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Abstract This paper examines the spatio-temporal
dynamics of a marine ecosystem. The system is
described by two reaction–diffusion equations. We
consider a phytoplankton–zooplankton system with
Ivlev-type grazing function. The dynamics of the
reaction–diffusion system of phytoplankton–
zooplankton interaction has been studied with both
constant and variable diffusion coefficients. Periodic
oscillations of the phytoplankton and zooplankton pop-
ulations are shownwith constant and variable diffusion
coefficients. In order to obtain spatio-temporal patterns,
we perform numerical simulations of the coupled sys-
tem describing phytoplankton–zooplankton dynamics
in the presence of diffusive forces. We explain how
the concentration of species changes due to local reac-
tions and diffusion. Our results suggest that patchiness
is one of the basic characteristics of the functioning
of an ecological system. Two-dimensional spatial pat-
terns of phytoplankton–zooplankton dynamics are self-
organized and, therefore, can be considered to provide
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1 Introduction

The stability of ecological systems, interactions, and
persistence of species in an ecosystem are the fun-
damental concerns of ecology. In this regard, there
has been ongoing research in the field of stability of
interactions for the last 40years. The formulation of a
marine ecosystem using mathematical models is quite
a difficult task. We generally consider different types
of differential equations to describe the dynamics of
such systems [1–4]. Prey–predator interaction is one
of the major areas of interest. Mathematical models
have been used to study these systems [5–8]. These
models have been used for prediction and analysis of
ecological phenomena.

Most of the ecological phenomena, including but
not limited to population dynamics, species abundance,
and individual behavior, exhibit spatial variation. Par-
tial differential equations could be used to model vari-
ous ecological phenomena [9]. Incorporation of diffu-
sion into the prey–predator equationsmade the systems
more realistic [10]. Reaction–diffusion equations were
used to describe such systems. Low diffusion values
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led a periodic Lotka–Volterra system to an aperiodic
system over time. It was also observed that the system
was sensitive to initial conditions of the system, and
diffusion induces chaos [11].

The effects of predator response functions were
studied by several researchers [12,13]. The stability
of the system was strongly dependent on the preda-
tor response function [14]. For ratio-dependent sys-
tems, local asymptotic stability does not necessarily
imply persistence and hence cannot imply global sta-
bility [15]. The system becomes unstable with dif-
fusion, and a Turing bifurcation was observed [16].
This ratio-dependent prey–predator model with diffu-
sion was taken forward by Wang and Qu [17]. They
also incorporated disease into the model.

Pattern formation, in prey–predator models, was
studied to show the instability driven by diffusion or
by dispersion. The system was described with two
reaction–diffusion equations. It was shown that, for a
wide range of initial conditions, the system led to the
formation of irregular patterns corresponding to spatio-
temporal chaos. The chaotic pattern was first observed
in the subdomain of the system. As time passes, the
chaotic pattern grows and eventually the entire space
becomes chaotic, completely replacing the regular pat-
tern [18].

Cross diffusion induces stationary patterns in the
models. These patterns may give greater insight into
the understanding of the dynamics of the ecosystem
[19]. Migration has a significant effect on the pattern
formation of the population. In the presence of migra-
tion, the Turing pattern changes to travelling pattern.
Both migration and diffusion lead to dynamical com-
plexity that is encountered in natural ecosystems [20].

Dormancy is considered to be a method of escaping
fromunfavorable environmental conditions.Dormancy
of predators is not a generator but an enhancer of spatio-
temporal Turing patterns in prey–predator reaction–
diffusion systems [21]. It was considered that the sta-
bility of the plankton ecosystem mainly depended on
the nutrient uptake rate by the phytoplankton and zoo-
plankton grazing rate, but nutrient recycling is an
important factor for the coexistence of the plankton
species [22].

Toxin production by phytoplankton plays an impor-
tant role in planktonic interactions and therefore in reg-
ulating planktonic blooms. The qualitative behaviors of
the models are likely to alter in the presence of toxin-
producing phytoplankton (TPP) and hence, whilemod-

elling plankton dynamics, the inhibitory effect of TPP
should be considered very carefully [23]. Zooplank-
ton should be more patchy than phytoplankton, a prop-
erty that is often seen in natural settings [24]. Periodic
toxin liberation by phytoplankton can be regarded as
a mechanism for plankton patchiness [25]. There are
subtle but relevant differences in the roles played by
phytoplankton and zooplankton in promoting patchi-
ness. The interaction between toxin-producing phyto-
plankton and zooplankton inmarine environments may
be partly driven by the forces of diffusion [26].

