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Abstract Not only does the modeling of dynamical
systems, for instance the biological systems, play an
important role in the accurate perception and analysis
of these systems, but it also makes the prediction and
control of their behavior straightforward. The results of
multiple researches in the field of the modeling of bio-
logical systems have indicated that the chaotic behavior
is a prevalent feature of most complex interactive bio-
logical systems. Our results demonstrate that the arti-
ficial neural network provides us an effective means to
model the underlying dynamics of these systems. In
this paper, at first, we represent the results of the use
of a multilayer feed-forward neural network to model
some famous chaotic systems. The specified neural net-
work is trained with the return maps extracted from the
time series. We proceed with the paper by evaluating
the accuracy and robustness of our model. The ability

R. Falahian - M. Mehdizadeh Dastjerdi - M. Molaie -
S. Jafari (<) - S. Gharibzadeh

Department of Biomedical Engineering, Amirkabir
University of Technology (AUT), 424 Hafez Ave,
Tehran, Iran

e-mail: sajadjafari@aut.ac.ir

R. Falahian
e-mail: raziehfalahian @aut.ac.ir

M. Mehdizadeh Dastjerdi
e-mail: mmehdizadehd @aut.ac.ir

M. Molaie
e-mail: m.molaie @aut.ac.ir

S. Gharibzadeh
e-mail: gharibzadeh @aut.ac.ir

of the select neural network to model the dynamics of
chosen chaotic systems is verified, even in the presence
of noise. Afterwards, we model the brain response to
the flicker light. It is known that the brain response to
some stimuli such as the flicker light recorded as elec-
troretinogram is an exemplar of chaotic behavior. The
need remains, however, for realistic modeling of this
behavior of the brain. In this paper, we represent the
results of the modeling of this chaotic response by uti-
lizing the proposed neural network. The capability of
the neural network to model this specific brain response
is confirmed.

Keywords Artificial neural network - Bifurcation
diagram - Brain response - Chaotic behavior -
Electroretinogram - Modeling

1 Introduction

When we face with the problem of the description of
the behavior of real-world phenomena or systems such
as the biological systems, the employment of models is
inevitable. The models grant us responses to the ques-
tions about the behavior and characteristics of various
systems scrutinized under different conditions. The fast
advancements in the field of the modeling of dynamical
systems, for example the biological systems, which are
the result of numerous relevant investigations, are the
evidence of its fundamental importance. Biomedical
modeling refers to the utilization of various facilities,
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for instance the computer simulations, discrete mathe-
matics, and numerical methods to mimic the dynamical
behavior of biological systems. An extremely potent
platform is provided through the biomedical modeling
to improve the efficiency of the tasks and projects per-
formed in varied medical fields, for example the experi-
mentations, data acquisitions, knowledge transfers, and
technology development, as well as the examination
of the effectiveness and safety of medical devices and
drugs. Italso leads to the reduction in the dependency of
medical experimentations on human and animal stud-
ies and acceleration of the translation of basic science
into clinical medicine and treatment.

The term dynamics refers to the study of change, and
dynamical system is a brief term for stating how a sys-
tem of variables interacts and evolves with time [1]; for
instance, we may intend to comprehend the way can-
cer cells interact, grow, and divide in time, so we could
respond to the inquiries into the existence or expansion
of a cancer disease, such as “how resistant is the cancer
to some treatments” or “what happens if the dosages
of chemotherapeutic drugs increase or decrease about
10 %.” The majority of researches in various fields such
as the biological science, the economy, the stock mar-
ket, the climate models, or even the reactive or radioac-
tive chemicals in groundwater are conducted to reply
to analogous investigations. Although it seems that the
named systems, even all the existing systems, are dis-
tinct, some unique potent methodologies are gener-
ally utilized for their scrutiny. The theory of nonlinear
dynamical systems plays a vital role in the modeling of
complex phenomena.

