫ −τ(t)

−τ2

∫ t−τ1

t+θ

ẋ T (t)R5 ẋ(t)dsdθ

− τ 212

2
(τ2 − τ(t))

∫ t−τ1

t−τ(t)
ẋ T (t)R5 ẋ(t)ds

− τ 212

2

∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ T (t)R5 ẋ(t)dsdθ

≤ τ 212

4
ẋ T (t)R5 ẋ(t)

− τ 212

2

δ

λ

∫ t−τ1

t−τ(t)
ẋ T (s)dsR5

∫ t−τ1

t−τ(t)
ẋ(s)ds

− 1

λ2

∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ T (s)dsdθR5

∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ(s)dsdθ

− 1

δ2

∫ −τ(t)

−τ2

∫ t−τ(t)

t+θ

ẋ T (s)dsdθR5

×
∫ −τ(t)

−τ2

∫ t−τ(t)

t+θ

ẋ(s)dsdθ, (20)

LV7(t) = τ 412

4
ẋ T (t)R6 ẋ(t)

−τ 212

2

∫ −τ1

−τ2

∫ t+θ

t−τ2

ẋ T (s)R6 ẋ(s)dsdθ

= τ 412

4
ẋ T (t)R6 ẋ(t)

− τ 212

2

∫ −τ1

−τ(t)

∫ t+θ

t−τ(t)
ẋ T (s)R6 ẋ(s)dsdθ

− τ 212

2
(τ (t) − τ1)

∫ t−τ(t)

t−τ2

ẋ T (s)R6 ẋ(s)ds
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− τ 212

2

∫ τ(t)

−τ2

∫ t+θ

t−τ2

ẋ T (s)R6 ẋ(s)dsdθ

≤ τ 412

4
ẋ T (t)R6 ẋ(t)

− τ 212

2

λ

δ

∫ t−τ(t)

t−τ2

ẋ T (s)dsR6

∫ t−τ(t)

t−τ2

ẋ(s)ds

− 1

λ2

∫ −τ1

−τ(t)

∫ t+θ

t−τ(t)
ẋ T (s)dsdθR6

×
∫ −τ1

−τ(t)

∫ t+θ

t−τ(t)
ẋ(s)dsdθ

− 1

δ2

∫ −τ(t)

−τ2

∫ t+θ

t−τ2

ẋ T (s)dsdθR6

×
∫ −τ(t)

−τ2

∫ t+θ

t−τ2

ẋ(s)dsdθ. (21)

Let us define η(t) = [x(t) ẋ(t) x(t − τ1)

x(t − τ2) x(t − τ(t)) 1
τ1

∫ t
t−τ1

x(s)ds 1
τ2

∫ t
t−τ2

x(s)ds∫ t−τ1
t−τ(t) x(s)ds

∫ t−τ(t)
t−τ2

x(s)ds
∫ t−τ1
t−τ(t) ẋ(s)ds

∫ t−τ(t)
t−τ2

ẋ(s)
ds f (x(t), t)] . By using Lemma 1, the integral term
of LV (t) can be bounded as:

− τ1

∫ t

t−τ1

ẋ T (s)R1 ẋ(s)ds

≤ −
⎡
⎣ x(t)

x(t − τ1)
1
τ1

∫ t
t−τ1

x(s)ds

⎤
⎦
T ⎧⎨

⎩
⎡
⎣ R1 −R1 0

� R1 0
� � 0

⎤
⎦

+ π2

4

⎡
⎣ R1 R1 −2R1

� R1 −2R1
� � 4R1

⎤
⎦

⎫⎬
⎭

⎡
⎣ x(t)

x(t − τ1)
1
τ1

∫ t
t−τ1

x(s)ds

⎤
⎦ , (22)

− τ2

∫ t

t−τ2

ẋ T (s)R2 ẋ(s)ds

≤ −
⎡
⎣ x(t)

x(t − τ2)
1
τ2

∫ t
t−τ2

x(s)ds

⎤
⎦
T ⎧⎨

⎩
⎡
⎣ R2 −R2 0

� R2 0
� � 0

⎤
⎦

+ π2

4

⎡
⎣ R2 R2 −2R2

� R2 −2R2
� � 4R2

⎤
⎦

⎫⎬
⎭

⎡
⎣ x(t)

x(t − τ2)
1
τ2

∫ t
t−τ2

x(s)ds

⎤
⎦ . (23)

