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Abstract In this paper, we present a new scheme for
the secured transmission of discrete information based
on hyperchaotic discrete dynamics. The system is a
modified-Henon hyperchaotic discrete-time oscillator
considered as transmitter and a delayed step-by-step
observer used as receiver. The transmitter parameters
play the role of secret keys of the transmission scheme.
To increase the robustness of the secure data transmis-
sion against knownplain-text attacks, themessage to be
sent is encrypted by additional secret keys and inserted
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by inclusionmethod in the chaotic discrete-time system
dynamics. By this way, the parameters used as secret
keys cannot be identified with usual techniques. Sim-
ulation results are presented to highlight the perfor-
mances of the proposedmethod.Oneof themain contri-
butions of this paper is to demonstrate the feasibility of
discrete realization of a chaotic observer-based secured
transmission scheme. Indeed, experimental implemen-
tation results usingArduinoUnoboard validate the pro-
posed approach, since it exhibits good performances of
throughput and cost in terms of resources used.

Keywords Hyperchaotic oscillator · Step-by-step
observer · Robustness · Chaotic synchronization ·
Arduino Uno board

1 Introduction

Synchronization of chaotic or hyperchaotic dynamics
has received a lot of attention in the last decades [1,2].
This interest is increased by practical applications in
different fields, particularly in secure/private commu-
nications [3–5]. Many different methods have been
presented for the synchronization of chaotic systems
with linear or nonlinear feedback control [6,7], adap-
tive control [8], passive control [9], impulsive control
[10] or observer approach [11]. Due to its great poten-
tial in secure/private communications domain, the gen-
eration of hyperchaos has recently become a focal topic
for research [12,13].
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It should be noted that most of the works on
the secure/private communications based on the syn-
chronization of chaotic or hyperchaotic systems have
been devoted to dynamical systems in continuous time
[14,15], whereas in many cases, the systems are pre-
ferred to be in real time and in discrete time. Another
disadvantage of the classical chaotic or hyperchaotic
systems is the use of complex electronic systems made
of analog electronic components that involve op-amps,
resistors, capacitors and diodes. Often, this complexity
leads to a tedious implementation [16]. The new trend
is therefore to derive discrete models which faithfully
represent the dynamics of such systems. This is mainly
due to two reasons. The first is that, in practice, mea-
surements are usually carried out at specific time inter-
vals. Secondly, digital simulations can be performed
easily and quickly either on a microcontroller [17–21]
or on a FPGA board [22].

In secure/private domain, it is known that, for the
chaos-based cryptosystem, the keys are usually the
chaotic system parameters. So, from a control theory
point of view, the possibility to reconstruct the keys for
chaos-based cryptosystem is equivalent to the possibil-
ity to identify the parameters of the chaotic system [4].
Consequently, a robust and reliable chaos-based cryp-
tosystem should be designed such that its parameters be
not identifiable. In this paper, solutions are provided to
propose an new robust secure data transmission based
on hyperchaotic synchronization. Here, the transmit-
ter is a discrete hyperchaotic modified-Henon system
and the receiver is a discrete step-by-step observer.
At the level of transmitter, the states of the discrete-
time hyperchaotic system are added to the message to
be transmitted. Then, the embedded message is intro-
duced by the inclusion method in the dynamics of the
discrete-time system to make its structure more com-
plex. By using this strategy, the number of parame-
ters is increased. Therefore, the system becomes robust
against known-plaintext attacks.