Dynamical systems, for example the behavioral pat-
terns in biological systems, population dynamics in
biology, chemical kinetics in chemistry, and mechanics
in physics, are represented by a variety of mathemati-
cal models. These models possess the ability to describe
different phenomena whose instantaneous states alter
over time. The mathematical theory of dynamical sys-
tems has the fundamental aim of determining or char-
acterizing the long-term behavior of systems by using
the differential equation and iterative mapping analysis
methods. It appears that simple deterministic nonlin-
ear dynamical systems and even piecewise linear sys-
tems could surprisingly represent a quite unpredictable
behavior, almost similar to the random one. This par-
ticular behavior of systems is known as deterministic
chaos [2]. The theory of chaos was developed approx-
imately five decades ago and initially applied in the
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meteorology. The chaotic systems are characterized by
nonlinear representations whose long-term behavior is
sensitive to initial conditions. Although their behav-
ior may appear to be random, these systems are in fact
deterministic and repeatable if all conditions remain the
same. In the last decade, chaos theory has turned into
a popular analysis method of nonlinear data, for which
intractable solutions are produced using the majority
of mathematical models [3-6].

The complex patterns such as the chaotic ones are
widely observed when the behavior of biological sys-
tems, for example brain and heart, and their responses
to different internal and external stimuli are precisely
assessed [4,7-11]. This characteristic is the conse-
quence of complicated interactions within various com-
ponents of every biological system as well as with its
environment. The human brain response indicates the
remarkable inclusive competence of the brain in mak-
ing proper decisions through analyzing internal and
external stimuli in the form of transferred signals to
the mind/brain phase-space. During the past several
decades, scientists have discovered this phenomenon
and proposed some models based on computational,
biological, and neuropsychological methods. Despite
some advances in researches related to this area of brain
study, less effort has been devoted to realistically mod-
eling the complex nonlinear responses of the brain to
certain internal and external stimuli [12].

The visual system is one of the most sensitive and
intricate senses after the brain. There are about 125
million receptors, named rods and cones, in the retina
of each eye. The receptors are nerve cells, which emit
electrical signals when they are stimulated by the light
radiated from the scene observing. The information
about the observed scene, which includes the senses of
all its intricacies, for example the form, depth, move-
ment, color, and texture, is extracted from these electri-
cal signals through the analyses performed by the rest
of the retina and also the brain proper. The interaction
between the visual system and brain causes the system
to become more complicated [13].

The human eye could be considered a highly spe-
cialized luminance multidetector. As a result of spe-
cific anatomy and physiology of the eye, the human’s
visual perception might be disturbed by the alteration
in the visible light. The human’s visual perception of
the flickering light is affected by:

e Eye viewing field,
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e Some parts of eye anatomy such as the photore-
ceptors (rods and cones) and their dispersal at the
retina,

e Some parts of eye physiology such as the eye adap-
tation procedures, for instance the pupil, photo-
chemical and neural adaptation to the luminous
variations, including the modification of spectral
luminous efficiency of the photo-receptors.

The visual and flicker perception could be character-
ized on the basis of various features of visual stimuli,
specifically:

(1) Object and background luminance,

(2) Object and background luminance nonuniformity,
(3) Object and background contrast,

(4) Object and background light spectrum,

(5) Object size,

(6) Object location compared to the main axis of view.

The selection of these parameters is based on the fact
that the stimulation contrast and radiant density are both
of great importance. The flicker perception could be
affected by other characteristics of visual stimuli such
as [14]:

(1) The alterations in the luminance and color of the
stimuli with time,

(2) The movement or spatial changes of the stimuli in
the viewing field.

Although understanding the mechanism and character-
istics of the brain response to the flicker light could
improve the cognition of the visual system [15-17],
this brief explanation demonstrates its extreme com-
plexity. It appears that the brain response to some stim-
uli such as the flicker light is an example of chaotic
reaction [17-20]. This characteristic makes the mod-
eling of this response a particularly challenging task,
specifically owing to the lack of thorough knowledge
about this system. In this paper, we attempt to model
the chaotic response of the brain to the flicker light by
applying some electroretinogram (ERG) data.