Eruption of algal bloom results from increasing the
nutrient concentration. Zooplankton only plays a role in
alleviating the scale of algal bloom. This could be used
to explain the mechanism of algal bloom occurrence in
many natural waters [27].

This paper is organized as follows. In Sect. 2, the
qualitative properties of the system are described, and
subsequently, the model is developed with diffusion
coefficients. In Sect. 3, the existence of coexisting equi-
librium is discussed, and the criterion for the stability
of the system is derived around coexisting equilibrium.
In Sect. 4, the dynamics of both the one-dimensional
and the two-dimensional reaction–diffusion systems
of phytoplankton–zooplankton interaction is studied.
Numerical simulation is carried out in Sect. 5. A brief
conclusion of the biological significance of our findings
is provided in the final section.

2 Qualitative properties of the system and model
formulation

We consider a two-component phytoplankton–
zooplankton model. The ecological setup of the sys-
tem is based on some major assumptions such as the
growth of phytoplankton is assumed to be modified
Leslie–Gower type [28,29]. This means that in the case
of severe scarcity of nutrient, phytoplankton can switch
over to other sources. But its growth will be limited
due to the fact that its most favorite source, nutrients,
is not available in abundance. This can be incorporated
by adding a positive constant to the denominator, and
hence, the growth function is considered to be mod-
ified Leslie–Gower type. Grazing of zooplankton on
phytoplankton is parametrized using the Ivlev func-
tion. Further, we have considered the impact of fish
on plankton dynamics without taking into account the
effect of plankton on the population dynamics of fish.
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Again, it is reasonable to consider a sigmoid functional
response which explains the fact that, at low densities
of zooplankton population, the effect of predation is
low, but if the zooplankton population size increases,
predation is thenmore intensive, i.e., the predator (fish)
is considered to be generalist. It is to be noted that the
loss term σ Z2(t)/(a2 + Z2(t)) represents the impact
of fish community as a whole.

Therefore, at any given location (X,Y ) and time
T , let us assume that the phytoplankton P(X,Y, T )

and zooplankton Z(X,Y, T ) populations satisfy the
reaction–diffusion equations given below:

dP

dt
= r P(t)

[
1 − P(t)

mN + K

]

−β[1 − e−αP(t)]Z(t) + DP�P(t), (2.1)
dZ

dt
= γβ

[
1 − e−αP(t)

]
Z(t)

−δZ(t) − σ Z2(t)

a2 + Z2(t)
+ DZ�Z(t). (2.2)

where DP and DZ are the diffusion coefficients of the
phytoplankton and zooplankton, respectively. α is the
Ivlev constant, and β is the rate of consumption of zoo-
plankton to the phytoplankton population. γ represents
the conversion efficiency of the consumed phytoplank-
ton into new zooplanktons, and a is the half capturing
saturation constant. m is the nutrient phytoplanktons’
conversion factor. K represents the residual loss in phy-
toplankton due to severe scarcity of nutrient N. The
mortality rate of the predator is denoted by δ, and σ is
the predation rate of the zooplankton by the fish popu-
lation.

We consider a domain in which the system is
bounded. We assume that the system has zero-flux
boundary condition, which means that the species can-
not leave the domain under consideration. We also
assume appropriate initial conditions. Without the
effect of diffusion, the system would be:

dP

dt
=r P(t)

[
1 − P(t)

mN + K

]
−β[1 − e−αP(t)]Z(t),

(2.3)

dZ

dt
=γβ

[
1 − e−αP(t)

]
Z(t)−δZ(t) − σ Z2(t)

a2 + Z2(t)
.

(2.4)

The model contains many parameters such as α and β,
all ofwhich are positive.WewriteEqs. (2.3) and (2.4) in
a dimensionless formby taking P(t) = (mN+K )u(t),
Z(t) = r(mN+K )

β
v(t) and r t = T .

For the sake of simplicity, let us assume that

b = γβ

r
, c = δ

r
, h = mN + K , θ = σβ

h
.