From Lemma 1, if there exist matrices S5 and S6 such
that (13) holds, then we can obtain

− 1

λ

∫ t−τ1

t−τ(t)
ẋ T (s)dsR3

∫ t−τ1

t−τ(t)
ẋ(s)ds

− 1

δ

∫ t−τ(t)

t−τ2

ẋ T (s)dsR3

∫ t−τ(t)

t−τ2

ẋ(s)ds

− τ 212

2

δ

λ

∫ t−τ1

t−τ(t)
ẋ T (s)dsR5

∫ t−τ1

t−τ(t)
ẋ(s)ds

− τ 212

2

λ

δ

∫ t−τ(t)

t−τ2

ẋ T (s)dsR6

∫ t−τ(t)

t−τ2

ẋ(s)ds

≤ −
[ ∫ t−τ1

t−τ(t) ẋ(s)ds∫ t−τ(t)
t−τ2

ẋ(s)ds

]T [
R3 + τ 212

2 R5 S5

� R3 + τ 212
2 R5

]

[ ∫ t−τ1
t−τ(t) ẋ(s)ds∫ t−τ(t)
t−τ2

ẋ(s)ds

]
(24)

and

− 1

λ

∫ t−τ1

t−τ(t)
xT (s)dsR4

∫ t−τ1

t−τ(t)
x(s)ds

− 1

δ

∫ t−τ(t)

t−τ2

xT (s)dsR4

∫ t−τ(t)

t−τ2

x(s)ds

≤ −
[ ∫ t−τ1

t−τ(t) x(s)ds∫ t−τ(t)
t−τ2

x(s)ds

]T [
R4 S6
� R4

][ ∫ t−τ1
t−τ(t) x(s)ds∫ t−τ(t)
t−τ2

x(s)ds

]
.

(25)

If τ(t) = τ1 or τ(t) = τ2, we have

∫ t−τ1

t−τ(t)
ẋ(s)ds =

∫ t−τ1

t−τ(t)
x(s)ds = 0 or

∫ t−τ(t)

t−τ2

ẋ(s)ds =
∫ t−τ(t)

t−τ2

x(s)ds = 0,

respectively. So inequalities (24) and (25) still hold.
Similarly, we can derive the upper bounds of the

second-order reciprocally convex combinations in (20)
and (21) for the matrices S1, S2, S3 and S4 satisfying
(12) as

− 1

λ2

∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ T (s)dsdθR5

∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ(s)dsdθ

− 1

δ2

∫ −τ(t)

−τ2

∫ t−τ(t)

t+θ

ẋ T (s)dsdθR5

∫ −τ(t)

−τ2

∫ t−τ(t)

t+θ

ẋ(s)dsdθ

≤ −
⎡
⎣

∫ −τ1
−τ(t)

∫ t−τ1
t+θ

ẋ(s)dsdθ∫ −τ(t)
−τ2

∫ t−τ(t)
t+θ

ẋ(s)dsdθ

⎤
⎦
T [

R5 S1 + S2
� R5

]

⎡
⎣

∫ −τ1
−τ(t)

∫ t−τ1
t+θ

ẋ(s)dsdθ∫ −τ(t)
−τ2

∫ t−τ(t)
t+θ

ẋ(s)dsdθ

⎤
⎦ (26)
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and

− 1

λ2

∫ −τ1

−τ(t)

∫ t+θ

t−τ(t)
ẋ T (s)dsdθR6

∫ −τ1

−τ(t)

∫ t+θ

t−τ(t)
ẋ(s)dsdθ

− 1

δ2

∫ −τ(t)

−τ2

∫ t+θ

t−τ2

ẋ T (s)dsdθR6

∫ −τ(t)

−τ2

∫ t+θ

t−τ2

ẋ(s)dsdθ

≤ −
⎡
⎣

∫ −τ1
−τ(t)

∫ t+θ

t−τ(t) ẋ(s)dsdθ∫ −τ(t)
−τ2

∫ t+θ

t−τ2
ẋ(s)dsdθ

⎤
⎦
T [

R6 S3 + S4
� R6

]

⎡
⎣

∫ −τ1
−τ(t)