The ERG represents the activity of retinal cells.
After stimulating the eye by the flicker light, the electri-
cal potential is produced in the retina. The flicker ERG
is an essential means not only for assessing the function
of the cone system in ocular diseases, but it also plays
a key role in the diagnosis of varying abnormalities
such as the schizophrenia, mood disorder, migraine,
and epilepsy [17,19-22].

The complexity and nonlinearity of the behavior of
bio-systems make its modeling a challenging task [23].
Artificial neural networks (ANNs) are computational
models inspired by the structure of central nervous
system, particularly the brain, and partially mimic its
emergent behavior. In comparison with the brain, the
function of ANNSs is extremely simplified; however,
their capacity to solve various nonlinear problems is
almost known to the researchers working on the model-
ing of systems with complex nonlinear behavior. Mul-
tilayer feed-forward neural networks (FNNs) are a kind
of ANN that possess the potentiality to solve complex
nonlinear functions and therefore are one of the popular
modeling techniques [24-33].

The results of numerous contemporary investiga-
tions in the biological science have indicated that
some famed chaotic systems, for example Logistic
Map, Lorenz and Rossler systems, characterize vary-
ing chaotic dynamics of bio-systems while considering
particular conditions for them, i.e., specific quantities
for their parameters [21,23,34—42]. In this paper, at
first, we represent the results of the modeling of cer-
tain chaotic systems, which are being observed as the
behavioral patterns of several bio-systems, by utiliz-
ing a multilayer FNN. One of our main objectives in
selecting the model was to propose a simple model,
without compromising the complex characteristics of
chaotic behavior. Our results verify that the specified
FNN has the capability to model the chosen chaotic sys-
tems, even in the presence of noise. We proceed with
the paper by evaluating the ability of the select multi-
layer FNN to model the chaotic response of the brain
to the flicker light. As it turned out, the proposed FNN
has the ability to model this complex behavior of the
brain. We describe the data and model in more details
in the next sections.

2 Materials and method
2.1 Brief introduction to under-study chaotic systems

On the contrary to what is expected, the outcomes of
recent scrutiny indicate that not only is the chaotic
behavior observed as a dynamic of complex systems,
but it could also be a possible dynamic of uncompli-
cated systems [43]; i.e., the chaotic dynamical systems
are widespread. The exemplars of such systems could
be spotted in almost every scientific field, including
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the biological science. In this paper, at first, we model
some popular chaotic systems observed as the behav-
ioral patterns of bio-systems. We classified under-study
systems into two main categories:

(1) Discrete chaotic systems (chaotic maps), including
Logistic map, Henon map, and Rulkov map. These
maps have been employed as models in researches
related to the electrocardiogram (ECG), neurons,
and tumor growth [23,34-36].

(2) Continuous chaotic systems (chaotic flows), includ-
ing Lorenz system and Rossler system. These
flows have been applied as models in investiga-
tions associated with the ECG, electroencephalo-
gram (EEG), kidney, neurons, tumor growth, and
chronotherapy [21,37-42].

We describe these systems in brief in this section.
1. Logistic Map: The logistic difference equation
described as

Xp+1 = axy (1 — xp) (D

is perhaps the most famous chaotic system [44-46].
Despite having just one control parameter, this map
could exhibit a variety of behavior, including the
chaotic one. Its chaotic template has been spotted in the
behavior of many biological systems, e.g., the heart and
brain, together with their responses to various internal
and external stimuli [35,47].
2. Henon Map: The Henon map written as

— 1 _ 2
Xpr1 =1 axy + yn
., 2)

Yn+1 = DX

is a discrete chaotic system introduced by Henon in
1976 [46]. This system has two control parameters, a
and b. In spite of its simplicity, the system depicts many
features of dynamical behavior of biological systems
such as the heart [35].