By applying these assumptions to the system, the sys-
tem gets reduced to:

du

dT
= u(1 − u) − v(1 − e−α′u),

dv

dT
= b(1 − e−α′u)v − cv − θ

h2v2

a2β2 + r2h2v2
,

where α′ = α(mN + K ). The phytoplankton and zoo-
plankton populations are denoted by u(x, y, T ) and
v(x, y, T ), respectively. c is the per capita death rate of
zooplankton. Again, for simplicity, we drop the tildas
and the equations become:

du

dT
= u(1 − u) − v(1 − e−αu), (2.5)

dv

dT
= b(1 − e−αu)v − cv − f θ, (2.6)

where f = h2v2

a2β2 + r2h2v2
.

The zero isoclines of the equations above are:

u(1 − u) − v(1 − e−αu) = 0, (2.7)

b(1 − e−αu) − c − f

v
θ = 0. (2.8)

3 Stability analysis

It would be appropriate to consider the local dynamics
of the system before moving on to numerical analysis
and spatio-temporal pattern formation. In this section,
we present the analytical analysis of the model system
without the effect of diffusion. This analysiswould help
us estimate the parameter ranges required for numerical
analysis.

3.1 Linear stability analysis

The system has the following equilibrium states:

1. Total extinction E0 = (0, 0)
2. Extinction of the zooplankton E1 = (P1, 0)
3. Non-trivial coexistence point E∗ = (P∗, Z∗)

The final state, the non-trivial equilibrium state E∗ in
which both zooplankton and phytoplankton coexist, is
the state we are most interested in.
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From Eq. (2.3), we get

r P∗
[
1 − P∗

mN + K

]
= β(1 − e−αP∗)Z∗.

This can be simplified to get an equation in terms of
Z∗,

Z∗ =
r P∗

[
1 − P∗

mN+K

]
β

(
1 − e−αP∗

) . (3.1)

We apply Taylor expansion to the exponential term in
Eq. (3.1),

Z∗ =
r P∗

[
1 − P∗

mN+K

]

β
(
αP∗ − α2P2∗

2

) . (3.2)

Substituting (3.2) in Eq. (2.4), we get a polynomial
for P .

A1P
3 + A2P

2 + A3P + A4 = 0, (3.3)

where

A1 = −γ r3

(mN + K )3
,

A2 = 3γ r3

(mN + K )2
,

A3 = 3a2β2γ rα2

(mN + K )
, A4 = γ r3 + a2β2γ rα2.

P∗ is the real positive root of the polynomial. Since all
the parameters are positive, we can conclude that A1 <

0 and A2, A4 > 0.Also, ifaβα > r , then A3 is positive.
Similarly, ifaβα = r oraβα < r , then A3 = 0 or A4 <

0, respectively. Therefore, the coexistence equilibria
exist conditionally.We now look into the local behavior
of the system of Eqs. (2.3) and (2.4) at each of the
three equilibrium points. The variational matrix V at
any point E(P, Z) is given by

V (P, Z)

=
[
r − 2r P

mN+K − αβze−αP β(e−αP − 1)

αβγ ze−αP γβ(1 − e−αP ) − δ − 2σa2z
(z2+a2)2

]

The eigenvalues of the variational matrix V at E0 are
λ1 = r and λ2 = −δ. Thus, the equilibrium point E0 is
a saddle point with unstable manifold along the X -axis
and stable manifold along the Y -axis.

The eigenvalues of the variationalmatrix V at E1 are
λ1 = −r and λ2 = γβ(1 − e−α(mN+K )) − δ. Hence,
the stationary point E1 is asymptotically stable if δ >

γβ(1 − e−α(mN+K )).

The characteristic equation corresponding to varia-
tional matrix V at E∗ is

λ2 − Aλ + B = 0

where

A =
[
r − 2r P∗

(mN + K )
−

rαe−αP∗ P∗
(
1 − P∗

(mN+K )

)
(1 − e−αP∗)

+γβ(1 − e−αP∗) − δ − σa2z

(a2 + z2)

]
,

B = a11a22 + βαγ r P∗
[
1 − P∗

(mN + K )

]
e−αP∗ ,

a11 =
[
r− 2r P∗

(mN + K )
−
rαe−αP∗ P∗

(
1− P∗

(mN+K )

)
(1 − e−αP∗)

]
,

a22 =
[
γβ(1 − e−αP∗) − δ − σa2z

(a2 + z2)

]
.