In this work, we have chosen to show the experimen-
tal feasibility of our approach. Here, we have realized
an implementation of a secure digital data transmis-
sion system based on the synchronization of chaotic
systems using two Arduino Uno boards. To the best
of our knowledge, in the discrete case, this type of
implementation has not been done in the literature;
there are only implementations of chaotic oscillators
using microcontrollers [19,20], and FPGAs [22]. The
choice of the Arduino Uno board is motivated by the

advantages that it offers. It exhibits good performances
of throughput and cost in terms of resources used. In
addition, the use of an Arduino simplifies the amount
of hardware and software development necessary to get
a system running. On the software side, Arduino pro-
vides a number of libraries to make programming the
microcontroller easier. The simplest of these are func-
tions to control and read the I/O pins rather than having
to fiddle with the bus/bit masks normally used to inter-
face with the Atmega I/O (This is a fairly minor draw-
back). Also, note that, board programming microcon-
trollers are far more simpler compared to older existing
implementations [19,20,22]. In our work, transmission
scheme is constructed around twoArduinoUno boards,
one of them acting as a transmitter and the other as a
receiver. Each board is connected to an individual com-
puter what permits to visualize the experimental results
of the transmitter and the receiver.

The work is organized as follows: In Sect. 2, the
principle of the proposedmethod is presented by study-
ing the transmitter and the receiver of the transmission
system. In Sect. 3, we expose the simulation results.
In Sect. 4, we study the robustness of the proposed
transmission scheme. Section 5 exposes the experi-
mental results of the proposed transmission scheme
into Arduino board. Finally, we give some concluding
remarks.

2 Description of the private transmission chain

In this work, a communication system based on the
hyperchaotic digital dynamical system is designed. The
global scheme of the proposed system for private digi-
tal communications is shown in Fig. 1. The developed
method is presented as follows:

2.1 Presentation of the transmitter

The discrete-time hyperchaotic system is the modified-
Henon’s map (see for example [23]). A simplified ver-
sion of the discrete system that we propose is:

⎧
⎨

⎩

x1(k + 1) = a − x22 (k) − bx3(k)
x2(k + 1) = x1(k)
x3(k + 1) = x2(k)

(1)

where x = [x1 x2 x3]T ∈ R
3 denotes the state vector.

Chaotic behavior of System (1) is obtained with para-
meters values a = 1.76 and b = 0.1. Initial conditions
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Fig. 2 Chaotic attractor of modified-Henon system

x1(0) = 1, x2(0) = 0.1 and x3(0) = 0.1 are chosen
inside the strange attractor basin.

The chaotic attractor is shown in Fig. 2, and the
states responses are shown in Figs. 3, 4 and 5. In pri-
vate communications, one of the main purposes is to
increase security. To do this, it is interesting to modify
System (1).

As shown in Fig. 1, the message m(k) to be sent is
encrypted using an encryption function which depends
on states x1(k) and x3(k) generated by System (1).
Finally, in order to preserve the chaotic behavior, the
encrypted message is introduced in the third dynamics
component of System (1). Thus, we obtain:

⎧
⎨

⎩

x1(k + 1) = a − x22 (k) − bx3(k)
x2(k + 1) = x1(k)
x3(k + 1) = x2(k) + mc(k)

(2)
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Fig. 3 State x1 response of modified-Henon system
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Fig. 4 State x2 response of modified-Henon system
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Fig. 5 State x3 response of modified-Henon system

where mc(k) is chosen equal to:

mc(k) = m(k) + cx1(k) + dx3(k) + ex21 (k) + f x23 (k)

+ gx1(k)x3(k) + hx21 (k)x3(k) (3)

with c, d, e, f, g and h being the new coefficients of
discrete-time hyperchaotic System (1). To preserve the
chaotic behavior of System (1), these parameters are
chosen with special care. In our case, we must respect
the following values: c ≤ 0.01, d ≤ 0.01, e ≤ 0.01,
f ≤ 0.01, g ≤ 0.01 and h ≤ 0.01.
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2.2 Presentation of the receiver

In this part, System (2)with output y(k) = x2(k) is con-
sidered. For the reception, based on the works of Bel-
mouhoub et al. [24] and Djemaï et al. [25], we design a
delayed discrete observer for System (2) with sampling
period T . In the following, some results on a delayed
discrete observer are given.