3. Rulkov Map: The Rulkov map represented by
the following difference equations

Xn+1 = _lfxz + Yn
" 3
Yn+1 = Yn — (xp — 0)
is a two-dimensional (2D) discrete chaotic system with
three control parameters, «, @, and o. This system,
which was proposed by Rulkov in 2001, has been
widely applied to the computational neuroscience since
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it could mimic the rich nonlinear dynamical behavior
of neurons [23,36].

4. Lorenz system: Lorenz chaotic system which
consists of three differential equations as follows

x =a(y —x)
y=x(r—z)—y )
Z=—bz+xy

originated from the work of Edward Lorenz in 1963.
This system has three control parameters, a, r, and b,
and two nonlinear terms, xz and xy. The dynamic of
the system, i.e. period-doubling cascades conducing to
the chaos, is observed in the brain, tumor growth, and
metastasis [37,40].

5. Rossler system: Rossler thought about chaotic
equations simpler than Lorenz system. He finally pre-
sented a 3D chaotic system with just one nonlinear term
in 1979 [48], as follows

X=-y—z
y=x+ay )
z=b4+z(x —¢)

This system demonstrates numerous characteristics of
dynamical behavior of biological systems such as the
brain and kidney [39,41,42]. The foresaid systems are
introduced in Table 1 in brief.

2.2 Artificial neural network model

The outcomes of researches performed by the use of
ANNS indicate that ANNs have the capability to solve
complex nonlinear problems. Among them, multilayer
FNNSs are being utilized further to model nonlinear sys-
tems [28,32]. With the aim of modeling the dynamics
of described chaotic systems, we manipulate a multi-
layer feed-forward neural network retaining four hid-
den layers with 7, 4, 8, and 5 neurons in the layers, as
shown in Fig. 1. In common with other ANN-based
researches [49,50], the hidden layers and the num-
ber of their neurons are selected via the trial-and-error
method. Hyperbolic tangent sigmoid (tansig) function
is chosen as the activation function of the hidden lay-
ers to help the network learn the nonlinear dynamics
of the chaotic systems, i.e., the relationships between
the inputs and outputs. The activation function of the
output layer is assigned linear (purelin function). The
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Tablg 1 Under-study System (dimension) Discrete/continuous  Equation Parameters
chaotic systems
system
Logistic Map (1D) Discrete Xp+1 = ax, (1 — xp) a
1 — a2
Henon Map (2D) Discrete Xnpt =1 —ax, + y, a and b
Yn+1 = bx,
Xnpl = o7 +
Rulkov Map (2D) Discrete mH = Ty T «and p and o
Ynt1 = Yn — p(xpy —0)
X =a(y—x)
Lorenz System (3D) Continuous y=x(r—z)—y a and r and b
z=—bz+xy
X=—-y—2
Rossler System (3D) Continuous y=x+ay a and b and ¢
z=b+z(x —0¢)
Fig. 1 Schematic of the Input Layer Hidden Layers Output Layer
multilayer feed-forward (depends on the
neural network proposed to svstem’s
model the chaotic systems dimension)
Xn-l

Xn-2

Control parameter

Hidden Layer 1

e
9‘ A\Y

Hidden Layer 2

@ s X,

Hidden Layer 3

Hidden Layer 4 Output Layer

SET T N T

time-delay samples are chosen to be the neural net-
work’s inputs, as illustrated in Fig. 1. The number of
FNN’s inputs equates to the dimension of the select
system plus one since we also consider one of the sys-
tem’s control parameters as the input. The current state
of the system, xy, is selected to be the neural network’s
output. Data points are generated from the equations of
chaotic systems. We train the neural network by the use
of the standard back-propagation (BP) learning algo-
rithm. All the simulations, whose results are presented
in the paper, are performed using the MATLAB soft-
ware (version 7.12).