For the coexisting equilibrium point E∗ to be asymp-
totically stable, A < 0 and B > 0.

4 Plankton dynamics with diffusion

4.1 Constant diffusion

Let us now consider the effect of constant diffusion of
the plankton populations on the system. By adding dif-
fusion terms to the dimensionless Eqs. (2.5) and (2.6),
we get

du

dT
= u(1 − u) − v(1 − e−αu) + Du

∂2u

∂x2
, (4.1)

dv

dT
= b(1 − e−αu)v − cv − f θ + Dv

∂2v

∂x2
. (4.2)

Du and Dv represent the diffusion coefficients of
phytoplankton and zooplankton, respectively. For this
one-dimensional model system, we take the follow-
ing boundary conditions for the phytoplankton u(x, t)
and zooplankton v(x, t) populations in the interval
0 ≤ x ≤ L , L > 0:

∂u(0, t)

∂t
= ∂u(L , t)

∂t
= ∂v(0, t)

∂t
= ∂v(L , t)

∂t
= 0.

The linearized system of the above equations is:

du

dT
= fu X + fvY + Du

∂2u

∂s2
,

dv

dT
= gu X + gvY + Dv

∂2v

∂s2
,
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where X = X (s, T ) and Y = Y (s, T ) and

fu = 1 − 2u∗ − αve−αu∗ ,

fv = −(1 + e−αu∗),

gu = bv∗αe−αu∗ ,

gv = b(1 − e−αu∗) − c − θ

v∗
f.

We now choose a solution for this set of equations:

u(x, t) = α1e
λT+ikx ,

v(x, t) = α2e
λT+ikx .

α1 and α2 are the amplitudes, while k is the wave num-
ber of the solution. The characteristic equation of the
model system is:

λ2 + Aλ + B = 0, (4.3)

where

A = fu + gv − k2(Du + Dv),

B =
[
fu − Duk

2
] [

gv − k2Dv

]
.

The roots of Eq. (4.3) are

λ = −A ± √
A2 − 4B

2
.

Our aim was to derive the criteria for diffusive insta-
bility of the model given by Eqs. (4.1) and (4.2). The
system is unstable if one of the roots of the characteris-
tic Eq. (4.3) is positive. A necessary condition for one
of the roots to be positive is A > 0. So,

fu + gv > k2(Du + Dv)

⇒ k2 <
fu + gv

Du + Dv

.

From Eq. (3.8), we know that gv = 0. Hence,

k2 <
fu

Du + Dv

Asmentioned earlier, k is the wave number, and hence,
k has to be real and positive. We know that Du and
Dv are positive and real. Hence, the above equation is
feasible only if fu > 0. Thus, the necessary condition
for instability of the system reduces to fu > 0. In terms
of parameters, the necessary condition reduces to

β > β∗ =
αru∗e−αu∗

[
1 − u∗

(mN+K )

]
(1 − 2u∗)(1 − e−αu∗)

. (4.4)

The necessary condition for one of the roots to be pos-
itive is F(k2) < 0, i.e,

[
fu − DPk

2
] [

gv − Dvk
2
]

− fvgu < 0

⇒ k2 <
fu Dv + gvDu

2DuDv

.

If k2min is the correspondingvalue of k
2 for theminimum

value of F(k2), then:

k2min = fu Dv + gvDu

2DuDv

.

Therefore,

F(k2min) =
[
fu − DPk

2
min

] [
gv − Dvk

2
min

]
− fvgu

⇒ F(k2min) = − ( fu Dv − gvDu)
2

4DuDv

− fvgu .

From Eq. (2.8), we know that gv = 0. So, the equation
reduces to:

F(k2min) = − f 2u Dv

4Du
− fvgu .

Thus, the sufficient condition reduces to − f 2u Dv

4Du− fvgu < 0 which gives

τ + 4
fvgu
f 2u

> 0,

where τ = Dv

Du
. Therefore, the necessary condition in

terms of parameters reduces to

τ > τ∗

=
4αβbru∗e(−αu∗)

(
1 − e−2αu∗) (

1 − u∗
mN+K

)
[
β(1 − 2u∗)(1 − e−αu∗ ) + αru∗e−αu∗

(
u∗

mN+K − 1
)]2 .