2.2.1 Some results of the observability matching
condition and left invertibility property

Consider the following nonlinear system:

{
x(k + 1) = f (x(k)) + p(x(k))w(k)
y(k) = h(x(k))

(4)

wherew(k) represents an unknown input, which can be
a perturbation, a fault, or in our case, a message. The
vector fields f, p : U ⊂ R

n → R
n and h : U ⊂ R

n →
R are assumed to be real-analytic. The output of System
(4) is transmitted to the receiver, which should generate
an output vector that converges asymptotically toward
the input vector of the transmitter. This constitutes the
left inversion problem. It is possible to design a delayed
discrete observer for System (4). For this, it is necessary
to satisfy some assumptions which are given below:

Assumption 1 A1 The states and the unknown per-
turbation are bounded,

A2 span {dh, d( f ◦ h), ..., d( f n−1 ◦ h)} is of rank n,
A3 ((dh)T , d( f ◦ h)T , ..., d( f n−1 ◦ h)T ).p = (0, ...,

0, θ)T

where θ is a nonzero function almost everywhere in
U ⊂ R

n → R. Assumption A3 is called observability
matching condition, it guaranties the left invertibility
property, i.e., the possibility of recovering all the states
and the message w(k) from y(k) and its iterations (see
[25] for more details).

In the following, we study the choice of the out-
put signal in order to guaranty the observability of the
system. Then, we explain that the message inclusion
verifies the left invertibility of System (2).

2.2.2 The proposed delayed discrete observer

Let us consider System (2) which can be rewritten in
the form of System (4). In what follows, we check the
validity of Assumptions A1, A2 and A3.

– All states and the message m(k) of the System (2)
are bounded. This ensures that Assumption A1 is
verified.

– Observability of System (2)
We study the weak local observability of System
(2). We calculate the observability matrix in the
neighborhood of the equilibrium point (0, 0, 0) of
System (2) as below:

O =
⎛

⎝
dh
d( f ◦ h)

d( f 2 ◦ h)

⎞

⎠ =
⎛

⎝
0 1 0
1 0 0
0 −2x2 −b

⎞

⎠ (5)

Since b �= 0, we find that rank(O) = 3. This
means that System (2) is locally weakly observ-
able. AssumptionA2 is verified. Then, the observer
given below allows to reconstruct all states of Sys-
tem (2). This motivates the choice of output y(k) =
x2(k).

– Observability matching condition of System (2)
In our case, we have:

p(x) =
⎛

⎝
0
0
1

⎞

⎠ (6)

Now, we calculate O.p as below

Op(x) =
⎛

⎝
0 1 0
1 0 0
0 −2x2 −b

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠

Op(x) =
⎛

⎝
0
0

θ = −b

⎞

⎠ (7)

Note that the value of θ is not equal to zero.
Then, the observabilitymatching condition given in
AssumptionA3 is verified. This explains the choice
of inserting method of the message m(k) into the
third dynamics of System (2). Then, the proposed
delayed discrete-time observer with a sampling
time T given below allows to reconstruct all states
and the transmitted message m(k) of System (2).

– Reconstruction of state x̂1:
From the second equation of System (2), we have:

x̂2(k + 1) = x̂1(k)

By applying one step delay on the output, we
deduce state x̂1 as it follows:

x̂1(k − 1) = y(k) = x1o(k − 1) (8)

– Reconstruction of state x̂3:
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From the first equation of System (2), we have also:

x̂3(k) = a − x̂1(k + 1) − x̂22 (k)

b
Now, let us apply two steps delays on the output.
Using Eq. (8), we obtain the state x̂3 as it follows:

x̂3(k − 2) = a − y(k) − y2(k − 2)

b
= x3o(k − 2)

(9)

– Reconstruction of message m̂(k):
From the third equation of System (2), we have:

m̂(k) = x̂3(k + 1) − x̂2(k) − cx̂1(k)