∫ t+θ

t−τ(t) ẋ(s)dsdθ∫ −τ(t)
−τ2

∫ t+θ

t−τ2
ẋ(s)dsdθ

⎤
⎦ . (27)

When τ(t) = τ1 or τ(t) = τ2, we have∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ(s)dsdθ

=
∫ −τ1

−τ(t)

∫ t−τ1

t+θ

ẋ(s)dsdθ = 0 or

∫ −τ(t)

−τ2

∫ t−τ(t)

t+θ

ẋ(s)dsdθ

=
∫ −τ(t)

−τ2

∫ t+θ

t−τ2

ẋ(s)dsdθ = 0

respectively. Therefore, the conditions (26) and (27)
still hold.
For any appropriately dimensioned symmetric matrix
G, the following equation holds:

2
[
xT (t) + ẋ T (t)

]
G [−ẋ(t) + Ax(t)

+ B(K + �K (t))x(t − τ(t)) + Df (x(t), t)] = 0,
(28)

Now, by using the fact that 2aT b ≤ εaT a + ε−1bT b
for any real vectors a, b and a positive scalar ε, as well
as positive scalars ε1, ε2 and equation FT (t)F(t) ≤ I ,
we have:

2xT (t)GBEF(t)Hx(t − τ(t))

≤ xT (t)(ε1GBEET BT G)x(t)

+ xT (t − τ(t))ε−1
1 HT Hx(t − τ(t)) (29)

2ẋ T (t)GBEF(t)Hx(t − τ(t))

≤ ẋ T (t)(ε2GBEET BT G)ẋ(t)

+ xT (t − τ(t))ε−1
2 HT Hx(t − τ(t)). (30)

From (15)–(30) and the Schur complement, we have

LV (t) ≤ ηT (t)

{
Ω − Γ T

1 (t)

[
R5 S1 + S2
� R5

]
Γ1(t)

−Γ T
2 (t)

[
R6 S3 + S4
� R6

]
Γ2(t)

}
η(t),

where

Γ1(t) =
[
0 0 0 0 (τ (t) − τ1) 0 0 0 0 −In 0 0 0 0
0 0 0 0 0 0 (τ2 − τ(t)) 0 0 0 −In 0 0 0

]
,

Γ2(t) =
[
0 0 0 0 0 0 −(τ (t) − τ1) 0 0 In 0 0 0 0
0 0 0 0 0 −(τ2 − τ(t)) 0 0 0 0 0 0 In 0

]
.

Furthermore, the condition that

Ω − Γ T
1 (t)

[
R5 S1 + S2
� R5

]
Γ1(t)

− Γ T
2 (t)

[
R6 S3 + S4
� R6

]
Γ2(t) < 0 (31)

is intrinsically linear in τ(t) from the Schur comple-
ment and lemma as

⎡
⎣Φ(t) 
T

1 
T
2

� −T1 0
� � −T2

⎤
⎦ < 0,

where

Φ(t) =
⎡
⎣ Ω 2Γ1(t)W1 2Γ2(t)W2

� −2W1 0
� � −2W2

⎤
⎦+

⎡
⎣ Γ T

1 (t)
02n
02n

⎤
⎦ 
1

+ 
T
1

⎡
⎣ Γ T

1 (t)
02n
02n

⎤
⎦
T

+
⎡
⎣ Γ T

2 (t)
02n
02n

⎤
⎦ 
2+
T

2

⎡
⎣ Γ T

2 (t)
02n
02n

⎤
⎦
T

.

Pre- and post-multiplying matrix Φ(t) by diag{G−1,

I,G−1, I,G−1,G−1,G−1,G−1,G−1,G−1,G−1, I,
G−1, G−1,G−1,G−1,G−1,G−1,G−1,G−1}, with
G̃ = G−1, Q̃1 = G−1Q1G−1, Q̃2 = G−1Q2G−1,

Q̃3 = G−1Q3G−1, R̃1 = G−1R1G−1, R̃2 =
G−1R2G−1, R̃3 = G−1R3G−1, R̃4 = G−1R4G−1,

R̃5 = G−1R5G−1, R̃6 = G−1R6G−1, S̃1 =
G−1S1G−1, S̃2 = G−1S2G−1, S̃3 = G−1S3G−1,

S̃4=G−1S4G−1, S̃5=G−1S5G−1, S̃6 = G−1S6G−1,


̃11 = G−1
11G−1, 
̃12 = G−1
12G−1. There-
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fore, (31) can be treated non-conservatively by two cor-
responding boundary LMIs (11): one for τ(t) = τ1 and
the other for τ(t) = τ2, which imply LV (t) < 0. This
completes the proof.