(4.5)

We have derived the conditions for diffusive instability
of the system. The conditions are described by Eqs.
(4.4) and (4.5). The diffusion of the phytoplankton
drives the plankton system to an instable state when
β > β∗ and when τ > τ∗. Ecologically, this translates
to the fact that instability will continue to prevail if the
zooplankton diffusion rate is more than phytoplankton
diffusion rate, satisfying τ > τ∗.

4.2 Variable diffusion

In the diffusive system Eqs. (4.1) and (4.2), we have
considered a constant diffusion coefficient for phyto-
plankton and zooplankton. Instead,wenowassume that
the diffusion coefficient of phytoplankton is constant,
while the diffusion coefficient of zooplankton is peri-
odic with time. Such periodic change in the diffusion

123



1900 K. Chakraborty, V. Manthena

coefficient could occur due to the movement of preda-
tor population for the hunt of food in different seasons.
Availability of prey is a factor that is responsible for
the periodicity in the diffusion of predator. Similar to
the case of constant diffusion, we take Du and Du to
be the diffusion coefficients of the prey and predator,
respectively. Dv is a periodic function of time, given
by:

Dv(T ) = Du(ζ + ρ sin(ωT )). (4.6)

In the above equation, ζ > 1, ρ is small and ζ > |ρ|.
Since the period of oscillation is assumed to be small,
the angular frequency ω will be large, i.e., ω � 1. The
model system can be written as:

du

dT
= u(1 − u) − v(1 − e−αu) + Du

∂2u

∂s2
, (4.7)

dv

dT
= b(1 − e−αu)v − cv − f θ + Dv(ωT )

∂2v

∂s2
.

(4.8)

The boundary conditions are the same as those consid-
ered in Sect. (4.1). To obtain a dimensionless system,
we assume ωT = τ . We want to study the diffusive
stability of the system around the interior equilibrium
point E∗, when the diffusion coefficient is periodicwith
time. We choose time-dependent solutions to the equa-
tions:

X (s, T ) = φ1(T )eiks, Y (s, T ) = φ2(T )eiks .

In this equations, φ1 and φ2 are dependent on time
T , and k is the wave number of perturbation. The
linearized system around the equilibrium point E∗ in
terms of φ1 and φ2 is:
dφ1

dτ
= �1φ1 + �2φ2, (4.9)

dφ2

dτ
= �3φ1 + �4(τ )φ2, (4.10)

where �1 = fu−k2Du
ω

, �2 = fv
ω
, �3 = gu

ω
and

�4(τ ) = �5 + �6(τ ) where �5 = gv−ζk2Du
ω

and

�6(τ ) = − k2Duρ
ω

sin(τ ).
We solve the Eqs. (4.9) and (4.10) by taking the

following transformation:

ψ(τ) = exp

(
−1

2

∫
[�1 + �4(τ )]dτ)φ1(τ )

)
.

(4.11)

Substituting Eq. (4.11) in (4.9) and (4.10), we get:

d2ψ

dτ 2
+ P(τ )ψ(τ) = 0, (4.12)

where P(τ ) = 1
2

d
dτ (�4(τ )) − 1

4 (�1 + �4(τ ))2 +
(�1�4(τ ) − �2�3).

Let τ = 2η, then substituting the values of �s from
above into Eq. (4.12), we get the Hill’s equation.

d2ψ

dη2
+ [l1 + l2(−2 cos(2η) + 2l3 sin(2η))

+l4 cos 4η]ψ(η) = 0, (4.13)

where

l1 = − 1

ω2

[
fu − (1 + ζ )k2Du

2 + 1

2
ρ2k4D2

u

+4ζk2Du( fu − k2Du) + 4 fvgu
]
,

l2 = ρk2Du

ω
,

l3 = − 1

ω

[
fu + (ζ − 1)k2Du

]
,

l4 = ρ2k4D2
u

2ω2 .