− dx̂3(k) − ex̂21 (k) − f x̂23 (k)

− gx̂1(k)x̂3(k) − hx̂21 (k)x̂3(k) (10)

Using Eqs. (8–10) and by applying three steps
delay, we obtain:

m̂(k − 3) = a − y(k) − y2(k − 2)

b
−y(k − 3) − cy(k − 2)

−d

(
a − y(k − 1) − y2(k − 3)

b

)

− ey2(k − 2)

− f

(
a − y(k − 1) − y2(k − 3)

b

)2

−gy(k − 2)

(
a − y(k − 1) − y2(k − 3)

b

)

−hy2(k − 2)

(
a − y(k − 1) − y2(k − 3)

b

)

= m0(k − 3) (11)

Subsequently, the observer equations are given by Eqs.
(8–11).

3 Simulation results

In the following, we present the simulation results
for the synchronization of System (2) exposed in
Sect. 2.1 and its observer exposed in Sect. 2.2. The
additional parameters c, d, e, f, g and h of the trans-
mission scheme are chosen as: c = d = e = f = g =
h = 0.001, and the message to send is a square signal
with amplitude equal to 0.1. In our simulation, we have
chosen the period T equal to 0.04 s.

Simulation results for recovering the two states
x1, x3 and the message m of the transmitter are shown
in Figs. 6, 8 and 10, respectively. Figures 7, 9 and 11
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Fig. 6 States time responses: x1 (transmitter) and x10 (receiver)
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Fig. 7 Synchronization error on the state x1
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Fig. 8 States time responses: x3 (transmitter) and x3o (receiver)

give the synchronization errors (between transmitter
and receiver) on states x1, x3 and message m, respec-
tively. As explained before, the reconstruction of the
two states is shown step-by-step, i.e., the first recon-
structed state is x1 and the second one is x3. Finally,
the message signal m is reconstructed after synchro-
nization of these states.

123



1926 H. Hamiche et al.

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

Time(s)

e 3
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Fig. 10 Messages: m (transmitter) and mo (receiver)
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Fig. 11 Synchronization error on the message m

This allows us to establish that error e1 = x1 − x̂1
vanishes after T = 0.04s which corresponds to the
delay of one step according to Eq. (8) (see Fig. 7). Error
e3 = x3 − x̂3 vanishes after 2T = 0.08s, which cor-
responds to a delay of two steps on the output accord-
ing to Eq. (9) (see Fig. 9). Finally, the message error
em = m − m̂ vanishes after 3T = 0.12 s which corre-
sponds to the delay of three steps according to the Eq.
(10) (see Fig. 11).

With regard to the obtained results, we can high-
light the advantage of delayed step-by-step observer.
Themajor advantage of this observer is the exact recon-
struction after a short delay, without any error, of the
states and the messages as shown in Figs. 7, 9 and 11. It
should be noted that other observers undergo the disad-
vantages of reconstruction errors. Moreover, the con-
vergence of the latter observers is asymptotic [13,26].

4 Performances of the proposed transmission
scheme

In this section, two important tests will be presented.
The first test concerns the robustness of the trans-
mission scheme against channel noise. In the second
test, we test the robustness of the transmission scheme
against the parameter mismatch of its chaotic systems.

4.1 Robustness against transmission noise

In this part, we study the impact of noise on the quality
of the recovered message. The message considered in
this part is the square signal described before. In the fol-
lowing, we consider an additive white Gaussian noise
(AWGN) noted η(t)with zero mean and standard devi-
ation equal to one, disrupting the transmitted signal.
Figures 12, 13 and 14, respectively, depict the recov-
ered message for different signal-to-noise ratio (SNR)
20, 30 and 40 dB. Through these results, we notice that
the message is well recovered from a SNR = 40dB.
This last value of SNR is chosen since in Alvarez et al.
[26], it is mentioned that for a practically viable chaotic
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Fig. 12 Originalmessage anddecryptedmessage in the presence
of noise for SNR= 20 dB
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Fig. 13 Originalmessage anddecryptedmessage in the presence
of noise for SNR = 30 dB
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Fig. 14 Originalmessage anddecryptedmessage in the presence
of noise for SNR = 40 dB

cryptography scheme, the recommended value of the
SNR is 40dB.