Ifwe consider someuncertainties in the systempara-
meter of (6), it can be written as:

ẋ(t) = [A + γ (t)�A(t)]x(t) + B[K + γ (t)�K (t)]
× x(t − τ(t)) + Df (x(t), t), x(0) = x0.

(32)

The real-valued matrices �A(t) and �K (t) represent
the parameter uncertainty that satisfies

[
�A �K

] = EF(t)
[
H1 H2

]
, (33)

where, E, H1 and H2 are known constant matrices
and the time-varying nonlinear function F(t) satisfies
FT (t)F(t) ≤ I.

To account for the phenomena of randomly occur-
ring uncertainties, we introduce a stochastic vari-
able γ (t) which is a mutually independent Bernoulli-
distributed white sequence. A natural assumption of
γ (t) is as follows:

Prob{γ (t) = 1} = γ, Prob{γ (t) = 0} = 1 − γ

where γ ∈ [0, 1] is known constant.

Theorem 2 Given scalars 0 ≤ τ1 ≤ τ2, γ , system
(6) is asymptotically stable if there exist matrices P̌ >

0, Q̌i > 0, i = 1, 2, 3, Ťi > 0, W̌i > 0, i =
1, 2, Ři > 0, Ši > 0, i = 1, 2, . . . , 6 and 
̌1, 
̌2

with appropriate dimensions such that the following
conditions hold:

⎡
⎣ Φ̌1 
̌T

1 
̌T
2

� −Ť1 0
� � −Ť2

⎤
⎦ < 0, (34)

⎡
⎢⎢⎣
2Ř5 0 Š1 0
� R̃5 0 Š2
� � 2Ř5 0
� � � Ř5

⎤
⎥⎥⎦>0,

⎡
⎢⎢⎣
2Ř6 0 Š3 0
� Ř6 0 Š4
� � 2Ř6 0
� � � Ř6

⎤
⎥⎥⎦ > 0, (35)

[
Ř3 + τ212 Ř5 Š5

� Ř3 + τ212 Ř5

]
>0,

[
Ř4 Š6
� Ř4

]
> 0, (36)

where

Φ =
⎡
⎢⎣

Ω 2Γ1(t)W̌1 2Γ2(t)W̌2

� −2W̌1 0
� � −2W̌2

⎤
⎥⎦

+
⎡
⎣Γ T

1 (t)
02n
02n

⎤
⎦ 
̃1 + 
̌T

1

⎡
⎣Γ T

1 (t)
02n
02n

⎤
⎦
T

+
⎡
⎣Γ T

2 (t)
02n
02n

⎤
⎦ 
̌2 + 
̌T

2

⎡
⎣Γ T

2 (t)
02n
02n

⎤
⎦
T

,

Ť1 =
[
3Ř5 Š1 + Š2
� 3Ř5

]
, Ť2 =

[
3Ř6 Š3 + Š4
� 3Ř6

]

and Ω = [Ωi j ]16×16, Γ1, Γ2, W̌1 and W̌2 are defined
as

Ω1,1 = Q̌1 + Q̌2 + Q̌3 −
(
Ř1 + π2

4
Ř1

)

−
(
Ř2 + π2

4
Ř2

)