If Eq. (4.13) is solved, we can find φ1 and φ2 from Eqs.
(4.9) and (4.10). Using φ1 and φ2, we can determine
the stability of the system. From Eq. (4.11), we have
the time-dependent solution

φ1 = exp

(
1

2

∫
[�1 + �4]dτ

)
ψ(τ). (4.14)

Earlier, we had assumed that the period of oscillation
and the amplitude of variability of the diffusion coef-
ficient were small. So, l2 � 1. Then, l4 becomes very
small, and the Eq. (4.13) reduces to

d2ψ

dη2
+[l + l2(−2 cos(2η) + 2l3 sin(2η))]ψ(η) = 0,

(4.15)

where l = − 1
ω2 [ fu − (1 + ζ )k2Du

2 + 4ζk2Du( fu
− k2Du) + 4 fvgu].

We solveEq. (4.15) using thepower series expansion
of ψ(τ) upto the first degree. We substitute this into
Eq. (4.15) and then equate the coefficients of the like
powers of l2 to get the following two equations:

d2ψ0

dη2
+ lψ0(η) = 0, (4.16)

d2ψ1

dη2
+ lψ1(η) + (−2 cos(2η)

+2n sin(2η))ψ0(η) = 0. (4.17)

If l < 0, let l = −θ2. The solution of Eq. (4.16) is

ψ0(η) = Aψ0e
θη + Bψ0e

−θη, (4.18)
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Modelling and analysis of spatio-temporal dynamics 1901

where Aψ0 and Bψ0 are arbitrary constants which do
not depend on η. Substituting Eq. (4.18) into Eq. (4.17),
we get

d2ψ1

dη2
+ lψ1(η) = Aψ0e

θη[2 cos(2η) − 2n sin(2η)]
+ Bψ0e

θη[2 cos(2η) − 2n sin(2η)].
(4.19)

Thus, both ψ0(η) and ψ1(η) can be solved using the
above equations, and the solutions are bounded. Thus,
from Eq. (4.14), we get

φ1 = exp

[
1

ω
fu − (1 + ζ )k2Duη

+ 1

2ω
ρk2Du cos(2η)

]
(ψo(η) + mψ1(η)).

(4.20)

We follow Bhattacharyya et al. [30] to conclude that
the system is stable if

�1 + �5 +
√

(�1 − �5)2 + 4�2�3 < 0.

This reduces to �1�5 > �2�3, or

ζk4 − ζ fu Duk
2 − fvgu > 0. (4.21)

Here, we know that fv < 0 and gu > 0. Hence, we
can conclude that − fvgu > 0. So, the criterion is met
if fu > 0. In terms of parameters, this reduces to:

β > β∗ =
αru∗e−αu∗

[
1 − u∗

(mN+K )

]
(1 − 2u∗)(1 − e−αu∗)

. (4.22)

Also, we know that Eq. (4.21) is positive for all k. This
criterion is met if

[ fuζDu]2 − 4ζ fvgu < 0.

Hence, in terms of parameters, this reduces to

ζ < ζ∗

=
4αbru∗e−αu∗

(
1− u∗

mN+K

)

β(1−e−αu∗)(1−2u∗)+αru∗e−αu∗
(

u∗
mN+K −1

) .

(4.23)

Hence, Eqs. (4.22) and (4.23) are the conditions for
diffusive instability in the presence of variable diffusion
coefficient of the predator.

5 Numerical analysis

The reaction–diffusion system has very interesting
dynamics depending on the parameters of the sys-
tem. The system with constant diffusion coefficients

0 200 400 600 800 1000
0

50

100
(a) Phytoplankton

time t

u1

0 200 400 600 800 1000
0

50

100

150

200
(b) Zooplankton

time t

u2

Fig. 1 Stable solution of phytoplankton and zooplankton of
the system at α = 0.01, b = 0.42, D = 0.5, γ = 0.3, β =
0.4,m = 0.5, N = 20, K = 110, a = 3, c = 0.02, ε =
10−7, r = 0.5, δ = 0.01, and σ = 0.001

shows that the equilibrium point E∗ is conditionally
stable. The system becomes unstable when β > β∗ and
τ > τ∗. We have verified the results numerically. The
numerical analysis is performed with the help of the
softwareMATLAB.We show three states of the system
with the effect of diffusion. At t = 1000, we observe
that for parameter values α = 0.01, b = 0.42, D =
0.5, γ = 0.3, β = 0.4,m = 0.5, N = 20, K =
110, a = 3, c = 0.02, ε = 10−7, r = 0.5, δ = 0.01
and σ = 0.001, the system is in stable state (Fig. 1).
When α is increased to 0.012, γ is increased to 0.6 and
β is increased to 0.7, the population of the system
is showing large amplitude oscillations. However, this
oscillation does not sustain, and with t > 5000, a sta-
ble solution is observed. Instead, when α = 0.015,
β = 0.9 and γ = 0.6 is considered, a clear periodic
oscillation can be observed which corresponds to an
unstable solution.