4.2 Key analysis

In what follows, we test the robustness of the proposed
transmission scheme. To do this, we evaluate the level
of the system security of this scheme by testing the sen-
sitivity of System (2) versus the variation of its para-
meters.

It should be emphasized that the most important
property of cryptographic systems is the existence of
a secret key which defines the level of security of the
cryptosystem. From a cryptographical viewpoint, the
initial conditions and the parameters of chaotic systems
may be used to define a secret key for the chaos-based
communication systems.

In our work, we suppose that the initial conditions
and the structure of System (2) are exactly known
by a non-authorized intruder. We assume that Pi :=
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x 1 with p1 =1.76

x 1  with p1 =1.76+10 −15

Fig. 15 State x1 of the modified-Henon system for small
changes (10−15) of parameter p1 = a
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Time(s)

x1 with p4=0.001

x1 with p4=0.001+10−14

I

Fig. 16 State x1 of the modified-Henon system for small
changes (10−15) of parameter p4 = d

(P1 = a; p2 = b; P3 = c; P4 = d; P5 = e; P6 =
f ; P7 = g, P8 = h) are the secret key. Here, our
goal is to determine the size s of the key space Ks =
[P1, P2, P3, P4, P5, P6, P7, P8] which represents the
finite set of all possible keys permitting to evaluate the
level of security produced by the secret key. Then, we
have to define the range of variation and the sensitivity
of each parameter Pi (for i = 1, . . . , 8). Assume that
the size r of the interval of variation of each parame-
ter Pi that leads to chaotic behaviors of hyperchaotic
System (2) is equal to 10−1. In order to evaluate the
sensitivity Si (for i = 1, . . . , 8) of each parameter
Pi , numerical simulations are conducted. The aim is to
determine the smallest parameter variation that gives us
two different chaotic behaviors or two different attrac-
tors when the rest of parameters are fixed. Figures 15
and 16, respectively, illustrate for example the sensi-
tivity of System (2) to small changes of its parameters
a and d. Table 1 summarizes these different resulting
values. Note that in our case, the size of the key space is:
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Table 1 Sensitivity to
parameters System Parameters Pi Sensitivity Si (Ni = s × S−1

i )

Transmitter:
Modified-Henon

p1 = 1.76 S1 = 10−15 N1 = 1014

p2 = 0.1 S2 = 10−14 N2 = 1013

p3 = 0.001 S3 = 10−15 N3 = 1014

p4 = 0.001 S4 = 10−15 N4 = 1014

p5 = 0.001 S5 = 10−15 N5 = 1014

p6 = 0.001 S6 = 10−15 N6 = 1014

p7 = 0.001 S7 = 10−15 N7 = 1014

p8 = 0.001 S8 = 10−15 N8 = 1014

r =
∏8

i=1
(Ni ) = 10(7×14)+(1×13) = 10111.

Relying on nowadays available computational power,
a key space of size O(2100) is generally required. Note
that in our case, we have r = 10111 � 2100, which
means that the key space produced enhances a largely
satisfactory level of security from a cryptographical
viewpoint.