+ AǦ + Ǧ AT + τ 212 Ř5 + ρα2
1

+ γ ε−1
1 HT

1 H1 + γ ε−1
2 HT

1 H1,

Ω1,2 =γ BE, Ω1,3=γ E, Ω1,4= P̌−Ǧ + AǦ,

Ω1,7 = −
(

π2

4
Ř1− Ř1

)
,Ω1,8=−(

π2

4
Ř2− Ř2),

Ω1,10 = π2

2
Ř1, Ω1,11 = π2

2
Ř2, Ω1,16 = D,

Ω2,2 = − 1

ε1
,Ω3,3=−1

ε2
,Ω4,4=τ 21 Ř1 + τ 22 Ř2

+ τ 212 Ř3 + τ 412

4
Ř5

+τ 412

4
Ř6 − 2Ǧ, Ω4,5 = γ BE,

Ω4,6 = γ E,Ω4,9= BK ,Ω4,16=D,Ω5,5=−1

ε3
,

Ω6,6 = −1

ε4
, Ω7,7 = −Q̌1 −

(
Ř1 + π2

4
Ř1

)
,

Ω7,10 = π2

2
Ř1, Ω8,8 = −Q̌2 −

(
Ř2 + π2

4
Ř2

)
,

Ω8,11 = π2

2
Ř2,Ω9,9 =−(1−μ)Q̌3+γε−1

3 HT
2 H2

+ γ ε−1
4 HT

2 H2, Ω10,10 = −π2 Ř1,

Ω11,11 = −π2 Ř2, Ω12,12=−Ř4, Ω12,13 = −Š6,
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Ω13,13 = −Ř4, Ω14,14 = −Ř4 − τ 212

2
Ř5,

Ω14,15 = −Š5,

Ω15,15 = −Ř4 − τ 212

2
Ř5, Ω16,16 = −ρ I

Γ1 =
[
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In
0n 0n 0n 0n 0n 0n 0n 0n τ12 In 0n 0n 0n

0n 0n 0n 0n
−In 0n 0n 0n

]
,

Γ1 =
[
0n 0n 0n 0n 0n 0n τ12 In 0n 0n 0n 0n −In
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n

0n 0n 0n 0n
−In 0n 0n 0n

]
,

Γ2 =
[
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In
0n 0n 0n 0n 0n 0n 0n −τ12 In 0n 0n 0n 0n

0n 0n 0n 0n
0n 0n In 0n

]
,

Γ2 =
[
0n 0n 0n 0n 0n 0n 0n 0n −τ12 In 0n 0n In
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n

0n 0n 0n 0n
0n 0n In 0

]
,

W̌1 =
[
Ř5 0
� Ř5

]
, W̌2 =

[
Ř6 0
� Ř6

]
.

Moreover, if the above condition is feasible, a desired
controller gain matrix is given by K = LǦ−1.

Proof Consider the Lyapunov–Krasovskii functional
defined by

V (t) =
7∑

i=1

Vi (t),

where, Vi (t), i = 1, 2, . . . , 7 are defined as in Theo-
rem 1. For any appropriately dimensioned symmetric
matrix G, the following equation holds:

E

{
2

[
xT (t)+ ẋ T (t)

]
G

[−ẋ(t)+(A+γ (t)�A(t))x(t)

+ B(K + γ (t)�K (t))x(t−τ(t))+Df (x(t), t)
]}=0,
(37)

Now by using the fact that 2aT b ≤ εaT a + ε−1bT b
for any real vectors a, b and a positive scalar ε, as well

as positive scalars ε1, ε2, ε3, ε4 and FT (t)F(t) ≤ I ,
we have:

E{2γ (t)xT (t)GEF(t)H1x(t)}
≤ E{γ (t)xT (t)(ε1GEETG)x(t)

+ γ (t)xT (t)ε−1
1 HT

1 H1x(t)} (38)

E{2γ (t)ẋ T (t)GEF(t)H1x(t)}
≤ E{γ (t)ẋ T (t)(ε2GEETG)ẋ(t)

+ γ (t)xT (t)ε−1
2 HT

1 H1x(t)} (39)

E{2γ (t)xT (t)GBEF(t)H2x(t − τ(t))}
≤ E{γ (t)xT (t)(ε3GBEET BT G)x(t)

+ γ (t)xT (t − τ(t))ε−1
3 HT

2 H2x(t − τ(t))} (40)

E{2γ (t)ẋ T (t)GBEF(t)H2x(t − τ(t))}
≤ E{γ (t)ẋ T (t)(ε4GBEET BT G)ẋ(t)

+ γ (t)xT (t − τ(t))ε−1
4 HT

2 H2x(t − τ(t))}. (41)

From (15)–(30) and by using the above equations sim-
ilarly as in the proof of Theorem 1, we can obtain

E{LV (t)}≤E

{
ηT (t)

{
Ω − Γ T

1 (t)

[
R5 S1+S2
� R5

]
Γ1(t)

−Γ T
2 (t)

[
R6 S3 + S4
� R6

]
Γ2(t)

}
η(t)

}
, (42)

where

Γ1(t) =
[
0 0 0 0 0 0 (τ (t) − τ1) 0 0 0 0
0 0 0 0 0 0 0 0 (τ2 − τ(t)) 0 0

−In 0 0 0 0
0 −In 0 0 0

]
,

Γ2(t) =
[
0 0 0 0 0 0 0 0 −(τ (t) − τ1) 0 0
0 0 0 0 0 0 0 −(τ2 − τ(t)) 0 0 0

In 0 0 0 0
0 0 0 In 0

]
.