In view of training the specified neural network, we
utilize the MATLAB command “newff,” which is rec-

ommended for training multilayer FNNs in particular
[51,52]. For every continuous system, we extract the
discrete time series (return map) by recording the suc-
cessive local maxima of one of the time variables, e.g.,
x(t). Afterwards, we plot the bifurcation diagram of
the continuous system using the extracted points. We
train the neural network with the bifurcation diagram of
every chaotic system. We represent the achieved results
in the next section.

2.3 Simulation results

We evaluate the proposed model by the use of several
discrete chaotic systems (Logistic, Henon, and Rulkov

@ Springer
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Fig. 2 Bifurcation diagrams of FNN model training and testing with logistic map (control parameter: a varying from 1 to 4)
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Fig.3 Bifurcation diagrams of FNN model training and testing with Henon map (control parameter: a varying from 0.5to 1.4, = 0.3)

maps) and continuous chaotic systems (Lorenz and
Rossler systems) previously described in essence. We
apply the designated FNN for all the simulations per-
formed.

Since the logistic map is a 1D map with one para-
meter, a, we consider one time-delay sample (xp—_1)
and the parameter, a, as the inputs and x, as the output
of the FNN. Figure 2 demonstrates the results of FNN
training and testing with the data extracted from the
logistic map.

We then assess the ability of our model by using 2D
Henon map owning two control parameters, a and b.
We consider two time-delay samples (x,—; and x,_»)

@ Springer

and one of the control parameters as the inputs and x,
as the output of the network. Figures 3 and 4 illustrate
the outcomes of FNN training and testing with the data
extracted from the Henon map.

Rulkov map is a 2D map with three control parame-
ters, o, i, and o. Thus, we regard two time-delay sam-
ples (xn—1 and x,_») and one of the control parameters
as the inputs and x;, as the output of the FNN. Figure 5
demonstrates the results of FNN training and testing
with the data extracted from this map when the control
parameter u is just considered as one of the inputs.

Although the achieved results verify that the pro-
posed FNN-based model could predict the dynamics of
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Fig. 4 Bifurcation diagrams of FNN model training and testing with Henon map (control parameter: b varying from —0.4 to 0.2,

a=14)
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-10
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Fig. 5 Bifurcation diagrams of FNN model training and testing with Rulkov map (control parameter: n varying from 1.15 to 1.35,

a=60=-1)

some nonlinear dynamical systems, we take the analy-
sis further and assess our model by utilizing certain
continuous chaotic dynamical systems.

The Lorenz system is a 3D system with three con-
trol parameters, a, r, and b, and two nonlinear terms. We
therefore regard three time-delay samples (xp,—1, xp—2,
and x;—3) and one of the control parameters as the
inputs and x; as the output of the FNN. Figure 6 depicts
the results of FNN training and testing with the data
extracted from this system when the control parameter
a is just considered as one of the inputs.

The Rossler system is a 3D system with three con-
trol parameters, a, b, and c. We therefore regard three
time-delay samples (xp—1, xn—2, and x,_3) and one of
the control parameters as the inputs and x,, as the output
of the FNN. Figures 7 and 8 demonstrate the results of
FNN training and testing with the data extracted from
this system when the control parameters b and c are
considered as the inputs.

The achieved results exhibited in this section vali-
date the capability of the proposed FNN-based model
to mimic the dynamics of various chaotic dynamical
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Fig. 6 Bifurcation diagrams of FNN model training and testing with Lorenz system (control parameter: a varying from 40 to 60,

b=28/3,c=28)
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14
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+  Real data

Fig. 7 Bifurcation diagrams of FNN model training and testing with Rossler system (control parameter: b varying from 0 to 1.5,

a=0.2,¢c=57)

systems. The outcomes of the assessment of the model
by comparing the variations of several samples of time
series of the specified systems and the ones generated
by the model validate our model as well.