5 Experimental results

5.1 Setup description

In this subsection, we present the proposed transmis-
sion schemewith hyperchaotic discrete-time oscillator.
The latter is realized by using an open-source Arduino
Uno prototyping platform made up of an Atmel AVR
processor (microcontroller). This realization is based
onflexible, easy-to-use hardware and softwareArduino
platform. The latter has 14 digital input/output pins,
six analog inputs, a 16MHz crystal oscillator, a USB
connection, a power jack, an ICSP header and a reset
button as shown in Fig. 17. In our work, we use two
Arduino Uno boards. The first acts as a transmitter and
the second as a receiver. The connection between the
transmitter and the receiver is provided by a cable. We
use two individual computers intended to facilitate the
visualization of different experimental results of trans-
mitter and receiver. This task is performed by the addi-
tion of two graphic interfaces written in JAVA, which
offers many advantages in real time.

Note that the microcontroller used on the Arduino
Uno board is a microcontroller ATMega328 [28]. It
belongs to the 8 bits-AVR family.

Fig. 17 Arduino Uno prototyping platform

Note also that the Arduino Uno board can be pro-
grammed in various ways [27]. In our work, we choose
the Integrated Development Environment (IDE) soft-
ware method which is given below.

Figure 18 gives a view of the experimental hardware
implementation and measurements of the modified-
Henon’s hyperchaotic signals.

5.2 Experimental results of the transmitter

The principle part of the program to be implemented,
which is known as “sketch,” is uploaded into themicro-
controller using IDEsoftware. TheArduinoUno is con-
nected to the computer through the USB port and pro-
grammed using the language “Wiring” which is similar
to C and C++ as shown by Fig. 19. The principle part
of the program implementation of the transmitter (2) is
given below:
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Transmission
channel

ReceiverTransmitter

Fig. 18 Photo of the experimental setting for hardware imple-
mentation and measurements of the modified-Henon’s hyper-
chaotic signals

Fig. 19 The connection of the Arduino Uno board

Begin
float a = 1.7600004;
float b = 0.100000;
float c = 0.100000;
float d = 0.100000;
float e = 0.100000;
float f= 0.100000;
float g = 0.100000;
float h = 0.100000;
float s1,d;
int Partie Entiere;
int tab[15];
int XoutPin = 5;
int YoutPin = 6;

float xout,yout = 0;
char inByte;
int rec = 0;
float s;
float x[15];
float y[15];
float z[15];
float m = 0.4;
const int buttonPin = 2; //Passage en mode d’affichage
du signal
int buttonState = 0;
boolean flag = 0;
const int buttonPin0=3; //Passage en mode d’affichage
du signal
int buttonState0=0;
boolean flag0 = 0;
const int analogInPin = A0;
int sensorValue = 0;
int outputValue = 0;
x[1] = 1.0;
y[1] = 0.1;
z[1] = 0.1;
m[1] = 0,4;
if (stringComplete) // Serial.println(inputString);
// clear the string:
while(1) function();
void function() for (int i = 1;i<=10;i++) if (i==10)
i = 1;
x[1] = x[10];
y[1] = y[10];
z[1] = z[10];
m[1] = m[10];
mc[i+1] = m[i] + c*x[i] + d*z[i] + e*pow(x[i],2)
+ f*pow(z[i],2) + g*x[i]*z[i]
+ h*pow(x[i],2)*z[i];
x[i+1] = a-pow(y[i],2)-(b*z[i]);
y[i+1] = x[i] ;
z[i+1] = y[i] + mc[i]; // z = oldy + mc;
s = y[i];
xout = -30 + (294*z[i]);
yout = 106 + (2650*y[i]);
xout = 1000*x[i];
yout = 1000*z[i];
analogWrite(XoutPin, xout);
analogWrite(YoutPin, yout);
sensorValue = analogRead(analogInPin);
outputValue = map(sensorValue, 0, 1023, 0, 255);
m = sensorValue/10000.0;
end.
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x1
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Fig. 20 Experimental result of the chaotic attractor of modified-
Henon system
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Fig. 21 Experimental results of the states and the transmitted
message at the level of the transmitter

Figures 20 and 21 exhibit the experimental results
of the chaotic attractor and the states responses, respec-
tively, of the modified-Henon system.