Furthermore, the condition that

Ω − Γ T
1 (t)

[
R5 S1 + S2
� R5

]
Γ1(t)

−Γ T
2 (t)

[
R6 S3 + S4
� R6

]
Γ2(t) < 0 (43)
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is intrinsically linear in τ(t) from the Schur comple-
ment and lemma as

⎡
⎣Φ(t) 
T

1 
T
2

� −T1 0
� � −T2

⎤
⎦ < 0,

where

Φ(t) =
⎡
⎣ Ω 2Γ1(t)W1 2Γ2(t)W2

� −2W1 0
� � −2W2

⎤
⎦

+
⎡
⎣ Γ T

1 (t)
02n
02n

⎤
⎦
1 + 
T

1

⎡
⎣ Γ T

1 (t)
02n
02n

⎤
⎦
T

+
⎡
⎣ Γ T

2 (t)
02n
02n

⎤
⎦
2 + 
T

2

⎡
⎣ Γ T

2 (t)
02n
02n

⎤
⎦
T

.

Pre- and post-multiplying matrix Φ(t) by diag{G−1,

I,G−1, I,G−1, I, I,G−1,G−1,G−1,G−1,G−1,G−1,

I,G−1, G−1,G−1,G−1,G−1,G−1,G−1,G−1},with
Ǧ = G−1, Q̌1 = G−1Q1G−1, Q̌2 = G−1Q2G−1,

Q̌3 = G−1Q3G−1, Ř1 = G−1R1G−1, Ř2 =
G−1R2G−1, Ř3 = G−1R3G−1, Ř4 = G−1R4G−1,

Ř5 = G−1R5G−1, Ř6 = G−1R6G−1, Š1 =
G−1S1G−1, Š2 = G−1S2G−1, Š3 = G−1S3G−1,

Š4 = G−1S4G−1, Š5 = G−1S5G−1, Š6 = G−1

S6G−1, 
̌11 = G−1
11G−1, 
̌12 = G−1
12G−1.

Therefore (43) can be treated non-conservatively by
two corresponding boundary LMIs (34): one for τ(t) =
τ1 and the other for τ(t) = τ2, which imply E{LV (t)}
< 0. This completes the proof.

Remark 1 From the application point of view, it is of
great significance to investigate stability with uncer-
tainty for system (6). Randomly occurring uncertain-
ties have been introduced to deal with uncertain para-
meters that vary in a random manner. Therefore, in
this paper, we have studied asymptotic stabilization
of system (6) with randomly occurring uncertainties.
Random variable γ (t) that satisfies E{γ (t)} = γ and
E{(γ (t)−γ )2} = γ (1−γ ), is used to model the prob-
ability distribution of the randomly occurring uncer-
tainties, which was introduced in [29].

Remark 2 In [25], the problem of non-fragile synchro-
nization of neural networks with time-varying delay
and randomly occurring controller gain fluctuations
was addressed. The problem of robust sliding mode
control for discrete stochastic systems with mixed

time delays, randomly occurring uncertainties and ran-
domly occurring nonlinearities has been investigated
in [40]. Robust non-fragile decentralized controller
design for uncertain Large-scale interconnected sys-
tems with time delays was investigated in [41]. In [42],
the authors addressed fuzzy filtering with randomly
occurring parameter uncertainties with interval delays
and channel fadings.

In the literature, many control methods have been
developed for offshore structures such as sliding mode
control, optimal tracking control, active vibration H∞
control, and multi-loop feedback control to improve
the performance of the structure. Sliding mode con-
trol with mixed current and delayed states for offshore
steel jacket platforms was considered in [43]. Optimal
tracking control problem with feedforward compensa-
tion for offshore steel jacket platformswith activemass
damper was studied in [44]. However, investigation on
stabilization of offshore platforms with uncertainties
through a non-fragile controller has yet to be found
in the literature. Motivated by the above discussion, a
robust non-fragile controller for asymptotic stability of
the offshore steel jacket platform, which is different
from other existing literature, has been developed in
this paper.