2.4 Assessment of model robustness

In fact, the noise alters the majority of the data recorded
from varying dynamical systems such as the biologi-
cal systems. At the end of this section, we assess the
robustness of our model against noise. For this purpose,
we add white Gaussian noises with different signal-
to-noise ratios (SNRs) to the bifurcation diagrams of
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the specified systems. Figures 9, 10, 11, 12, and 13
represent the obtained results for Henon map. As an
example, it is demonstrated in Fig. 13 that even in the
presence of 25dB Gaussian noise, the proposed FNN
model could follow the attractor of Henon map.

3 Experiments
3.1 Electroretinogram data
Since the ERG data are not as conventional as the

electroencephalogram (EEG) and electrocardiogram
(ECG) data, in the first instance, we briefly explain
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Fig.8 Bifurcation diagrams of FNN model training and testing with Rssler system (control parameter: ¢ varying from O to 45,a = 0.2,

h=02)

1.2

1+

0.8

Fig. 9 Effect of white Gaussian noise (40 dB) on the bifurcation diagrams of FNN model training and testing with Henon map (control

parameter a, b = 0.3)

how it generates in the retina of a vertebrate. The com-
plex modulation of the visual information is accom-
plished through the successive procedures performed
in the retina such as the amplification, feedback, and
network adaptation processes carried out in the inner
retina, together with the anatomical convergence and
divergence of the neurons. The neurons, which sequen-
tially receive the visual information, are classified into
three categories:

(1) The photoreceptors, also known as the first-order
neurons: the amplification of the electrical signals
produced after the activation of photoreceptors by

2

3)

light makes their propagation to the following neu-
rons possible.

The ON and OFF bipolar cells and laterally inter-
acting horizontal cells, also known as the second-
order neurons: After the modulation of visual infor-
mation by these neurons, it is propagated to the
succeeding neurons.

The ganglion cells and signal-modulating amacrine
cells, also called the third-order neurons: The
spike-coded visual information is transmitted to
the lateral geniculate and thereafter to the visual
cortex via the optic nerve, i.e., the axons of the
ganglion cells [53,54].

@ Springer
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Fig. 10 Effect of white Gaussian noise (30 dB) on the bifurcation diagrams of FNN model training and testing with Henon map (control

parameter a, b = 0.3)
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Fig. 11 Effect of white Gaussian noise (25 dB) on the bifurcation diagrams of FNN model training and testing with Henon map (control

parameter a, b = 0.3)

It is known that significant alterations are occurring
in the ionic constitution of the extracellular fluid while
single neurons depolarize or hyperpolarize. As a conse-
quence of the specified variations within and along the
retinal neurons and along the Miiller cells, some elec-
troretinographic potentials are produced [55]. The spe-
cific electroretinographic potential, the ERG, is yielded
when certain stimulators such as the light flashes tem-
porarily transfigure the electrical current flow, and as
a result, the fast and slow components are observed in
the ERG. The resultant field potential could be recorded
from the cornea since it is transferred to the cornea and
even to the eyelids (in the attenuated form) through the
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passive volume conductors, e.g., the vitreous, lens, and
anterior chamber. Although the field potentials gener-
ated in this particular condition have small magnitudes,
less than 700 WV, as observed in Fig. 14, they have the
special characteristic of being recreated with the same
time and magnitude attributes in the similar circum-
stances. The registered ERG could demonstrate some
features of different constituents of the eye such as the
reaction to various flash intensities, the retinal ability
to adapt, the selective rod and cone contributions, and
On and Off methodologies [53,54].

Similar to the EEG and ECG, the diagnostic appli-
cations of the ERG, when it is recorded in its standard
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Fig. 13 Attractors of Henon map created while training and testing FNN model in the presence of 25dB white Gaussian noise

protocol, persuade the clinicians to register and analyze
this field potential in spite of its intrinsic complexity.
Some congenital or acquired retinal diseases alter the
ERG configuration as it is represented in Fig. 15. A
“Normal” dark-adapted ERG recorded when the eye
is being stimulated by an intense flash (as a result, a
mixed rod/cone signal is elicited) is illustrated in this
figure [53].