The phase graphs of the stable solutionwith the same
parameter values mentioned for the two-dimensional
plot are depicted (Figs. 2, 3).

The evolution of oscillatory behavior get into the
system can be observed from Fig. 4. We can see that
the amplitude of the graph is steadily reducing. This
shows that the system will become stable with time.

Figures 5 and 6 are showing phase plots correspond-
ing to intermediate state (stable to unstable) of the sys-
tem.
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Fig. 2 Three-dimensional stable solution of phytoplankton at
α = 0.01, b = 0.42, D = 0.5, γ = 0.3, β = 0.4,m =
0.5, N = 20, K = 110, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01 and σ = 0.001

Fig. 3 Three-dimensional stable solution of zooplankton at α =
0.01, b = 0.42, D = 0.5, γ = 0.3, β = 0.4,m = 0.5, N = 20,
K = 110, a = 3, c = 0.02, ε = 10−7, r = 0.5, δ = 0.01 and
σ = 0.001

The reaction–diffusion system becomes unstable in
the presence of diffusion when β > β∗ and τ > τ∗. We
verified the unstable state numerically. Figure 7 depicts
the unstable state of the system.

Figures 8 and 9 are showing the phase plots for peri-
odic oscillations of the plankton populations.

The spatio-temporal dynamics of a chaotic system
largely depends upon the choice of initial conditions.
The initial distribution of the species considered is
a two-dimensional initial condition of the following
form:

u = 1 − exp(−150((X − λ/2)2 + (Y − λ/2)2)),

v = exp(−150((X − λ/2)2 + 2(Y − λ/2)2)).
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(b) Zooplankton
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Fig. 4 Intermediate state of the system with parameter values,
α = 0.012, b = 0.42, D = 0.5, γ = 0.6, β = 0.7,m =
0.5, N = 20, K = 110, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01 and σ = 0.001

Fig. 5 Three-dimensional intermediate state of phytoplankton
at α = 0.012, b = 0.42, D = 0.5, γ = 0.6, β = 0.7,m =
0.5, N = 20, K = 110, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01, and σ = 0.001

The numerical results obtained using semi-implicit
numerical techniques of two-dimensional phytoplank-
ton–zooplankton system are presented in Figs. 10, 11,
and 12. Initial condition (as described above) with
zero-flux boundary conditions (as explained in stabil-
ity analysis) in two dimension is used to perform sim-
ulations of two-dimensional spatio-temporal system.
The parameter values taken are α = 1.175, γ = 0.6,
β = 0.75, m = 0.5, N = 25, K = 110, a = 3,
r = 7.5, δ = 0.01, σ = .001, Du = 3 ∗ 10−5,
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Fig. 6 Three-dimensional intermediate state of zooplankton at
α = 0.012, b = 0.42, D = 0.5, γ = 0.6, β = 0.7,m =
0.5, N = 20, K = 110, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01, and σ = 0.001
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Fig. 7 Periodic oscillation of phytoplankton and zooplankton
at α = 0.015, b = 0.42, D = 0.5, γ = 0.6, β = 0.9,m =
0.6, N = 25, K = 120, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01, and σ = 0.001

Dv = 5∗10−5, λ = 2.5, N = 128 and h = 2. The sys-
tem is solved, and graphs are generated in MATLAB.