5 Numerical simulations

In this section, a numerical example is given to demon-
strate the effectiveness of the proposed control scheme.
We consider two cases. Case 1 discusses the result of
the conventional system, while case 2 deals with the
system with random occurring uncertainties.

We consider an offshore steel jacket platforms
with the following parameter values: the wave height
is 12.19 m, the wave length is 182.88 m, and the
depth of the water is 76.2 m. The TMD parame-
ters are mT = 469.4836 kg, ωT = 1.8180 rps, ξT =
0.15, KT = 1551.5 andCT = 256.Thedensity of steel
is 7730.7kg/m3, the density of water is 1025.6 kg/m3,

the weight of the concrete deck is 6672300N and the
current velocity at the water surface is 0.122 m/s. The
natural frequencies of the first two modes of vibra-
tion are assumed to be Ω1 = 1.818 rps and ω2 =
10.8683 rps, respectively. The structural damping in
each mode is assumed to be 0.5%. The first- and
second-mode shape vectors are φ1 = −0.003445 and
φ2 = 0.00344628 respectively. Based on the above
settings, we can obtain matrices A and B as follows:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−3.3235 −0.0212 0.0184 0.0030 −5.3449 −0.8819

0 0 0 1 0 0
0.0184 0.0030 −118.1385 −0.1118 5.3465 0.8822

0 0 0 0 0 1
−0.0114 −0.0019 0.0114 0.0019 −3.3501 −0.5454

⎤
⎥⎥⎥⎥⎥⎥⎦

B = [
0 0.003445 0 −0.00344628 0 0.00213

]T
,

D =
[
0 1 0 0 0 0
0 0 0 1 0 0

]T
.

Let the wave frequency to be 1.8 rps. The nonlinear
wave force can be computed as in [8].
Case 1: In this case, we design a non-fragile controller
for the given system. By solving the LMIs in Theo-
rem 1, with τ1 = 0.3, τ2 = 0.5, F(t) = 0.9 sin(t),

E = [
0 0.15 0 0.15 0 0.15

]
(44)

andH=diag{−0.1, −0.1, −0.1, −0.1, −0.1, −0.1},
the following controller gain is obtained

K=104 × [ − 0.1247 0.0345 3.8983 1.3768 − 0.4356

−0.7681
]
.

When the designed control law is applied to the con-
sidered system, displacements of three floors of the sys-
tem and control responses of the system are shown in
Fig. 2.
Case 2: In this case, we consider randomly occurring
uncertainties which obey certainmutually uncorrelated
Bernoulli-distributed white noise sequences. The para-
meter uncertainties are defined (as follows) and the sto-
chastic variable is defined as γ = 0.1. By solving the
LMIs in Theorem 2, with τ1 = 0.3, τ2 = 0.5,

H1 = H2 = diag{−0.1, −0.1,

−0.1, −0.1, −0.1, −0.1}.
We can obtain the corresponding gain matrix as

K = 105 × [ − 0.9800 0.5673 1.4211 2.6547

− 0.7213 − 0.1072
]
.

When the designed control law is applied to the con-
sidered system, displacements of three floors of the sys-
tem and control responses of the system are shown in
Fig. 3. In Fig. 4, time evolutions of γ (t), which switch
between values 0 to 1, are in shown.

6 Conclusions

In this paper, we have designed a non-fragile con-
troller for an offshore steel jacket platform with ran-
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Fig. 2 State and control response of the nominal system
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Fig. 3 State and control response of the uncertain system
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Fig. 4 Time evolutions of γ (t); γ (t) switch from values 0 and 1
according to their expectations

domly occurring uncertainties. The randomly occur-
ring uncertainties in the underlying offshore structure
have been assumed to obey certain mutually uncor-
related Bernoulli-distributed white noise sequences.
Based on suitable Lyapunov–Krasovskii functional and
the second- order reciprocally convex approach, the
sufficient conditions have been derived in terms of
LMIs, which guarantee the asymptotic stability of the
offshore steel jacket platforms. It has been shown that
the design of a proper non-fragile controller is directly
accomplished by means of the feasibility of LMIs.
Finally, a numerical example is given to ascertain the
validity of the proposed results.
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