5.3 Experimental results of the receiver

In what follows, we assume that the channel is perfect
and that no distortion of the transmission message has
taken place.

The principle part of the program implementation
of the observer (see Eqs. 8–11) into Arduino board is
given below:

begin
float a = 1.760000;
float b = 0.100000;
float c = 0.100000;
float d = 0.100000;
float e = 0.100000;
float f = 0.100000;
float g = 0.100000;
float h = 0.1000004;
int value[15];
float x[15];
float y[15];
float z[15];
float mr[15];
int j = 1;
boolean flag = 0;
float s,r1,r2,r3,r4,r5,r6,r7,r8;
char inbyte;
for (int i = 2; i<=6;i++)
value[i] = ((value[i] * 0.1)+value[i-1]);
//fin de for
r6 = value[6];
r1 = value[1];
r2 = value[2]*0.1 + r1;
r3 = value[3]*0.01 + r2;
r4 = value[4]*0.001 + r3;
r5 = value[5]*0.0001 + r4;
r6 = value[6]*0.00001 + r5;
r7 = value[7]*0.000001 + r6;
r8 = value[8]*0.0000001 + r7;
if (flag == 0)r8 = r8;
else if (flag == 1 ) r8 = (0.0 − r8);
// xr[1] = 0.15;
// zr[1] = 0.1;
// mr[1] = 0.1;
y[j] = r8;
if(j >=1)
x[j-1] = y[j];
z[j-2] = (1/b)*(a-y[j]-pow(y[j-2],2));
mr[j-3] = (1/b)*(a-y[j]-pow(y[j-2],2)-b*y[j-3])
- y[j-3]-c*y[j-2]
- d*(1/b)*(a-y[j-1]-pow(y[j-3],2)-e*pow(y[j-2],2))
- f*(1/b)*(a-y[j-1]-pow(y[j-3],2))
- g*y[j-2]*(1/b)*(a-y[j-1]-pow(y[j-3],2))
- h*pow(y[j-2],2)*(1/b)*(a-y[j-1]-pow(y[j-3],2))
if (j==10)
j = 4;
y[4] = y[10];
y[3] = y[9];

123



Analysis and implementation of a novel robust transmission scheme 1931

Time

x 1
O
,x

2O
,x

3O
,m

O

Fig. 22 Experimental results of the states and the reconstructed
message at the level of the receiver
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Fig. 23 Experimental result of the phase portrait x1O versus x1

y[2] = y[8];
y[1] = y[7];
analogWrite(mr_outPin, mr[j-3]*1000);
end

Figure 22 shows the experimental results of the
states and the reconstructed message at the level of the
receiver.

Figures 23, 24 and 25, respectively, show the exper-
imental results of the phase portrait x1O versus x1, the
phase portrait x2O versus x2 and the phase portrait x3O
versus x3.

x
2

x 2
O

Fig. 24 Experimental result of the phase portrait x2o versus x2

x
3

x 3
O

Fig. 25 Experimental result of the phase portrait x3O versus x3

6 Conclusion

In this paper, we have presented a new transmission
scheme based on discrete hyperchaotic dynamical sys-
tem with high level of security. The proposed trans-
mission scheme uses a classical unidirectional syn-
chronization method based on a delayed step-by-step
observer, where its principal advantages lie in its sim-
plicity of implementation and its robustness to mea-
surement noise. The robustness of the transmission sys-
temwith respect to parameters variation and robustness
against transmission noise has been studied. Simula-
tions have been carried out to illustrate the effectiveness
of the proposed scheme. Experimental results are pre-
sented to check the validity of the proposed technique.
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Note that the real-time implementation of the trans-
mission scheme signals obtained is almost identical in
shape to those of the simulations ones and then vali-
dated. In addition, the implemented solution exhibits
good performances of throughput and cost in terms of
resources consumptions. In future works, we plan to
exploit our transmission scheme in order to transmit a
digital image.
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