The brain is an extremely complex nonlinear sys-
tem, and therefore, its response to the flicker light,
recorded as the flicker ERG, has rich dynamics. One
of the significant characteristics of the flicker ERG that
has received little attention in the relevant researches

is its period-doubling cascades to chaos [17,19-21].
The period-doubling bifurcation, which occurs in some
nonlinear systems such as the biological systems, refers
to one of the conditions in which the dynamic of the
system switches to a new state [19]. In this bifurca-
tion, the time required for the motion of the system
to repeat itself doubles again and again while a para-
meter, which is describing the system, is changing
until the state of the system transforms from the reg-
ular periodic motion into the chaos. This pattern has
been observed in the human ERG as well as in the
ERG of animals, e.g., the salamander, rat, and rabbit

[19,20,56].
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oscillatory bipolars, glia

potentials
amacrines

200 uv

f

a-wave
photoreceptors
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Fig. 14 Exemplar of a light-adapted ERG waveform and its
principal components [53,54] (by permission of the author G.
Niemeyer)

hypernormal

nprmal
- . delayed

negative

Fig. 15 Sketch of the changes in the ERG waveform as a result
of some congenital or acquired retinal diseases [53,54] (by per-
mission of the author G. Niemeyer)

For recording the ERGs employed in our research
(provided by Professor Markus Meister), the retina of
a salamander was stimulated by the periodic square-
wave flashes. The ERGs were recorded under two dif-
ferent circumstances. In one of the recordings, the flash
frequencies, f, were changed in the range of 0-30Hz,
while its contrast, ¢, was constant. In another record-
ing, the flash frequency, f, was kept constant at 16 Hz,
while its contrast, ¢, was altered. The recorded ERG
signals were filtered at 1-1000Hz [17]. As shown in
Fig. 16, during stimulating the eye by the rapid flicker
(with some specific contrast and frequency attributes),
the brain dynamic is varying significantly from a stable
periodic state to a chaotic one. The variations of both
parameters lead to the change of the brain dynamic.

@ Springer

To model this highly nonlinear reaction, we apply
the recommended multilayer FNN since it appears that
it has the capability to model the dynamics of complex
nonlinear systems. We describe the employed FNN-
based model in detail in the next section.

3.2 Neural network structure

Various factors, for example the nature, type and size
of the data, the number of variables, and validation
method, have an influence on the optimum numbers
of hidden layers and their neurons. In order to model
the brain response to the flicker light, we choose the
numbers of hidden layers and their neurons via the trial-
and-error method, which is the most common strategy
while ANNs are being utilized. Based on the results
of trial-and-error method, we use the same multilayer
FNN (with four hidden layers and 7, 4, 8, and 5 neu-
rons in its layers) shown in Fig. 1. The same transfer
functions, hyperbolic tangent sigmoid (tansig) and lin-
ear (purelin) functions, are applied to the hidden layers
(to help the network learn the complex relationships
between the input and output) and output, respectively.

The number of inputs of the neural network is
selected on the basis of the estimated dimensions of the
data. By the use of the false nearest neighbor method,
we estimate the dimensions of the ERG data 3 (since the
amounts of false nearest neighbor decrease to below 0.1
for the dimension of 3 and the dimension values greater
than 3). We therefore choose three time-delay samples
(Xn—1, Xn—2, and x,_3) and one of the parameters, con-
trast or flash frequency, as the inputs of the network and
Xy (the current state) as its output. Considering the two
control parameters, contrast and flash frequency, the
dimensions of the described ERGs are calculated 3, as
it is clearly demonstrated in Figs. 17 and 18.