Phytoplankton population density is plotted in left-
hand side column and zooplankton population density
in the right-hand side column of Figs. 10, 11, and 12
at times t = 1000, 10,000 and 20,000 respectively. The
figures depict how the concentration of phytoplankton
and zooplankton changes due to local reactions and dif-
fusion in the system. An irregular pattern prevails over
the entire square domain. Although choice of the initial

Fig. 8 Three-dimensional periodic oscillations of phytoplank-
ton at α = 0.015, b = 0.42, D = 0.5, γ = 0.6, β = 0.9,m =
0.6, N = 25, K = 120, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01, and σ = 0.001

Fig. 9 Three-dimensional periodic oscillations of zooplankton
at α = 0.015, b = 0.42, D = 0.5, γ = 0.6, β = 0.9,m =
0.6, N = 25, K = 120, a = 3, c = 0.02, ε = 10−7, r =
0.5, δ = 0.01, and σ = 0.001

condition drastically affects the dynamics of the sys-
tem, the spatial dynamics observed in the figures is not
induced by the initial condition. The chaotic nature of
the diffusion model has been studied, and it is observed
that spatio-temporal chaotic dynamics of this diffusion
system is self-organized.

6 Conclusion

The discovery of spatio-temporal chaos, in the early
90s, has applications in Engineering and Physiology.
There exist many mechanisms which cause spatio-
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Fig. 10 Spatial plot patterns at time t = 1000 with parameter values mentioned above. a Phytoplankton. b Zooplankton
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Fig. 11 Spatial plot patterns at time t = 10,000 with parameter values mentioned above. a Phytoplankton. b Zooplankton

temporal chaos in a given system. It is imperative to
assess their potential to solve problems in Physics,
Biology, and Engineering. Here, we attempt to do the
same in a model ecological system.

Our study is on a plankton system and the interac-
tions of plankton species when the functional response
for zooplankton grazing is Ivlev type. In the homoge-
neous system, we have seen that the maximum phy-
toplankton consumption rate β can control the system
behavior. There is a critical value (β = β∗) of the
maximum phytoplankton consumption rate for which
the system bifurcates (Hopf type) from stable oscilla-
tion into an unstable periodic oscillation. If β exceeds

the critical value, then the system becomes unstable
leading to periodic oscillation of the plankton popu-
lation. Also, the system shows that it becomes unsta-
ble around coexisting equilibrium point E∗, when the
ratio of the diffusion coefficients of the zooplank-
ton to the phytoplankton species (τ ) exceeds a criti-
cal value τ∗. The reaction–diffusion system with vari-
able diffusion coefficients also has interesting dynam-
ics on the plankton system. The study shows that if
the maximum consumption rate (β) of the phytoplank-
ton species exceeds the critical value β∗, the sys-
tem is stable about the equilibrium point E∗. Also,
if the ratio of the diffusion coefficients of zooplank-
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Fig. 12 Spatial plot patterns at time t = 20,000 with parameter values mentioned above. a Phytoplankton. b Zooplankton

ton to phytoplankton is less than a critical value ζ∗ ,
then the system is stable about the equilibrium point
E∗.

It is observed that there is not much noticeable
change in the spatial patterns after a specific time. Thus,
we can conclude that the patterns are time-independent.
The spatio-temporal chaos generated is unaffected by
changes in the system parameters. The spatio-temporal
patterns obtained show that chaotic behavior spreads
over the entire domain. The formation of patterns cor-
responds to a chaotic dynamics, and thus, it leads to
the conclusion that spatio-temporal chaos is an intrinsic
property of population dynamics. The results suggest
that patchiness is one of the basic characteristics of the
functioning of an ecological system. Two-dimensional
spatial patterns of phytoplankton–zooplankton dynam-
ics are self-organized and therefore can be considered
to provide a theoretical framework to understand patch-
iness in marine environments.

Throughout this report, we have made certain
assumptions about plankton populations and the physi-
cal environment, making our system idealized to a cer-
tain degree. We have assumed the growth of phyto-
plankton to be a modified Leslie-Gower type, and this
model is based on the assumption that reduction in zoo-
plankton population is inversely related to per capita
availability of its preferred food [29]. In the real world,
this may not be a perfect inverse relation. Also, we have
not accounted for the effect of the plankton population
on the fish population dynamics. Thus, our model does

not truly replicate nature. Introducing stochastic vari-
ations into the model would improve its accuracy. A
spatio-temporal model with stochastic variation can be
used to assess various sources of uncertainty [31].

A more complicated model than the one described
in the report would provide more mechanisms of pat-
tern formation.Distinguishing between patterns arising
from the differences in the complexity of models is a
very interesting and important problem. However, it is
beyond the scope of this report.
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