3.3 Simulation results

Based on our explanation in the previous section, with
the aim of modeling the brain response to the flicker
light, the identical multilayer FNN is selected to be our
model. For training this neural network, first, the max-
imum points are extracted from the time series (every
recorded ERG). Afterwards, the bifurcation diagram
of the extracted points (from the ERG) is plotted. The
optimal method for appraising a chaotic dynamical sys-
tem is through its bifurcation diagram, as recommended
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Fig. 17 By the use of the false nearest neighbor method, the
dimension of the ERG data is estimated 3 when the flash fre-
quency is the control parameter

by experts [57-59]. In order to train the neural net-
work with the achieved bifurcation diagram, we apply
“newff” command of the MATLAB software (version
7.12). We train the neural network by the use of the
back-propagation algorithm as well. For training the
neural network, we do not regard the parts of the ERG
data correlated with the transient response of the brain.

After training the neural network, we evaluate the
validity and accuracy of the suggested model. With the
aim of testing the model, various initial points extracted
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is constant (f = 16Hz) (right). For depicting the bifurcation
diagrams, the maxima of time series are extracted
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Fig. 18 By the use of the false nearest neighbor method, the
dimension of the ERG data is estimated 3 when the contrast is
the control parameter

from every bifurcation diagram (with desired resolu-
tions) are defined (as the inputs) for the neural network.
The accuracy of the estimated outputs confirms the
ability of the model to predict the dynamics of under-
study brain response. Figures 19 and 20 demonstrate
the results of FNN model training and testing while
the control parameters, contrast and flash frequency,
are changing. Figures 21 and 22 demonstrate the sam-
ples of time series of the real ERG data and the ones
generated by the model. The results of the comparison

@ Springer
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between the bifurcation diagrams generated by the pro-
posed model and the bifurcation diagrams of the ERG
data validate that the select neural network could fol-
low the dynamics of the brain response to the flicker
light, even while it is chaotic.

4 Concluding remarks

While the scientists around the world have been
advancing on the accurate cognition, analysis, mod-
eling, prediction, and control of different systems, it
becomes more perceptible that the nonlinear dynamics,
complex systems, and chaos theory have been closely
associated together; hence, they all have to be con-
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sidered cooperatively in the contemporary researches.
This union results in the expansion of their applications
in the engineering, economic, and sciences, specifically
the biological science. Recent fast significant devel-
opments in the biological and medical sciences have
been the result of substantial efforts devoted to pre-
cisely modeling the behavior of biological systems and
their responses to various stimuli. The principal com-
plications with delving into the biological systems are
their extreme nonlinearity and complexity. The results
of recent numerous investigations in the field of bio-
logical science have indicated that complex patterns
such as the chaotic ones are repeatedly perceived in the
behavior of bio-systems and their responses to different
internal and external stimuli when carefully assessed;
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i.e., in consequence of complicated interactions within
various components of these systems as well as with
their environments, these systems behave in complex
nonlinear ways. These features make the modeling of
biological systems convoluted.

The results of our investigation, represented in this
paper, confirm that the specified FNN possesses the
potentiality to model the chaotic response of the brain to
the flicker light. The chaotic pattern could be observed
when the responses of the brain to some stimuli such
as the flicker light are recorded. With the aim of mod-
eling this response of the brain, we employ some ERG
data recorded from the salamander’s retina while being
stimulated by periodic square-wave flashes. The ERGs

were recorded in two diverse circumstances: constant
contrast, ¢, and variable flash frequencies, f, and vice
versa. In view of evaluating the accuracy and validity
of our model, at first, we have modeled some famous
chaotic systems and then assessed the robustness of our
model against noise. One of our points in selecting the
model was to keep our model simple, without compro-
mising the realistic behavior. The distinctive character-
istic of our modeling method, which makes it dominant
within the modeling techniques, is training the select
neural network with the return map extracted from the
under-study time series.

Based on the achieved outcomes of our scrutiny, in
summary, we could conclude that:

(1) The neural network models have the potential to
reflect some dynamics of complicated nonlinear
systems, for instance the biological systems, while
their bifurcation diagrams are utilized.

(2) The FNN-based model is robust against noise, as
we have assessed this feature of our model in this

paper.

(3) For the assessment of the modeling results, specif-
ically their proximity to the behavior of the select
system, the bifurcation and attractor diagrams
could be employed.
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